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The aim of this paper is to give a characterization of the finite simple
group £/4(3) i.e. the 4-dimensional projective special unitary group over
the field of 9 elements. More precisely, we shall prove the following result.

THEOREM. Let t0 be an involution in £74(3). Denote by Ho, the centralizer
of t0 in C74(3).

Let G be a finite group of even order with the following properties:

(a) G has no subgroup of index 2,
(b) G has an involution t such that H = CG(t), the centralizer of t in G

is isomorphic to Ho.

Then G is isomorphic to (74(3).
We shall use the standard notation.

1. Some properties of Ho

Let Fg be the finite field with 9 elements. Then the map: x -> x = x3

(x e F9) is an automorphism of F9. We extend this map to a map of GL (4, 9)
thus: (a,,) -> (aM) = (a,-,) where (at-3) eGL(4, 9). The subgroup 5C7(4, 9)
in £L(4, 9) consisting of all matrices with determinant 1 which satisfy the
relation: (<xiy) • (a^)* = / where (ai3)* is the transpose of (o.{j), is known as
4-dimensional special unitary group over F9. Then UA(3) (= PSf/(4, 9))
is the factor group SU(4, 9)/Z(SC/(4, 9)) where Z(SC7(4, 9)) denotes the
centre of SU{4, 9).

Let t'o be the matrix
-1

Then tg is an involution in SU(4c, 9). Now the centre of 5C7(4, 9) is generated
by the element c = k2l where k is a fixed primitive element of the multi-
plicative group of F9. So Z(SC/(4, 9)) = <c> is cyclic of order 4.
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Denote by H'o, the group of all matrices (ai3) in 5f7(4, 9) which
'commute projectively' with t'o i.e. which satisfy the relation (a.{j)t'o =
t'o{oLij)cT (r = 0, 1, 2, 3). A matrix in 5C7(4, 9) belongs to H'o if and only if
it has the form

iA \ I B\I I or I I
\ B) \A }

where (A) and (B) are 2 x 2 matrices in GU(2, 9) with det (A) det {B) = l.
Let L[ be the subgroup of H'o consisting of matrices of the form

with (A) e SU{2, 9). Since SU{2, 9) ^ SL{2, 3), we can easily check that
the following matrices generate L[

Now we have the matrice u' belongs to Ho

1 0v

0 1
u = 1 0

*0 1
and we get

The matrix v'

1
0

k

also belongs to SC/(4, 9). We check that (v')2 = toc and u'v'u'
So <V, v'} is dihedral of order 16.
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Put «2 = u'a^u', b'2 = u'b^u', a'2 = u'a[u' and L'2 = (a2, b'2, a'2}. We
can now verify that H'o = (LJXLJX**' .

 w'>- Let Ho = H'ol(c} and in the
natural homomorphism from H'o onto Ho, let the images of t'o, a\, b\, a'it
L'i, u', v' (i = 1, 2) be t0, at, bt, at, Lt, u, v respectively. We have then Ho

is a non-splitting extension of L = L1L2 by a four group. More precisely
we have the following relations:

H0 = L-F

L = LXL2 where Lx n L2 = <£„> and [Lx, L2] = 1

F = (u, v}, a dihedral group of order 8

L( = (at, bu at\a\ = b\ = t0, b';xaibi = aT1, o^a^t = bt,

ojHtOt = atbt, oj = 1>
and

v~xa{v = aj1, v^bfV = biai, v~1aiv = aj1, v2 = t0.

The structure of Ho is now completely determined. Of course, we have
to see that the structure of Ho is independent of the choice of t'o in SU(4, 9).
This is so because we can check that C/4(3) has only one conjugate class of
involutions.

We shall list a few properties of Ho, which will be used in the next
section.

(1.1) Every element of Ho can be written uniquely in the form
a\b{d\t\t2

nanuvvq where t1 = a1a2; t2 = b1b2; a = axo2; i = 0, 1, 2, 3;
j = o, 1; k = 0, 1, 2; I = 0, 1; m = 0, 1; n = 0, 1,2; p = 0,1; q = 0, 1.
The order of Ho is 2' • 32.

(1.2) The group Q = <a1( a2, bx, b2}F Q Ho is a Sylow 2-subgroup of
Ho. The centre Z(Q) of <? is <ro>.

(1.3) There are 4 conjugate classes of involutions in Ho with represen-
tatives f0, rx, u, uv. We have the centralizer CH (tj) = A of tx in f̂0 is
the group (alt a2, t2, u, v}, a non-abelian group of order 64. We have the
centre Z{A) of A is (t0, ^>, a four group. The commutator group A' of A
is also <70, ̂ >. The centralizer of u, CH (u) in Ho is E^o)* where
Ex = <i0, ^ , t2, u}, an elementary abelian group of order 16. The centralizer
of uv, CHi>(uv) in Ho is £'2<CT1(T^1> where £ 2 is <t0, tx, t3, uv} (t3 = axbxb2),

an elementary abelian group of order 16.

(1.4) Both Ex and E2 are normal in the group Q. We have
NHJJEX) = Q^o} and the factor group NHi>(E1)IE1 is isomorphic to S4,
the symmetric group in 4 letters. Similarly we have NH (E2) = Q(p}
(p = ffjff^1) and the factor group NH (E2)jE2 is isomorphic to 54 .
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(1.5) The group L is the smallest normal subgroup of Ho with 2-factor
group and H/L is a four-group.

(1.6) A Sylow 3-subgroup T of Ho is (o^, cr2>, an elementary abelian
group of order 9. We have CHo(T) = (to}xT and NHo(T) — (u, v}T.

2. Conjugacy of involutions

Let G be a finite group with properties (a) and (b) of the theorem.
Since the group H = CG(t) is isomorphic to Ho. We shall identify H with
HQ. Then we have t0 — t.

(2.1) LEMMA. The Sylow 2-subgroup Q of H is a Sylow 2-subgroup of G.

PROOF. This is obvious since Z(Q) = (t~) is cyclic of order 2.

(2.2) LEMMA. / / the involution u is conjugate to t in G, then tx is con-
jugate to t in G.

PROOF. Since by assumption u is conjugate to i in G, there exists a
Sylow 2-subgroup of CG(u) properly containing Ex = (t, tlt t2, «>. There-
fore there is an element x in CG{U)—H which normalizes Ex. Let us look
more closely at the involutions in Ex. We have

whose elements are conjugate in H and likewise

C2 = {u, txu, t2u, t^u, tu, ttxu, tt2u, ttxt2u)

with elements conjugate in H. We see that Cx u C2 u {t} = E1—{1}.
Since x$H, we must have x"ltx^t. If x~1txeC1 or x~xtxx eC2,

then we are finished. Therefore we may suppose that x~xtx e C2 and
x~xtrx e Cx. Then we get x~^ttxx e C2. Since ttx is conjugate to tx, the lemma
is proved.

(2.3) LEMMA. / / the involution uv is conjugate to t in G, then tx is con-
jugate to t in G.

PROOF. AS in (2.2) with E2 playing the role of E1~{1).
For the pi oof of next lemma, we need an unpublished result of

Thompson.

LEMMA (Thompson [7]). Suppose & is a finite group of even order
which has no subgroup of index 2. Let 5f2 be a Sylow 2-subgroup of (3 and let
^ be a maximal subgroup of S^2. Then for each involution I of ©, there is an
element B of % such that B^IB e Jt'.
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(2.4) LEMMA. / / the involution tx is conjugate to t in G, then G has only
one conjugate class of involutions.

PROOF. We have by (2.1) that Q is a Sylow 2-subgroup of G. The group
M = <«x, #2' bi> &a> vy is a maximal subgroup of Q. By our assumption,
we have one class of involutions in M. The lemma follows from condition
(a) of the theorem and Thompson's lemma.

(2.5) LEMMA. There is only one class of involutions in G.

PROOF. First we want to show that the group G is not 2-normal. By
way of contradiction, suppose that it is 2-normal. Since (ty is the centre
of a Sylow 2-subgroup Q of G. It follows by Hall-Griin's theorem [4], that
the greatest factor group of G which is a 2-group is isomorphic to that of
NG(Z(Q)) =H, i.e. by (1.5) isomorphic to HjL which is of order 4. But
this is a contradiction to condition (a) of the theorem. It follows that G
is not 2-normal. This means that there is an element z eG such that
t e Q r, z~xQz but (ty is not the centre of z~xQz.

The centre of z~xQz is (z~1tzy. So z~Hz ^ t. On the other hand, we have
tez~xQz. It follows that t and z~xtz commute. Hence z~xtzeH. Without
loss of generality, we may assume that z~xtz e {tlt u, uv}. The lemma
follows now by (2.2); (2.3) and/or (2.4).

(2.6) LEMMA. The group G is simple.

PROOF. Suppose at first that 0(G) =£ 1 where 0(G) denotes the maximal
odd-order normal subgroup of G. Then the four group (t, tty acts on G.
By the structure of H and (2.5), we see that CG(x) does not have a non-
trivial intersection with 0(G) for x e (t, tty. Hence (t, it> acts fixed-point-
free on 0(G) which is not possible. Hence we have that 0(G) = 1.

Suppose next that N is a proper normal subgroup of G such that
\G/N\ is odd. We have then H QN since H does not have a proper odd-order
factor group. We have that Q QN. By Frattini argument, G = N • NG(Q).
But then NG(Q) QNG(ty = H. So G = N, a contradiction.

Lastly suppose that G is not a simple group. Then G must have a proper
normal subgroup K such that both \K\ and \G/K\ are even. Since by (2.5),
all involutions of G are in K. This implies that Q Q L since Q is generated
by its involutions, a contradiction to our assumption. The proof is now
complete.

(2.7) LEMMA. The group NG(Ei)IEi is isomorphic to A6, the alternating
group in 6 letters (i = 1, 2).

PROOF. By (2.5), there is a 2-group in CG(u) properly containing E1

in which E1 is normal. So we get that iVG(£1) ^ H. Since NH(E1)jE1 is
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isomorphic to Si, a Sylow 2-subgroup of NH(E1)/E1 is dihedral of order 8.
Clearly QfEx is also a Sylow 2-subgroup of NG{E1)jE1. Since we have
CB(E1) = Ex, the group y = NG{E1)jE1 is isomorphic to a subgroup of
GL(4, 2) ~ Aa which has order 26 • 32 • 5 • 7.

Suppose at first that O(SP) =£• 1 where 0(6?) denotes the maximal
odd-order normal subgroup of y . Consider the action of the four-group
(Ka1E1, b1E1y on 0(£f). Using the facts that all involutions of (ja1E1, b-^E^)
are conjugate in (since oEx e y ) and that the centralizer of any involution
in A8 has order 26 • 3 or 25 • 3, we get by a result of Brauer-Wielandt [10],
that |O(y) | = 33 or 3. The first case is not possible since 33-f |^48|. So we
have |O(y) | = 3. Hence {axEx, bxExy - 0{Sf) = <a1£1, 6 1 £ 1 >x0(y ) .
We shall rule out this case by considering ~Ny,(axEx> bxExy. We have
NG(alt blt a2, b2, u)> QNG(t} since Z^alt blt a2, b2, u} — (t)>. So

NG(alt b1>a2,b2>u} n N^Ej) = Q • <<r>

and it follows N9,(a1E1, bxExy ~ Si, a contradiction to

Thus O(y) = 1.
By the structure of ^48, the order of Cy(a1E1) is 23 • 3 or 23. Suppose

that {CyfaiEJl = 23 • 3. We are now in a position to apply Gorenstein-
Walter's result [3], and get y s PSL(2, 23); PSZ.(2, 25); PGL(2, 11);
PGL(2, 13) or yl7. The first four cases are not possible since \Sf\\\A%.
If 7 divides the order of y , we would then have an element of order 7 in
NG(E1) which acts fixed-point-free on Et, a contradiction. Thus we must
have ICyfaE^l = 8. Let T be a Sylow 2-subgroup of G in CG(^) properly
containing CG(^) n /?. Then Z{TIEX) ^ (flj^!), otherwise we would get
IC^aj-Ej)! > 8. This means that y has only one class of involutions.
Therefore by Gorenstein-Walter [3], we get y ^ PSL(2, 9) s A6. The
proof is finished.

3. Sylow 3-subgroups of G and its normalizers in G

We shall determine the structure of a Sylow 3-subgroup of G, and the
normalizer of this Sylow 3-subgroup in G.

We have T = (o1,o2)QH is a Sylow 3-subgroup of H and
CH{T) = <*> x 7\ NH(T) = <«, w>r. By the structure of H, clearly a
Sylow 2-subgroup of CG(T) is <£>. It follows, by a theorem of Burnside
[4], that CG(T) has a normal 2-complement M^T. Since we have
CG{T) < NG(T), we get by Frattini argument that

NG(T) = {CG(t)nNG(T))CG(T) = <
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The normal 2-complement M of CG(T) is characteristic in CG(T). Hence
M is normal in NG(T). Thus the four group (t, u~) acts on M. Using the
result of Brauer-Wielandt [10] and the fact CM{t) = T; CM(t, u} = <CT>,

we get \M\ = \CM{u)\ \CM(tu)\. Since u and tu are conjugate in NG(T),
wehave|CM(M)| = \CM{tu)\. By (2.5), we have \CM(u)\ = \CM(tu)\ = 3or32.
So the order of M is 9 or 81.

Suppose that the order of M is 9. Then we have T = M and so T is
a Sylow 3-subgroup of G with NG(T) = (u, v}T. By (2.7), we know that
NG(E1)/E1 s A6. Let f be a Sylow 3-subgroup of A7'G(£'1). By the structure
of A6 and our assumption, we have CG(T) rtN^E^ = T or (t'yxT
where t' is an involution in Ex. Suppose we have CG(f) n iVG(£1) = <T> x f.
Because CG(Ei) = Ex, T induces by conjugation on Ex a faithful
automorphism of E1 and fixes an involution on Ex. Thus we must
have 32 dividing (24—2) (24—4) (24—8) = 2« • 3 • 7, a contradiction.
Hence we get CG{T) n N^E^ = T. Now by the structure of NG(T), and
Ca{f) nNG{Ex) =T, we get that \NG(f) nNG{E1)\ = 32 or 2 • 32. The
later case is impossible, since the index of iVG(f) n A^G(£1) in N^E^
is 26 • 5 which is not congruent to 1 modulo 3. Therefore, we have
\NG{f) niVG(£:i)| = 32. By a transfer theorem of Burnside [4, p. 203],
iVG(£'1)/£'1 is not simple, a contradiction. So we have shown that the order
of M is not 9.

Thus M is a group of order 81. We shall show that M is elementary
abelian. For this, we need to look at elements of order 3 in H more closely.
There are 3 conjugate classes of elements of order 3 in if with representatives
a1, a = a1a2, p = ^a^1 respectively. The centralizer of ax in H is T • (a2, b2y
and so a Sylow 2-subgroup is CH{ax) is quaternion of order 8. The centralizer
of a in H is (t, u}T and the centralizer of p in H is <£, uv} • T. Both CH(a)
and CH(p) has a four group as its Sylow 2-subgroup and have unique Sylow
3-subgroup T. Let Tx = CM(u), T2 = CM(tu). We have

M = CM{t)CM{u)CM(ut) = TT-Ji and Tx n T2 n T = <CT>.

Now we consider CG(7\). By (2.5), T is conjugate to Tx in G. So we
have CG(7\) = (u^xM where M is of order 81 andM is normal in Ar

G(ri).
We have (t, u) QN^T^ and therefore the four group (t, u} acts on M.
So we get f = CG{t) nM, T2 = CG{tu) n M and CB{u) nM = Tlt all
elementary abelian of order 9 with T n Ty n T2 = <cr>. Since we have
f QH n CG(cr), we must have T = T. Because <£, u} C CG(tu) n CG(<r),
by our remark in last paragraph we get T2 = T2. Thus Af = M. This means
that <r, 7\> C •Z(-M') and so M is abelian as required.

Thus we have proved the following lemma.

(3.1) LEMMA. The centralizer of T in G is a splitting extension of an
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elementary abelian group M of order 81 by (ty. The normalizer of T in G
is the group (u,v>M where CM{t) = T; CM(u) = T1; CM{tu) = T2;
T n T1n T2 = <<r> and the groups T, 7\ , T2 are elementary abelian of
order 9.

Next we take a look at CG{ax). By (3.1), we have M Q CG{a1). By the
structure of H, we get CG(CT1) n H = T • <a2, b2}. Let U be a Sylow 2-sub-
grotvp of CG(a1) containing <a2, 62>. If U properly contains <a2, 62>, we
would get that CG((T1) n if, has a Sylow 2-subgroup properly containing
<a2, b2y, a contradiction. Hence a Sylow 2-subgroup of CG(a1) is quaternion
of order 8. Let F = O(CG(ff1))) the maximum odd-order normal subgroup
of C^o-j). By Suzuki [9], the factor group Ce(a1)IV has only one involution
t • V and so (tyV is normal in C^a^). By the Frattini argument

<«a> 62>T • F.

Because <a2, 62>T is not 3-closed, it follows that T $ F and so T n F = <<T1>.

We get C G ^ ) = <a2,62)(T2>F = L2F where L 2 s S I ( 2 , 3 ) . Since
CG(2) n F = (axy, it follows that t acts fixed-point-free on Vj(a^y. So
F/<cr1> is abelian. Hence V Q <ffx> £ ^(F) and F is nilpotent of class at
most 2.

We have therefore proved the following lemma.

(3.2) LEMMA. The centralizer of the element ax in G is the group L2V
where L2 = (a%, b2a2y and V = O(CG(cr1)) is odd-order and nilpotent of class
at most 2.

The proof of the next lemma is rather involved.

(3.3) LEMMA. We have that NG(M)jM is isomorphic to A6, the alter-
nating group in 6 letters.

PROOF. Since M is characteristic in NG{T), we get <u,vyQNG{M).
Let U 2 <«, i>y be a Sylow 2-subgroup of NG(M). ItUD (u, «>, this would
imply that CG(t) n UD (u, w>. Since CG(t) n M == T is normalized by
CG(t) n U, this would give a contradiction to the structure of CG(t). Hence
U = (u, vy and a Sylow 2-subgroup of NG(M) is dihedral of order 8.

Since the four group (t, uy acts on O(NG(M)) and CM(t, w> = <CT>,

we get O(NG(M)) = M. Now suppose that NG{M) = NG(T), then M is a
Sylow 3-subgroup of G. The groups T and 7\ , being conjugate in G, should be
conjugate in NG(M), by a theorem of Burnside [4], a contradiction. So we
get that NG(M)DNG(T).

By (3.2), CG(T) = <tyM and so CG{M) = M. Hence NG(M)jM is
isomorphic to a subgroup of GL(4, 3). Since CG(t) nNG(M) = (u,vyT.
we get C(tM) n (NG(M)/M) = (u, vyM/M. We are now in a position to
use the result of Gorenstein-Walter [3], giving NG{M)jM ^ A7; PSL(2, 7);
PSL{2, 9); PGL(2, 3) or PGL(2, 5). Because 7 does not divide \GL(4, 3)|,
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we have NG{M)jM is isomorphic to PSL{2, 9); PGL(2, 3) or PGL{2, 5).
Suppose that NG(M)/M is isomorphic to PGL(2, 3) or PGL(2, 5). Let

K be a subgroup of index 2 in NG(M). Then a Sylow 2-subgroup of i£ is
either (t, uy or (Jt, uvy. First suppose that it is (t, w>. We have then FjM
is isomorphic to A 4 or ^45. In either case, there exists an element // of 3-power
order in F such that NG<J,, uynF = (t, w><a, /i} where <cr, //> is a group
of order 9 andjW"1^ = u, yrxuix = tu, JJ,~1U/X = t. The group (a, jJ,y is either
elementary abelian or cyclic of order 9. Since CG(t, uy = E^oy, and E1

is characteristic in CG(t, uy, we have E1 < NG(t, uy. By (2.7), a Sylow
3-subgroup oiNG(Et) is elementary abelian of order 9. Hence we have shown
that [JL is an element of order 3 and (t, M><JM> ^ At.

Put J( = M < » . It follows that

7\ = M n CG(«) = r/4 and T2 = M n CG(to) = T''2.

Let p = a1 a^1- Then

r = o , P>, r t = {a, P o . ^ = <ff, P*2>-

So every element of M can be written uniquely in the form aap^p\p\ where
p1 = p*; p% = p^\ a, fi, y, d = 0, 1 or — 1. Therefore the structure of Jl is
completely determined. Since J( is non-abelian, we have

Z{Jt) = CM{/J.) = (a, ppxpz).

An easy computation shows that JK' = (ppip2, PPi1}' which is elementary
abelian of order 9. Since Z(Jt) =fc Jl', we get CM{J(') = M and therefore
M < NG{J(). This gives NG{Jl) QNG(M) and in particular Jl is a Sylow
3-subgroup of G.

Let M1 = M nV. Suppose that V has a characteristic subgroup X of
order ^ 9 contained in M. Then X < C^Oj) and so CG(X) n C^ffj) is
normal in C g ^ ) . Suppose that teCG{X). Then ^ C C c ( t ) n F = <^i),
a contradiction to our assumption. Thus <cr2> = CG(X) n L2, which would
imply that <cr2) is normal in L2, a contradiction. Hence F does not have
any characteristic subgroup of order 2g 9 contained in Mx. It follows
that Mj is not a Sylow 3-subgroup of V. Let M2 D Mx be a Sylow 3-subgroup
of V. Then [M2 : Mx] = 3 and so <Af2, o2) is a Sylow 3-subgroup of G.
If M2 were abelian, then CG(MX) D <M2, a2} and so Mx C Z(M2, a2},
which contradicts \Z{Jl)\ = 9. Hence M2 is non-abelian and so
<a1}QZ(M2)QM1. Thus we get Z{M2) = ( a ^ and also M2 = (c^).
Since M2 is a 3-group of class at most 2, it follows that M2 is regular (in the
sense of P. Hall). If M2 were not of exponent 3, then M1 would be char-
acteristic in M2, a contradiction. It follows that the Frattini group
<f>(M2) = (di) and so M2I(G1) is a 'vector space' of dimension 3 over the
field of 3 elements F , .
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For any two elements x = x^o^}, y = (oj} of M2/<<r1> where
x, y e M2, define [x, y] = c where c e F3 and [x, y] = x~xy~xxy = a{. Then
[x, y] is a non-singular bilinear skew symmetric form defined on M2l^al)
with values in F3 [5]. But then the dimension of MJ^} must be even by
[1], a contradiction.

An identical proof applies when a Sylow 2-subgroup of K is (t, uv}.
Therefore we have shown that NG(M)IM is isomorphic to A6.

We shall now begin the determination of the structure of a Sylow
3-subgroup of G. But first, we look at the structure of NG(M) more closely.
Since the normalizer of a four group in A 6 is of order 24, there exists an
element fi of 3-power order such that NG(t, uy n NG(M) = (u, v} • <CT, ,M>.
By the same reasoning as in (3.3), we conclude that fi is of order 3 and we
have ii~xtpi = u, yrxu}i = tu.

Let Sf be the isomorphism of NG{M)jM onto A6. Without loss of
generality, we may suppose that (vM)£? = (1324)(56), (uM)S^ = (13) (24)
and choosing// inNG(t, w> suitably, we may assume that (fiM)£f = (132).
Let zeNG{M) such that {zM)SP = (12) (45). Then we have

[HM)S? = (132) = e,; (tM)<7 = (12)(34) = e2;
{*' {zM)Sf = (12)(45) = e3; (tuvM)&> = (12)(56) = et, • • •.

By Moore, we have Ae = <e1, e2, e3, e4>. Next we may represent
NG(M)jM as linear transformations on the vector space, M over the field
of 3 elements in term of the basis a, p, px = pi1, p2 = //*. The representation
is faithful since CG(M) = M. Hence we get

1

1

— 1 '

From the relations v2 = t, v~xuv = tu, we get v is represented by the
matr ix

-1 0

vM . "
0 - 1

1 0>

interchanging v b y v~x if necessary.
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Let (zM) be represented by (ai3) eGL(4, 3). Then from the relation
(fizM)2 = M, we get that z is representated by

«11 a12 a12 a12N

zM - > I %21 a22 K23 a24

a21 a23 *24 a22

!C21 a 2 4 a 2 2 <*-2Z'

and from (zM)a = M, we get

(""ll « 1 2 * S a 1 2 - S a l

, , , «2i-s g+K g+h2 g+h2

«2rS g + ^2 ^ + ^1 g + 2̂
^21 •« g+K g+K g+K

where

g =

K = «22+a23~t~a24

K = a22a23~T"a23a24+a24a22-

We have (z • tuvM) -> (456). Therefore the group M((t, ztuv} is
a Sylow 3-subgroup of NG(M). As before, put ^ = M(/j,y. By the
proof in (3.3), we have Z{JK) = <CT, pp^p^}', ^' = (pPiP2> PPi1}- Hence
Z(y#) n u?' = (ppxp^) is characteristic in ^ and so ^pp1p2} is normal in
M(/J,, ztuv}. Therefore we have ppxp2 centralized by A = ztuv.

Now A is represented by the matrix

l it—a

AM : ~a*
a23
a24

From (AM)3 = M, we get a u = — 1. Since A commute with ppxp2, we
obtain a22+«23+«24 = 1- Since (tz)3 e M, this implies that a12oc21(l +042) = ~ 1
(by working at the (1, 1) entry of the representation of tz). Therefore
ai2a2i 7̂  0- First suppose that a12a21 = 1. Then we have <x22 = 1. By (**),
we get h2 = —1 . So we obtain <x24 = — a23 9̂  0. Hence for is represented by
the matrix

r i 112

teM ^ _" 1 2 _ ^

\ — a12 a23

and we check that (tz)3 $ M, a contradiction.
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Thus we must have a12a21 = — 1. Then a22 = 0, from a22+«23+a24 = *>
we get «23 = a24 = —1. Hence we have z represented by

zM

and

ri
XM - * 12

V - K 12

Interchanging X by X"1, if necessary, we may suppose that a12 = — 1.
Now M(X, yiy is a Sylow 3-subgroup oiNG(M) and by the structure of

A6, the commutator [X, ft] e l . Since M is abelian, and M(X,[iy is not,
we get Z{M(X, iiy) = CM<A, /*> = <ppiP2). An easy computation shows
that the commutator group of M(X,}iy contains (a, ppxp2, PPi1} and is
contained in M. Since Z{M(X, / t » ^ (M<A,/<>)', we see that M is char-
acteristic in M(X, fj,y. So we have NG(M(X, /*» QNG(M). Hence Af<A, ,a>
is a Sylow 3-subgroup of G. and moreover, by the structure of A6, the
normalizer of M(X, /<> is a splitting extension of M(X, /j,y by a group of
order 4.

Next we check that we have z' = (fj,2tz)3 such that (z')pp1p2z
> = op.

Let fi' = (z'^fiz and X' = (z')~1Xzf, we see that (X', / / ) Q C^oJ . and that
// , X' are represented by the following matrices.

Therefore we have

— 1
1

—1
1

•M-

— 1

0

1

— 1

/1-
M

0

1

0

1

-1
-1

1

0

—

_

1

1
0

it

1

1

0

1

1
r

0

0

1

0

1

1

0

1

The group M(X',/j,'y is contained in CG(a1). We turn our attention
back to C^CTj). Let U1QV be the Sylow 3-subgroup of V. We have
M n F = M1 is elementary abelian of order 27. Suppose that px = p1* $ Mx.
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Then we have px = a2m for some fixed j = 1 or —1 and m e Mx. Now t
acts fixed-point-free on F / ^ ) . Therefore we get

= p\x = a'2'
1m~1a\

giving a2 =
 a[, a contradiction. Similarly we can show that p2 = p^ e M±.

Let <p"2, p^) = (.Pat Pi} Q U±. By way of contradiction, suppose that
(,Pa> Pi) n Mt is non-empty. Then there exists an element p\p\ e Mx for
fixed i, j not both zero. Since <r2 centralize Mx, we would then get
^PiPz^z = a^1PiP2a2- This is a contradiction, since CG(t) n F = <ax>.
Thus <p3,P4>£Af1. Since a Sylow 3-subgroup of G is of order 36 we
must have Ux = <ff1( px, p2, /33, p4>.

The group C/1/<CT1> is abelian and so is elementary abelian of order 81.
We may then represent the group L2 = (a2, b2, <x2)> as linear transformations
on the 'vector space' C/1/<«r1> over the field of 3 elements. We get in terms
of the basis /31<<r1>, p2

<\°'i)> Pz(ai)> P4<°i>> the representation of a2

We have shown that v~xp-iy = p2, v~lp2v = p^. Therefore with the
relation v~1a2v = a^1, we get

Let ff2 be represented by the matrix

\0 DJ

where (C) and (D) are 2x2 matrices. From the relation (a2a2)
3 = 1,

we get that (C) = (—D"1). Since (D) is non-singular, we have det (D) = ± 1.
Suppose det (Z>) = — 1, then using the relation i ? " 1 ^ = a2

x, we obtain a
contradiction. Hence det (D) = 1. Again by the relation v~xa2v = a2

x,
we obtain that (D) = identity matrix. Hence a2 is represented by

Go =

1
0

0

0

0
1

0

0

- 1
0

1

0

0
— 1

0

1
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It follows that <p3, p4> QNG(M) n CG{a-i)— M. So comparing the
action of the group <A', /*'> on M, we conclude that p3M = {JJ,')-1X'M and
PiM = (/i')"1 (A')-XM. We have

n L,<»» =

where P = U1{a2y. Thus we have proved the following lemma.

(3.4) LEMMA. The group P = M(p3, pty is a Sylow Z-subgroup of G
and has the following structure:

M = TTXT2,

an elementary abelian group of order 81 where

T = CM(t) = (a, P>

T1 = cM(u) = o , Ply
T2 = Cu(tu) = <cr, p2>

elementary abelian of order 9 and
1 1 ^ 1 t^ = P2>

= ai'. Pi1(*2P4 = ^2Pi^i > PiXPiPi = Pi ; P^PzPi = Pa0!1-

Moreover NG(P) = P • <z>>

= Pi1, v~xp3v = p^1 , W-V4" = Pz-

4. Final characterization

Using the informations already found, we shall now prove that G is
isomorphic to £74(3). The following preliminary lemmas are required.

(4.1) LEMMA. The group P and its conjugate tlPt1 have trivial inter-
section.

PROOF. We have P Q CG(a1). Therefore

P n ^P/j. C CG(oi) n CG(ff̂ ) C C g ^ ) n C c K ^ J = <<r2>.

The group P n ^ P ^ is normalized by t1. So it follows that P n ^ P ^ = 1.

(4.2) LEMMA. We have the following relations:

PROOF. Using our representation, of NG(M) as linear transformation
on the vector space M, we compute that {utp3)

3 e M. Since p3 = a2"
1p1a2,

we have w p̂3 e C e ^ ^ ) . So (utp3)
3 e M n CG(utt^) Q P n CG(utt^) = <p3>.

Therefore we get (utp3)
3 = 1.
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Next we have upi = v(utp^v~Y. So we get (M/>4)
3 = 1. Again from our

representations of uv and p^1/34, we verify that (uvp^p^3 e M. Also we have
e CG{uvtx). Hence

Pi)
3 QM n CG{uvtx) QP n CG{uvtx) = O3 V J -

Showing that (uvp^p^3 = 1. By (3.4) we have
Therefore (tuvp^p^1)3 = 1.

By the structure of H, we know that (aza2)
3 = 1.

The assertions of this lemma are completely proved.

(4.3) LEMMA. The group W — NG(vyi(vy is generated by the involutions
rx = a2(v} and r2 = u(vy and is dihedral of order 8.

PROOF. Obvious from the structure of H.
Put B = NG{P), and N = NG(v}. We want to show that the set of

elements in BNB forms a subgroup of G. For any w eW, define l(w) = /
to be the smallest positive integer such that w = ri ri • • • ri where
ri, e {ri> r2}- Let a>(rx) = a2, co(r2) = u. For any w eW, and w = rt • • • ri>t

define co(w) = co(rt) • • • w ^ ) . We shall denote BwB to mean Ba>{w)B.

(4.4) LEMMA. The set of elements in B u BrtB (i = 1, 2) forms a
subgroup of G.

PROOF. Let g = bco{ri)b' e Br{B where b, V e B. Then the element
g' = (b')"1 cofri)((ofrfj^b^1) e BrtB and is an inverse of g.

Let Gx = B u BrxB = B u Ba2B. Clearly to show that Gx is closed
with respect to multiplication, we need only to show that a2a2a2 e Gx

((5 = 0 , 1 , - 1 ) ; since B has the form ^ X ^ X ^ , plt p2, Pz> Pi)) a n ( i
( f ) ^ , plt p2, p3, p4> is normalized by a2. If 6 = 0, then a2a2a2 = t e B.
If 6 is 1, then by (4.3), a2a2a2 = a2

1a2(ta2
1) e Ba2B. Similarly of d = — 1,

we get a2a2
1a2 = ta2a2a2t e Ba2B. Hence we have shown that Gx is a

subgroup of G.
Next to show that C, = B u Br2 B is a subgroup of G, we need to show

that up\up\ e G2 (i, j = 0, 1, —1). By using (4.3), and similar reasoning as
in the last case, this is in fact true.

(4.5) LEMMA. For any i and w eW, ifl(rtw) ^ l{w), then rfBw Q BrtwB.

PROOF. First of all, we construct table I showing the action of a2 and
u on P by conjugation.

°l

T A B L E 1

<T2 p!

— Pa

° i Pi

Pa

Pt

PI1

Ps

pr1

—

pt

PI1

—
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To prove this lemma, we construct table II, showing l(r{w) and l(w)
for all i and w e W. Clearly we need only to see that r1o2w C BrxwB and
rzp\p\w Q Br2wB (i, j = 0, 1, — 1). It is easily verified that for those
weW such that l{r2w) ~^.l{w), we can always get r1a2w e Br1wy1 and
r2p3Piw e ^r^p\p\Vt> using the informations in table I. Hence the lemma
is completely proved.

TABLE II

w

1

H

*2

0

1

l

2

2

3

3

4

l(rxw)

1

0

2

1

3

2

4

3

Vx

1

ox

Ox

o%

i(r,»)

1

2

0

3

1

4

2

3

2/2

1

Pi-Pa"'

pr'p8

pi1 pi

(4.6) LEMMA. TAe set of elements Go = BNB is a subgroup of G and

if we have Bw1B = Bw2B, then w1 = w2.

PROOF. I t follows from (4.4), (4.5) and Tits [8].
We shall next compute the order of GQ. Define for any w eW, the

group Bw generated by elements xeP such that co(w) Xco(w)~1 e t1Pt1.
The groups Bm for all w e W are shown in the next table.

TABLE III

w

^ 2 ^ 1

<<7a. P i .

<<^i. Pa.

P2>

P4>

1

1

P

' i

<°i. Pi.

W i

Af

<P3. P4>

P2. Pa. P4>

<c

r*

<Pa,

M

<x. P i . Pa.

P4>

Pa. P4>

^1^2

< f i . Pa. P4>

<C2. Pi. Pa>

WxH

P

1

We observe that for every Bw> there exists the subgroup {Bw)' such
that BW(BJ = P and Bw n (Ba)' = 1 (see (4.1)).

(4.7) LEMMA. The order of Go is 27 • 36 • 5 • 7.
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PROOF. We show first that every element of Go can be written in the
'normal' form hpco(w)pw where h e <w>, p e P and pw e Bw. By (4.6), every
element x in Go has the form x = b1a>(w)b2 where blt b2e B. Since we
have P = BW(BW)' we may write b2 = hp'2p2 where h e <v>, p2 e Bw and
p'2e (Bw)'. From the facts (o(w)hco(w)"1 e <«> and e u ^ ^ ^ M " 1 e-P. w e

get a; = bco(w)p2 showing the existence of the 'normal' form.
To show the uniqueness of the 'normal' form, suppose that

bco(w)bw = b'a>(w')b'w,.

By (4.6), we have w = w'. Therefore we get

Since {V)~n e B and
co(w)bw(bw')-1rn(w)-1 e P*\

we obtain

The uniqueness follows by (4.1).
By (4.1), the 8 double cosets in BNB are distinct, therefore we have

|GOI = \B\ J, \BW\ = 2' • 3« • 5 • 7.
w

To conclude the proof of the theorem, we require the following result
of Thompson.

LEMMA (Thompson). Let J( be a subgroup of ® such that

(a') |uf| is even.

(b') ^ contains the centralizer of each of its involutions.

(c') Pise® ^' is °f °dd order.

Let Sf'be a S2-subgroup of ^( and let I be an involution in Z(£f). We have

(d#) N(ST)QJ[.

Then

(i) i{y&) = 1 (the number of conjugate classes of involution in ^#)
(ii) J( contains a subgroup ^#0 of odd order such that Jt = Jt^CM(I).

Using the informations of our tables (I, II, III), (4.2) and the structures
of P and <w>, we can multiply any two elements of Go in the 'normal' form
to get the product uniquely in the 'normal' form. Now if X is any finite
group satisfying properties (a) and (b) of the theorem, then X contains a
subgroup Xo of order |t/4(3)| with uniquely determined multiplication table.
Hence taking X to be Ut(3), we see that Xo = C74(3) and so Go ^ I74(3).
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Consequently Go satisfies conditions (a'), (b') and (d') of Thompson lemma.
Suppose the (c') is also fulfilled, then we obtain that Go contains a subgroup
Mo of odd order such that Go = M0CG(t) = M0H.

Suppose that \M0 n H\ = 32, then we have |M0| = 36 • 5 • 7. Let S3

be a Sylow 3-subgroup of Mo. By (3.4) we get NM (S3) = S3. This is a
contradiction since \M0 : NM (S3)\ = 5 - 7 ^ 1 (mod 3). Hence we must
have \M0\ = 34 • 5 • 7 or 35 • 5°- 7. Now Mo is soluble and so by P. Hall (4],
there exists a subgroup of order 5 • 7 in Mo. Clearly K is abelian. Let S7

be the Sylow 7-subgroup of K. By Sylow's Theorem, we get that S7 is normal
in Mo. Applying Sylow's theorem again, we obtain that NG (S7) is
24 • 36 • 5 • 7, 26 • 34 • 5 • 7, 22 • 34 • 5 • 7 or 2 • 36 • 5 • 7. The first 3 cases
are not possible, since this would then imply that an involution of Go is
centralized by elements of order 7, a contradiction of structure of H. Thus
we have |iVc (S7)| = 2 • 36 • 5 • 7. Now a Sylow 2-subgroup of NGo(S7) is
cyclic of order 2. Therefore, by Burnside [4], there is a subgroup of order
36 • 5 • 7 in NG (S7) and this gives a contradiction as before.

Thus we must get [\geGG% is even. By (2.6), the group G is simple.
Hence G = Go s U^Z), proving our theorem.
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