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The aim of this paper is to give a characterization of the finite simple
group U,(3) i.e. the 4-dimensional projective special unitary group over
the field of 9 elements. More precisely, we shall prove the following result.

THEOREM. Let ¢, be an tnvolution in U 4(3). Denote by H, the centralizer
of £y in U (3).

Let G be a finite group of even order with the following properties:

(a) G has no subgroup of index 2,

(b) G has an involution t such that H = C(t), the centralizer of t in G
is isomorphic to H,.

Then G is isomorphic to U 4(3).

We shall use the standard notation.

1. Some properties of H,

Let Fy be the finite field with 9 elements. Then the map: # — & = «3
(r € Fy) is an automorphism of Fy. We extend this map to a map of GL (4, 9)

thus: («;) - () = (&;) where (x;;) e GL(4, 9). The subgroup SU(4, 9)
in GL(4, 9) consisting of all matrices with determinant 1 which satisfy the

relation: (a;;) - (;;)* = I where («;;)* is the transpose of (a;;), is known as
4-dimensional special unitary group over Fy. Then U,(3) (= PSU(4,9))
is the factor group SU(4, 9)/Z(SU(4, 9)) where Z(SU(4, 9)) denotes the
centre of SU (4, 9).

Let £, be the matrix

1

Then £, is an involution in SU (4, 9). Now the centre of SU (4, 9) is generated
by the element ¢ = k21 where % is a fixed primitive element of the multi-
plicative group of F,y. So Z(SU (4, 9)) = {¢) is cyclic of order 4.
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Denote by H,, the group of all matrices («;;) in SU(4, 9) which
‘commute projectively’ with £, i.e. which satisfy the relation («;;)¢, =
ty(a;;)e, (# =10,1,2,3). A matrix in SU(4, 9) belongs to H, if and only if

it has the form
A or B
B A

where (4) and (B) are 2 X 2 matrices in GU (2, 9) with det (4) det (B) = 1.
Let L; be the subgroup of Hj consisting of matrices of the form

[

with (4) e SU(2, 9). Since SU(2, 9) =~ SL(2, 3), we can easily check that
the following matrices generate L]

0 —1 0 kS
P R L
1 1 of 1 1 o)’
0 1 01
B OE3
, k5 k3
1= 1 0
0 1

Now we have the matrice #’ belongs to H,

1 0
, 0 1
“=11 o
0 1
and we get
(A B
" ( B) - ( P )
The matrix v’
k3 k3
, B3 B7
v E ok
kRS

also belongs to SU(4, 9). We check that (v')2 ={,c and u'v's’ = (v')7.
So (u', v") is dihedral of order 186.
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Put ay = w'aju’, by = w'bju’, o5 = w' oy’ and Ly = {ay, by, a3>. We
can now verify that Hy = (LyxLy)<{w', v'>. Let Hy = Hgy/<{c) and in the
natural homomorphism from Hj, onto H,, let the images of ¢y, a;, b;, o},
L, u', v (1 =1,2) bety, a,,b,, o, L, u, v respectively. We have then H,
is a non-splitting extension of L = L, L, by a four group. More precisely
we have the following relations:

Hy=L-F
L =L, L,whereL,nL,=<$>and [L;,L,] =1
F = (u, v), a dihedral group of order 8
L, =<{a;, b, 0)al = b] = 4y, b7tab, = a7, o7ta,0, = by,
o;1b,0, = a;b,, ¥ =1)
and
vlg;v = a7}, v 1b,v = b,a,, vi0o,v = o7}, v2 = {¢,.

The structure of H, is now completely determined. Of course, we have
to see that the structure of H, is independent of the choice of ¢, in SU (4, 9).
This is so because we can check that U,(3) has only one conjugate class of
involutions.

We shall list a few properties of H,, which will be used in the next
section.

(1.1) Every element of H, can be written uniquely in the form
aibloktity o uPv? where ¢ = a,a,; ty=bb,; 0= 0,0,; t=0,1,23;
17=01%=012,1=0,1;, m=0,1; n=0,1,2;, p=0,1; ¢ =0, 1.
The order of H js 27 - 32,

(1.2) The group Q = <ay, a,, b;, b>F C H, is a Sylow 2-subgroup of
H,. The centre Z(Q) of Q is {z,>.

(1.3) There are 4 conjugate classes of involutions in H, with represen-
tatives 7y, 7;, #, uv. We have the centralizer Cy (#;) = 4 of ¢, in H, is
the group <a,, a,, t,, #, v>, a non-abelian group of order 64. We have the
centre Z(4) of A is (¢, t,>, a four group. The commutator group A’ of 4
is also (#,%). The centralizer of u,Cgq(¥) in H, is E,;{o) where
E, = {4, t,, ty, u), an elementary abelian group of order 16. The centralizer
of uv, Cy (wv) in Hy is Ey{oy03") where E, is (b, ¢y, t5, wv) (t; = a,6,b,),
an elementary abelian group of order 186.

(1.4) Both E; and E, are normal in the group Q. We have
Ny, (E)) = Q<o) and the factor group Ng (E,)/E; is isomorphic to S,,
the symmetric group in 4 letters. Similarly we have Ny, (E;) = Q<p>
(p = 0,03") and the factor group N 1,(E2)/E¢ is isomorphic to S,.
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(1.5) The group L is the smallest normal subgroup of H, with 2-factor
group and H/L is a four-group.

(1.6) A Sylow 3-subgroup T of H, is {0y, 6,), an elementary abelian
group of order 9. We have Cy (T') = <{#o» X T and Ny (T) = {u, v)T.

2. Conjugacy of involutions

Let G be a finite group with properties (a) and (b) of the theorem.
Since the group H = Cg(¢) is isomorphic to H,. We shall identify A with
H,. Then we have ¢, = {.

(2.1) LeEMMA. The Sylow 2-subgroup Q of H is a Sylow 2-subgroup of G.

Proor. This is obvious since Z(Q) = {¢) is cyclic of order 2.

(2.2) LEMMA. If the involution u is conjugate to t in G, then t, is con-
jugate to t in G.

Proor. Since by assumption # is conjugate to ¢ in G, there exists a
Sylow 2-subgroup of Cq(#) properly containing E, = {¢,t,, {,, 4. There-
fore there is an element # in C¢(#)—H which normalizes E,. Let us look
more closely at the involutions in E;. We have

Ci = {t1, tty, by, thy, byly, thity)}
whose elements are conjugate in H and likewise
Co = {u, tyu, tyu, ttyu, tu, it u, tou, tt,t,u}

with elements conjugate in H. We see that C, v C, u {t} = E;—{1}.

Since x ¢ H, we must have a2z ¢ If x4z e C, or z7 1 ,xeC,,
then we are finished. Therefore we may suppose that xz~'fxeC, and
x4, 2 € C,. Then we get x4,z € C,. Since #, is conjugate to ¢;, the lemma
is proved.

(2.3) LEMMA. If the involution uv is conjugate to t in G, then ¢, is con-
jugate to t in G.

ProOF. As in (2.2) with E, playing the role of E;—{1}.
For the pioof of next lemma, we need an unpublished result of
Thompson.

LemMA (Thompson [7]). Suppose ®& s a finite group of even order
which has no subgroup of index 2. Let &, be a Sylow 2-subgroup of & and let
M be a maximal subgroup of F,. Then for each involution I of ®, there is an
element B of & such that B1IB e .#.
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(2.4) LEMMA. If the involution ¢, is conjugate to t in G, then G has only
one conjugate class of tnvolutions.

Proor. We have by (2.1) that Q is a Sylow 2-subgroup of G. The group
M = {a,, a,, by, by, v) is a maximal subgroup of Q. By our assumption,
we have one class of involutions in M. The lemma follows from condition
(a) of the theorem and Thompson’s lemma.

(2.5) LEMMA. There is only one class of involutions in G.

Proor. First we want to show that the group G is not 2-normal. By
way of contradiction, suppose that it is 2-normal. Since <{f) is the centre
of a Sylow 2-subgroup Q of G. It follows by Hall-Griin’s theorem [4], that
the greatest factor group of G which is a 2-group is isomorphic to that of
Ne(Z(Q)) = H, i.e. by (1.5) isomorphic to H/L which is of order 4. But
this is a contradiction to condition (a) of the theorem. It follows that G
is not 2-normal. This means that there is an element z € G such that
teQ n z71Qz but (¢ is not the centre of z71Qxz.

The centre of 271Qz is {(z71¢z). So z71{z # £. On the other hand, we have
t € 271Qz. It follows that ¢ and 27z commute. Hence 2714z € H. Without
loss of generality, we may assume that z7l/ze {{,, #, wv}. The lemma
follows now by (2.2); (2.3) and/or (2.4).

(2.6) LEMMA. The group G is simple.

PRrOOF. Suppose at first that O(G) 5= 1 where O(G) denotes the maximal
odd-order normal subgroup of G. Then the four group (¢, ¢ ) acts on G.
By the structure of H and (2.5), we see that Cg(x) does not have a non-
trivial intersection with O(G) for x € (¢, ¢,>. Hence (¢, ¢;> acts fixed-point-
free on O(G) which is not possible. Hence we have that O(G) = 1.

Suppose next that N is a proper normal subgroup of G such that
|G/N|is odd. We have then H C N since H does not have a proper odd-order
factor group. We have that Q C N. By Frattini argument, G = N - N4(Q).
But then N4(Q) ENy(¢> = H. So G = N, a contradiction.

Lastly suppose that G is not a simple group. Then G must have a proper
normal subgroup K such that both [K| and |G/K| are even. Since by (2.5),
all involutions of G are in K. This implies that Q C L since Q is generated
by its involutions, a contradiction to our assumption. The proof is now
complete.

(2.7) LEMMA. The group No(E )| E, is isomorphic to Ag, the alternating
group in 6 letters (i =1, 2).

Proor. By (2.5), there is a 2-group in Cg(u) properly containing E,
in which E, is normal. So we get that Ng(E;) ¢ H. Since Ng(E,)/E; is
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isomorphic to S,, a Sylow 2-subgroup of Ny(E,)/E, is dihedral of order 8.
Clearly Q/E, is also a Sylow 2-subgroup of Ng(E,)/E,. Since we have
Cq(E,) = E,, the group & = N4(E,)/E, is isomorphic to a subgroup of
GL(4, 2) @ Ag which has order 26-3%-5- 7.

Suppose at first that O(%) s 1 where O(%) denotes the maximal
odd-order normal subgroup of . Consider the action of the four-group
{ayE,, by E;» on O(&). Using the facts that all involutions of {a, E,, b, E,>
are conjugate in (since ¢E, € &) and that the centralizer of any involution
in A4 has order 28 - 3 or 25- 3, we get by a result of Brauer-Wielandt [10],
that |O(&)] = 32 or 3. The first case is not possible since 3314 |44]. So we
have [0(¥)] =3. Hence {(a,E;, bE,>-0(%) =<a,E,, b E>XO(F).
We shall rule out this case by considering N,{(a,E,, b, E,>. We have
Nglay, by, ay, by, uy C Nglt) since Z<{ay, by, a,, by, u) = {t>. So

Nelay, by, a5, by, ) N Ng(Ey) = Q- o)
and it follows N,{a, E,, b E;> =~ S*%, a contradiction to
@ Ey, b Ey) - O(F) = {ay, Eq, b E ) X O(F).

Thus O(&) = 1.

By the structure of A4, the order of C,(a, E,) is 23+ 3 or 23. Suppose
that |C,(a, E,)] = 23- 3. We are now in a position to apply Gorenstein-
Walter’s result [3], and get & ~ PSL(2,23); PSL(2,25); PGL(2,11);
PGL(2,13) or A,. The first four cases are not possible since || 1 |4g|.
If 7 divides the order of &, we would then have an element of order 7 in
Ng(E;) which acts fixed-point-free on E,, a contradiction. Thus we must
have [C(a, E;)] = 8. Let T be a Sylow 2-subgroup of G in Cg(¢,) properly
containing Cq(t,) n H. Then Z(T|E,) # {a,E,), otherwise we would get
|C,(a, Ey)| > 8. This means that & has only one class of involutions.
Therefore by Gorenstein-Walter [3], we get & ~ PSL(2,9) ~ Ag. The
proof is finished.

3. Sylow 3-subgroups of G and its normalizers in G

We shall determine the structure of a Sylow 3-subgroup of G, and the
normalizer of this Sylow 3-subgroup in G.

We have T = {(0y,0,) CH is a Sylow 3-subgroup of H and
Cuy(T) =<tOXT,Ny(T) = <{u,vDT. By the structure of H, clearly a
Sylow 2-subgroup of C4(T) is (¢)>. It follows, by a theorem of Burnside
[4], that Cg(T) has a normal 2-complement M 2 T. Since we have
Co(T) < Ng(T), we get by Frattini argument that

Ng(T) = (Cet) n Ng(T))Co(T) = <u, v M.
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The normal 2-complement M of Cy(T) is characteristic in Cg(7"). Hence
M is normal in Ng(T). Thus the four group <¢, #) acts on M. Using the
result of Brauer-Wielandt [10] and the fact Cy(t) = T; Cpy {8, > = {0,
we get |M| = |Cy(u)| |Cpr(tu)|. Since u and tu are conjugate in Ng(T),
we have [Cy(u)| = |Cpy(tu)]. By (2.5), we have [Cyp ()| = |Cpr(tu)| = 8 or 32.
So the order of M is 9 or 81.

Suppose that the order of M is 9. Then we have T =M and so T is
a Sylow 3-subgroup of G with No(T) = (u, v)T. By (2.7), we know that
Ng(E,)/E, ~ Ag. Let T be a Sylow 3-subgroup of N¢(E,). By the structure
of Ag and our assumption, we have Cg(T) n NG(EI) T or (¢'>xT
where ¢’ is an involution in E; . Suppose we have Co(T) n Ng(E;) = /> T.
Because Cg(E,) = E,, T induces by conjugation on E; a faithful
automorphism of E; and fixes an involution on E,. Thus we must
have 32 dividing (2¢—2)(24—4)(2¢—8) =263 -7, a contradiction.
Hence we get Cq(T) n Ng(E,) = T. Now by the structure of Ng(T), and
Co(T) " Ng(E,) =T, we get that [Ng(T) A Ng(E,)| = 3% or 2-3% The
later case is impossible, since the index of Ng(T) n Ng(E,) in Ng(E;)
is 26-5 which is not congruent to 1 modulo 3. Therefore, we have
INg(T) n Ng(E,)| = 3% By a transfer theorem of Burnside [4, p. 203],
N (E,)/E, is not simple, a contradiction. So we have shown that the order
of M is not 9.

Thus M is a group of order 81. We shall show that M is elementary
abelian. For this, we need to look at elements of order 3 in H more closely.
There are 3 conjugate classes of elements of order 3 in H with representatives
0y, 0= 0,05, p= 0,03 " respectively. The centralizer of ¢, in His T - {a,, b,>
and so a Sylow 2-subgroup is Cy(g,) is quaternion of order 8. The centralizer
of ¢in H is {¢, )T and the centralizer of p in H is (¢, wv) + T. Both Cy(o)
and Cy(p) has a four group as its Sylow 2-subgroup and have unique Sylow
3-subgroup T. Let T, = Cylu), T, = Cy(tn). We have

M = Cpy(t)Cps()Cpy(ut) = TT T, and T, n Ty 0 T = {o.

Now we consider Cy(T,). By (2.5), T is conjugate to T, in G. So we
have C4(T,) = (u>x M where M is of order 81 and M is normal in N4(T,).
We have {f, #) C Ng(T,) and therefore the four group <¢, ) acts on M.
So we get T'= Cq(t) n B, Ty = Cg(tu) n I and Cg(u) n I = T,, all
elementary abelian of order 9 with 7'~ T, n T, = (o). Since we have
T C H n Cglo), we must have T = T. Because <¢, u)> C Cqltu) n Cglo),
by our remark in last paragraph we get T, = 7',. Thus M = M. This means
that <T', T,) € Z(M) and so M is abelian as required.

Thus we have proved the following lemma.

(8.1) LeMMA. The centralizer of T in G is a splitting extension of an
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elementary abelian group M of order 81 by {t>. The normalizer of T in G
is the group {u,v)M where Cpy(t) =T; Cpu) = Ty; Chyltu) = T,;
TnTynTy,= o) and the groups T, T,, T, are elementary abelian of
order 9.

Next we take a look at Cg(sy). By (3.1), we have M C Cg4(0y). By the
structure of H, we get Cg(oy) n H = T - {a,, b,>. Let U be a Sylow 2-sub-
group of Cg(oy) containing {a,, b,>. If U properly contains {(a,, b,>, we
would get that Cg(oy) N H, has a Sylow 2-subgroup properly containing
{ay, by, a contradiction. Hence a Sylow 2-subgroup of C4(s,) is quaternion
of order 8. Let V = 0(C¢g(0,)), the maximum odd-order normal subgroup
of Cg(oy). By Suzuki [9], the factor group Cg(o,)/V has only one involution
¢t -V and so <{¢)V is normal in Cg(o,). By the Frattini argument

Celor) = (Celoy) N Calt))V = <ay, b,)T - V.

Because {a,, b,>T is not 3-closed, it follows that T &V andso T n V = {o;).
We get Cgloy) = (ay, by, 050V = L,V where L, ~ SL(2,3). Since
Cat) nV = Loy, it follows that ¢ acts fixed-point-free on V/{o;>. So
V[{oy» is abelian. Hence V' C {oy> C Z(V) and V is nilpotent of class at
most 2.

We have therefore proved the following lemma.

(8.2) LEMMA. The centralizer of the element o, in G is the group L,V
where Ly = {ay, byo,) and V = 0(Cg(oy)) is odd-order and wilpotent of class
at most 2.

The proof of the next lemma is rather involved.

(3.3) Lemma. We have that N o(M)|M is isomorphic to Ag, the alter-
nating group tn 6 letters.

Proor. Since M is characteristic in N4(7T'), we get <{u, v> C Ng(M).
Let U 2 <{u, v} be a Sylow 2-subgroup of Ng(M). If U D {u, v}, this would
imply that Cg(t) n U D (w, v). Since Cg(t) n M = T is normalized by
Cg(t) n U, this would give a contradiction to the structure of Cg(¢). Hence
U = <{u,v) and a Sylow 2-subgroup of N (M) is dihedral of order 8.

Since the four group (¢, u) acts on O(Ng(M)) and Cplt, u) = {o),
we get O(Ng(M)) = M. Now suppose that Ng(M) = Ng(T), then M is a
Sylow 3-subgroup of G. The groups T and T, being conjugate in G, should be
conjugate in Ny(M), by a theorem of Burnside [4], a contradiction. So we
get that N (M) D N(T).

By (3.2), Ce(T) = (¢DM and so C4x(M) = M. Hence Ng(M)/M is
isomorphic to a subgroup of GL(4, 3). Since Cg(t) n Ng(M) = <u, v)T,
we get C(EM) n (Ng(M)/M) = {u, v)M|M. We are now in a position to
use the result of Gorenstein-Walter [3], giving No(M)/M ~ A,; PSL(2, 7);
PSL(2,9); PGL(2,3) or PGL(2, 5). Because 7 does not divide |GL (4, 3)|,
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we have Ng(M)/M is isomorphic to PSL(2,9); PGL(2, 3) or PGL(2, 5).

Suppose that No(M)/M is isomorphic to PGL(2, 3) or PGL(2, 5). Let
K be a subgroup of index 2 in Ng(M). Then a Sylow 2-subgroup of K is
either {¢, u)> or {¢, uv). First suppose that it is {¢, #>. We have then F/M
is isomorphic to 4, or 4;. In either case, there exists an element u of 3-power
order in F such that Ng{¢, > n F = (¢, u){e, py where {o, u> is a group
of order 9 and =ty = u, puy = tu, p~*up = ¢. The group (g, p) is either
elementary abelian or cyclic of order 9. Since Cgq(t, #) = E (o), and E;
is characteristic in Cg{f, #>, we have E; <4 Ng{t, u>. By (2.7), a Sylow
3-subgroup of N4(E,) is elementary abelian of order 9. Hence we have shown
that u is an element of order 3 and <¢, u>{u> ~ A,.

Put 4 = M {u)>. It follows that

T,=MnCqlu) =T+ and T, = M n Cgltu) = T#.
Let p = 0,063 Then
T ={o,p> Ty ={o,p#> Ty = <o, Pﬂ2>-

So every element of M can be written uniquely in the form ¢%p#p?pj where
py = p¥; py = p*’; &, B, 7, 0 = 0, 1 or —1. Therefore the structure of # is
completely determined. Since .# is non-abelian, we have

Z(M) = Cy(n) = <o, ppyps)-

An easy computation shows that .#' = {pp,p,, pp7*>, which is elementary
abelian of order 9. Since Z(.#) = #’, we get C ,(#') = M and therefore
M a Ng(A). This gives Ng(#) C Ng(M) and in particular .# is a Sylow
3-subgroup of G.

Let M, =M nV. Suppose that V has a characteristic subgroup X of
order = 9 contained in M. Then X < Cg{o,) and so Cg(X) n Cgloy) is
normal in Cg(s;). Suppose that ze Cy(X). Then X C Celt) n V = {0y,
a contradiction to our assumption. Thus {g,> = C¢(X) n L,, which would
imply that <o, is normal in L,, a contradiction. Hence V' does not have
any characteristic subgroup of order =9 contained in M,. It follows
that M, is not a Sylow 3-subgroup of V. Let M, D M, be a Sylow 3-subgroup
of V. Then [M,: M,] == 3 and so {(M,, o,» is a Sylow 3-subgroup of G.
If M, were abelian, then Cg(M,) 2 {M,, 0,> and so M, C Z<{M,, o,),
which contradicts |Z(#) = 9. Hence M, is non-abelian and so
{o,>C Z(M,;) C M,. Thus we get Z(M,) = {0o,> and also M, = {o;).
Since M, is a 3-group of class at most 2, it follows that M, is regular (in the
sense of P. Hall). If M, were not of exponent 3, then M, would be char-
acteristic in M,, a contradiction. It follows that the Frattini group
é(M,) = (o,> and so M,/{s,)> is a ‘vector space’ of dimension 3 over the
field of 3 elements F,.
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For any two elements # = x{0,), § = <{o;> of M,/{s;> where
z, y € M,, define [%, §] = c where c € Fgand [z, y] = 2 'y~ 'y = o]. Then
[£, 7] is a non-singular bilinear skew symmetric form defined on M,/{s,>
with values in F3 [5]. But then the dimension of M,/{cs,> must be even by
[1], a contradiction.

An identical proof applies when a Sylow 2-subgroup of K is (¢, uv).
Therefore we have shown that Ng(M)/M is isomorphic to 4.

We shall now begin the determination of the structure of a Sylow
3-subgroup of G. But first, we look at the structure of Ny(M) more closely.
Since the normalizer of a four group in A4 is of order 24, there exists an
element u of 3-power order such that Ng<t, u)> n Ng(M) = (u, v) - {o, u).
By the same reasoning as in (3.3), we conclude that g is of order 3 and we
have plp = u, u lup = tu.

Let & be the isomorphism of Ng(M)/M onto A4,. Without loss of
generality, we may suppose that (M) = (1324)(56), (uM)& = (13)(24)
and choosing p in N (¢, ) suitably, we may assume that (uM)S¥ = (132).
Let z € Ng(M) such that (zM)& = (12)(45). Then we have

(WM)F = (132) = ¢,; (M)F = (12)(34) = e
() (M) S = (12)(45) = ¢;; (tuoM)F = (12)(56) = ¢, - - -

By Moore, we have Ag = (e, ¢,, 3, ¢,>. Next we may represent
Ng(M)/M as linear transformations on the vector space, M over the field
of 3 elements in term of the basis g, p, p; = p#, p, = p*". The representation
is faithful since C (M) = M. Hence we get

1 0 0 O 1
0 0 0 1

uM — o 1 0 ;M — ) ;
0 0 1 -1

1
0
0
1
—1
uM—>(
1
—1

From the relations v2 = ¢, v=luv = fu, we get v is represented by the
matrix

interchanging v by v~1 if necessary.
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Let (2M) be represented by («,;) € GL(4, 3). Then from the relation
(uzM)? = M, we get that z is representated by

%1y %pp O Uy
M > gy Kgg Kpz Kog
Zgp Koz  Kpg gy
Xgy Kpq Ky Koy
and from (2M)2 = M, we get
“?1 %1p°S Uy S %S 1
(+%) 'S g+hy gthy gth, _ 1
%S &+hy gthy gth, 1
ays gt+hy gt+hy, gt+h 1
where S = oty AogFtagt %y
§ = Gy
hy = 0(§2+OC§3+0£§4
hy = gy oyt ooy tlgyt oy Olas -
We have (z-tuvM) — (456). Therefore the group M<{u, ztuv) is
a Sylow 3-subgroup of Ng(M). As before, put # = M{u). By the
proof in (3.3), we have Z(#) = {o, ppyps>; #' = {pp1ps, ppy:y. Hence
Z(M) M = {pp,py> is characteristic in .# and so {pp,;p,;> is normal in

M<{p, ztuv)y. Therefore we have pp, p, centralized by 4 = ztuv.
Now 4 is represented by the matrix

%3 Xyz Kz Xpp

IM - %1 Xgp Kpq  Xog

TUp; Xgg Kpp (g

&gy %gg Xpg  Xpp
From (AM)® = M, we get o,; = —1. Since A commute with pp,p,, we
obtain oy 4053 +ae, = 1. Since (£2)3 € M, this implies that ey xp; (1 42g) = —1
(by working at the (1, 1) entry of the representation of #z). Therefore
®1pty; 7 0. First suppose that ay,ay, = 1. Then we have oy, = 1. By (%),

we get h, = —1. So we obtain o, = —ayy # 0. Hence #z is represented by
the matrix
—1 %12 %19 %12
1M — *12 1 gz —Ola3
—O033 g3 wgg —1
— %3 ooy —1 a3

and we check that (#z)3 ¢ M, a contradiction.
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Thus we must have a0y, = —1. Then ay, = 0, from oyt otgy+ayy = 1,
we get ayy = oy, = —1. Hence we have z represented by
—1 %12 %12 %12
NN B 2P 0 —1 —1
—oy, —1 —1 0
—oy, —1 0 —1
and
—1 X1 %12 12
)'M s — OC12 O - 1 ha ].
—oy, —1 0o —1
—a, —1  —1 0
Interchanging 4 by 4, if necessary, we may suppose that «;, = —1.

Now M {4, p)> is a Sylow 3-subgroup of Ng(M) and by the structure of
Ag, the commutator [4, u] € M. Since M is abelian, and M {4, u> is not,
we get Z(M{A, uy) = Cpydd, u> = {ppyp2y- An easy computation shows
that the commutator group of M {4, u> contains <o, pp;p,, pp;*> and is
contained in M. Since Z(M {4, u>) #= (M<A, ), we see that M is char-
acteristic in M<{4, . So we have Ng(M {4, u>) C Ng(M). Hence M{4, u)
is a Sylow 3-subgroup of G. and moreover, by the structure of Ag, the
normalizer of M {4, x> is a splitting extension of M <4, u> by a group of
order 4.

Next we check that we have 2’ = (u2£z)% such that (2')pp,ps2’ = op.
Let ' = (2')lpz and A’ = (2’)"142', we see that (A, u’> € C¢(o,). and that
u', A" are represented by the following matrices.

-1 —1 1 1 -1 -1 -1 1
, 1 011 1 0 —1 1
M — ;o AM —
—1 1 0 —1 1 1 0
1 —1 0 1 1 —1 0 1
Therefore we have
0 1 1 0O 0 1 0 1
—1 1 0 -1 —1 0 1
’—IA,M : N1 (V1 M
(»') - 11 0 (u') (") - o 1 0
0 0 0 1 1 —1 0 1

The group M {4, p’> is contained in Cg(s,). We turn our attention
back to Cgy(sy). Let U, CV be the Sylow 3-subgroup of V. We have
M nV = M, is elementary abelian of order 27. Suppose that p, = p# ¢ M,.
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Then we have p; = ojm for some fixed § =1 or —1 and m € M,. Now ¢
acts fixed-point-free on V/{s;)>. Therefore we get
tpyt = ohmo] = pi* = gx'm 1o}

giving o} = of, a contradiction. Similarly we can show that p, = p** € M.

Let {p32, pg2> = {ps, psy € U,. By way of contradiction, suppose that
{py, po> N M, is non-empty. Then there exists an element pjpj e M, for
fixed ¢,§ not both zero. Since o, centralize M,, we would then get
2 1pipsb, = az'pipla,. This is a contradiction, since C4(f) NV = (o).
Thus <{ps, ps> € M,. Since a Sylow 3-subgroup of G is of order 3¢ we
must have Uy = {0y, py, p2, p3, Po)-

The group U,/<a,) is abelian and so is elementary abelian of order 81.
We may then represent the group L, = {a,, by, o, as linear transformations
on the ‘vector space’ U,[{o;) over the field of 3 elements. We get in terms
of the basis p,{06y), pa07D, pslay), ps{0y), the representation of a,

—1 0
0 —1
ay —>

01

We have shown that v1p,v = p,, v"1p,v = p;'. Therefore with the
relation v1a,v = a3, we get
0 —1
1 0
v —
0 1

—1 0

Let g, be represented by the matrix

I C
%=, 5
where (C) and (D) are 2x2 matrices. From the relation (a,0,)% =1,
we get that (C) = (—D™1). Since (D) is non-singular, we have det (D) = +1.
Suppose det (D) = —1, then using the relation v1g,v = 63", wWe obtain a
contradiction. Hence det (D) = 1. Again by the relation vlo,v = 037,
we obtain that (D) = identity matrix. Hence o, is represented by

1 0 —1 0

01 0 -1
gy =

0 0 1 0

0 0 0 1
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It follows that <ps, pay S Ng(M) N Cgx(oy)—M. So comparing the

action of the group (4, u’> on M, we conclude that p; M = (u')"1A’'M and
paM = ()1 (M) M. We have

Ng(P) = U1(NG(<72) N L2<7)>) = Uopp{v> = P{v)

where P = U,{0,>. Thus we have proved the following lemma.

(3.4) LEMMA. The group P = M<{ps, py> ts a Sylow 3-subgroup of G
and has the following structure:

M =T1,T,,

an elementary abelian group of order 81 where
T =Cyult) = <o.p
T, =Cylu) = <o, pp
Ty = Cyltu) = <o, p2»

elementary abelian of order 9 and

P3'01ps = 01 Py 02p3 = 03p301; P53 PiPs = P1OT"5 P3 PaPs = Pa;
PiO1Ps = 015 Py 0Py = 0sps01; P3 P1Ps = P1; Pi'Pps = P20y
Moreover No(P) = P - {v) where

—1 — -1 — 1 - . 1 -1 —
Ve v = py, VTP = py, UTlpg¥ = pgt, UTIpg¥ = pg.

4. Final characterization

Using the informations already found, we shall now prove that G is
isomorphic to U,(3). The following preliminary lemmas are required.

(4.1) LeMMA. The group P and its conjugate £, Pt, have trivial inter-
section.

Proor. We have P C Cq{s,). Therefore

Pty Pt C Cgloy) n Cglop) € Coloy) N Colardy) = <op).
The group P n ¢, Pt is normalized by ¢,. So it follows that P n ¢, Pt; = 1.

(4.2) LEMMA, We have the following relations:
(a20,)° = (utps)® = (upy)® = (vup3'p,)® = (tuvps'py")® = 1.

ProoF. Using our representation, of Ng(M) as linear transformation
on the vector space M, we compute that (ufp,)3 € M. Since p; = az'p,a,,

we have utp; e Cg(utty). So (utps)® e M  Cylutty) C P n Cglutt) = {p3>.
Therefore we get (ufp,)? =
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Next we have up, = v{utp;)v~1. So we get (up,)® = 1. Again from our
representations of wv and p;p,, we verify that (uvp3p,)® € M. Also we have
uvpy py € Cg(uvt,). Hence

(wvp3'pe)® C M o Coluvty) C P Coluvty) = {p3'ps-

Showing that (uvp31p,)3 = 1. By (3.4) we have (fuvp3 p;t) = v (uvpz1p,)v.
Therefore (tuvp; pl)% = 1.

By the structure of H, we know that (a,0,)% =

The assertions of this lemma are completely proved.

(4.3) LEMMA. The group W = Ng{(v>[{v) is generated by the involutions
1, = axdv) and ry, = ulv) and is dihedral of order 8.

Proor. Obvious from the structure of H.

Put B = Ng(P), and N = Ng{v)>. We want to show that the set of
elements in BNB forms a subgroup of G. For any w € W, define /(w) =]
to be the smallest positive integer such that w =7, 7, -- -7, where
i, €{r1, 73} Let o(r,) = a,, o(r;) = w. Foranywe W,and w =7, -+ -7,
define w(w) = w(r;) - - - w(r;). We shall denote BwB to mean Bw(w)B.

(4.4) LEMMA. The set of elements in Bou Br,B (i =1,2) forms a
subgroup of G.

Proor. Let g = bw(r,)b’ € Br;B where b, b’ € B. Then the element
g = () o) (w(r;)2b1) € Br,B and is an inverse of g.

Let G; = B v Br, B = B U Ba,B. Clearly to show that G, is closed
with respect to multiplication, we need only to show that a,oia, e G,
(6=0,1, —1); since B has the form <{ao,>({v> {0y, py,s P2, P3, psy) and
(v»{04, p1, Pa» P3, pgy is normalized by a,. If § = 0, then ayola, =t e B.
If ¢ is 1, then by (4.3), ay0,a, = 03 a,(fo;") € Ba,B. Similarly of 6 = —1,
we get a,03'a, = to,a,0,t € Ba, B. Hence we have shown that G, is a
subgroup of G.

Next to show that G, = B u Br, B is a subgroup of G, we need to show
that upjupl € G, (¢,§ = 0, 1, —1). By using (4.3), and similar reasoning as
in the last case, this is in fact true.

(4.5) LEMMA. Foranyiandwe W, ifl(r,w) = l(w), thenr,Bw C Br,wB.

Proor. First of all, we construct table I showing the action of a, and
u on P by conjugation.

TasrLe I
0y ) P1 Pa P3 Pa
ay (Y — Ps Pa P Pt
L Oy 0y P1 e - -
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To prove this lemma, we construct table 1I, showing I(r,w) and /(w)
for all  and w e W. Clearly we need only to see that 7,06,%w C Br,wB and
ropspsw C BrywB (4,7 = 0,1, —1). It is easily verified that for those
we W such that I(r,w) = l(w), we can always get 7,0,w € Brywy, and
7apspiw € Brypiply,, using the informations in table I. Hence the lemma
is completely proved.

TaBLE II
w Hw) I(r,w) Y1 Hraw) Y
1 0 1 1 1 1
" 1 0 2 prtey’
7y 1 2 oy 0
LeX D 2 1 3 Pr'ri
Ya?y 2 3 oy 1
Y173 3 2 4 p3tol
NN 3 4 Oy 2
Yi¥o¥y ¥y 4 3 3

(4.6) LEMMA. The set of elements G, = BNB is a subgroup of G and
if we have Bw, B = Bw, B, then w, = w,.

Proor. It follows from (4.4), (4.5) and Tits [8].

We shall next compute the order of G,. Define for any w e W, the
group B, generated by elements z € P such that o(w)Xw(w)™? €, Pt,.
The groups B,, for all w € W are shown in the next table.

TasLE 111
w 1 L€ 7y ¥1¥s
B, 1 (o3> {pss PaY {01, pss PaY
(Bw) P <01, p1» P2, P3» Pad M {03, p1, P>
L£14Y 1737 Ya¥1¥s Y1¥27173
<62x P1s P2> M <011 P1» P2 P3» P4> P
{01, ps, Po> {ps, pa> {03 1

We observe that for every B,, there exists the subgroup (B,,) such
that B,(B,)’ = P and B, n (B,) =1 (see (4.1)).

(4.7) LEMMA. The order of Gy is 27 - 36 -5+ 7.
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Proor. We show first that every element of G, can be written in the
‘normal’ form 4pw(w)p,, where ke (v}, p € P and p, € B,. By (4.6), every
element « in G, has the form z = b, w(w)b, where &,, b, € B. Since we
have P = B,(B,) we may write b, = hp,p, where h € {v), p, € B,, and
pg € (B,)'. From the facts w(w)ho(w) 1 e (v) and w(@)p,o(w)e P, we
get x = bw(w)p, showing the existence of the ‘normal’ form.

To show the uniqueness of the ‘normal’ form, suppose that

bow(w)b,, = b’ w(w')b,,.
By (4.6), we have w = w»’. Therefore we get

()70 = 0 ()b, (by)7! @ (@)1,
Since (¢’')71b € B and
w(w)b, (bw' ) tw(w) e P4,
we obtain
() be Bn P4CP.

The uniqueness follows by (4.1).
By (4.1), the 8 double cosets in BNB are distinct, therefore we have

(Gol = |BI 3 |B,| = 27385 1.

To conclude the proof of the theorem, we require the following result
of Thompson.

LEMMA (Thompson). Let M be a subgroup of ® such that

(@") |#) is even.

(b') M contains the centralizer of each of its involutions.

(€} Nyeg A* is of odd order.

Let & be a Sy-subgroup of M and let I be an involution in Z (). We have

(@) N(#)C .

Then

(i) () = 1 (the number of conjugate classes of involution in M)
(ii) A contains a subgroup M, of odd order such that M = M,C ,(I).

Using the informations of our tables (I, II, ITI), (4.2) and the structures
of P and (v}, we can multiply any two elements of G, in the ‘normal’ form
to get the product uniquely in the ‘normal’ form. Now if X is any finite
group satisfying properties (a) and (b) of the theorem, then X contains a
subgroup X, of order |U,(3)| with uniquely determined multiplication table.
Hence taking X to be U,(3), we see that X, = U,(3) and so G, = U,(3).
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Consequently G, satisfies conditions (a’), (b’) and (d') of Thompson lemma.
Suppose the (c’) is also fulfilled, then we obtain that G, contains a subgroup
M, of odd order such that G, = M Cq(f) = M H.

Suppose that |[Myn H| = 3%, then we have |My| = 36-5-7. Let S,
be a Sylow 3-subgroup of M,. By (3.4) we get Ny (S;) = S;. This is a
contradiction since |[My: Ny (Sg)l =577 1 (mod 3). Hence we must
have [My| = 3%-5-70r 35-5°7. Now M, is soluble and so by P. Hall (4],
there exists a subgroup of order 5-7 in M. Clearly K is abelian. Let S,
be the Sylow 7-subgroup of K. By Sylow’s Theorem, we get that S, is normal
in M,. Applying Sylow’s theorem again, we obtain that Ng¢(S;) is
24.36-5.7, 26.34.5-7, 22-34-5-7 or 2-35.5-7, The first 3 cases
are not possible, since this would then imply that an involution of G, is
centralized by elements of order 7, a contradiction of structure of H. Thus
we have |Ng (S;)| = 2-3%-5-7. Now a Sylow 2-subgroup of Ng (S;) is
cyclic of order 2. Therefore, by Burnside [4], there is a subgroup of order
3%-5-71in Ng (S;) and this gives a contradiction as before.

Thus we must get [),.¢G} is even. By (2.6), the group G is simple.
Hence G = G, =@ U,(3), proving our theorem.
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