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TIME AVERAGES FOR THE LAPLACE GROUP
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Abstract The imaginary powers of the Laplace operator over the circle give a C0 group of bounded
linear operators on Lp

θ(0, 2π) (1 < p < ∞). Whereas the group is unbounded on L4, this paper shows
that the L4 long-time averages of each f in L2 are bounded. This is a Fourier restriction phenomenon.
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1. Introduction

Let {Rt}t∈R be a C0 group of bounded linear operators, acting on Lp
θ(0, 2π) for some

1 < p < ∞. We use θ to indicate the space variable. Define the long-time average:

A(p)f =
{

lim sup
T→∞

1
2T

∫ T

−T

‖Rtf‖p
Lp

θ
dt

}1/p

. (1.1)

If the group is bounded with ‖Rt‖ � M , then clearly it follows that A(p)f � M‖f‖p.
Remarkably this inequality holds for some unbounded C0 groups. Let ∆ be the Laplace
operator over the circle that satisfies ∆einθ = n2einθ. Zygmund [12, Theorem 1] showed
that the periodic Schrödinger group eit∆ has∫∫

[0,2π]×[0,2π]
|eit∆f(θ)|4 dt dθ � 2‖f‖4

L2
θ
. (1.2)

We obtain related estimates for the Laplace group Rt = ∆−it/2, where

(∆−it/2f)(θ) ∼
∑

n∈Z\{0}

an

|n|it e
inθ (1.3)

for f =
∑

aneinθ ∈ L2
θ. For brevity we take a0 = 0 throughout. The main result is the

following theorem.

Theorem 1.1. Let f ∼
∑

aneinθ ∈ L2
θ. Then the long-time averages of the Laplace

group satisfy

‖f‖4
L2

θ
� lim

T→∞

1
2T

∫ T

−T

‖∆−it/2f‖4
L4

θ
dt � 4‖f‖4

L2
θ
. (1.4)
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This (quite surprising) result relies upon a smoothing effect of the time average, since
∆−it/2 is an unbounded group on L4

θ, as we show in §§ 2 and 3, where we prove Lp
θ → Lp

θ

operator bounds for ∆−it/2.
The proof of Theorem 1.1 is carried out for trigonometric polynomials by a combina-

torial argument in § 4, and then extended in § 5 to the general L2
θ case. We introduce a

Banach space B4
t L4

θ of L4
θ-valued Bohr almost-periodic functions in time such that ∆−it/2

is bounded as an operator L2
θ → B4

t L4
θ.

The group ∆−it/2 arises via the periodic Riesz potential kernel in several applica-
tions [7, § 19.3]. The spectral theory of operator groups on L4

θ is treated in [2].

2. Upper bounds on the Laplace group

Proposition 2.1. Let p > 1 and r = max(p, q), where 1/p + 1/q = 1. Then, for
0 < ε < 2/(r − 2), there exist constants cp(ε), Cp(ε) > 0 such that

cp(ε)|t|(1/2)−(1/r) � ‖∆−it/2‖Lp
θ→Lp

θ
< Cp(ε)(1 + |t|)1−(2/r)+ε (t ∈ R). (2.1)

In particular, for p = 4 the following holds:

c4(ε)|t|1/4 � ‖∆−it/2‖L4
θ→L4

θ
< C4(ε)(1 + |t|)(1/2)+ε (t ∈ R). (2.2)

Proof of the upper bound. The strong form of Marcinkiewicz’s Multiplier Theorem
[5, § 8], applied to φ(y) = |y|−it, gives an upper bound for the operator norm. As φ has
constant modulus 1, and as the variation over dyadic intervals [2k, 2k+1] is uniformly
bounded by |t|, this φ determines an Lp

θ multiplier an �→ φ(n)an for all p > 1, and we
deduce

‖∆−it/2‖Lp
θ→Lp

θ
� Cp(1 + |t|) (t ∈ R). (2.3)

So the operators are bounded, with norms of at most linear growth in |t|. Let r >

2, suppose 0 < ε < 2/(r − 2), and p = 2 + (2/ε). Now we may apply Riesz–Thorin
interpolation between L2

θ and Lp
θ. Plugging in the exact value ‖∆−it/2‖L2

θ→L2
θ

= 1 and the
bound (2.3) gives

‖∆−it/2‖Lr
θ→Lr

θ
< Cr(ε)(1 + |t|)1−(2/r)+ε (t ∈ R), (2.4)

where ε can be made arbitrarily small, at the cost of growth in Cr(ε). For 1 < q < 2,
since ∆−it/2 is self-adjoint, we have

‖∆−it/2‖Lq
θ→Lq

θ
< Cq(ε)(1 + |t|)−1+(2/q)+ε (t ∈ R) (2.5)

by considering the dual exponent r = q/(q − 1). Thus the right-hand side of (2.1) is
proven. �

3. Lower bound on the Laplace group

We shall use a test function related to the imaginary part of the periodic zeta function [1]
to prove the left-hand inequality of Proposition 2.1. Let s = σ + it be within strip
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Ω = {s : 0 < Re s < 1}. Define

ms(θ) =
∞∑

n=1

sin(nθ)
n1−s

. (3.1)

If σ < 1/p, then both mσ and mσ+it are Lp
θ functions and the following holds:

ms(θ) = (∆−iτ/2ms+iτ )(θ) (τ ∈ R). (3.2)

The Hurwitz generalized zeta function [10, § 2] is initially defined by

ζ(s, a) =
∞∑

n=0

1
(n + a)s

(a > 0), (3.3)

which is clearly analytic in the half-plane Re s > 1 with pole at s = 1, and may be
continued to exponents s ∈ Ω via the loop integral

ζ(s, a) =
e−iπsΓ (1 − s)

2πi

∫
C

zs−1e−az

1 − e−z
dz (a > 0), (3.4)

where the path C encircles R+ anticlockwise, including only the pole at z = 0. From the
Fourier representation of ζ(s, a), we derive

ms(θ) =
sin( 1

2πs)Γ (s)
(2π)s

{
ζ

(
s,

θ

2π

)
− ζ

(
s, 1 − θ

2π

)}
. (3.5)

Hence ms(θ) may be continued to an entire function of s. Now making use of the loop
integral representation, we obtain

ms(θ) =
sin( 1

2πs)
πs

Ks

(
1 − θ

π

)
, (3.6)

where

Ks(β) =
∫ ∞

0
xs−1 sinh(βx)

sinh(x)
dx (3.7)

and, for β → 1−, we deduce the asymptotic behaviour

Ks(β) ∼ Γ (s)
(1 − β)s

= Γ (s)
(

π

θ

)s

. (3.8)

We now consider the approximating integral for ms(θ), which is a standard Mellin
transform [8, p. 521] for s ∈ Ω with value

ks(θ) =
∫ ∞

0

sin(θu)
u1−s

du =
sin( 1

2πs)Γ (s) sgn(θ)
|θ|s (−π < θ < π). (3.9)

Define Ωp = {s : 0 < Re s < 1/p}. If s ∈ Ωp, then ks ∈ Lp
θ(−π, π), and

‖kσ+it‖Lp
θ

=
| sin( 1

2π(σ + it)) Γ (σ + it)|
(1 − pσ)1/pπσ

. (3.10)
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Given fixed σ ∈ (0, 1), as |t| → ∞ it is well known from Stirling’s formula [9, p. 58] that

|Γ (σ + it)| ∼
√

2πe−(π/2)|t||t|σ−(1/2). (3.11)

Thus we have the asymptotic behaviour

‖kσ‖Lp
θ

‖kσ+it‖Lp
θ

∼ Γ (σ)|t|(1/2)−σ

√
2π

(|t| → ∞). (3.12)

For large |t|, this estimate allows us to obtain the lower bound

‖∆−it/2‖Lp
θ→Lp

θ
� 1√

2π
|t|(1/2)−(1/p). (3.13)

4. Proof of Theorem 1.1 (trigonometric polynomials)

The left-hand side of Theorem 1.1 follows from Hölder’s inequality, as

‖f‖L2
θ

= ‖∆−it/2f‖L2
θ

� ‖∆−it/2f‖L4
θ

(t ∈ R). (4.1)

We now prove the right-hand side for trigonometric polynomials. Let f =
∑N

−N aneinθ

with a0 = 0. The notation
∑N indicates finite sums of this form, and we sum over all

indices subject to the stated conditions. Applying the operator ∆−it/2 to f gives

|∆−it/2f(θ)|4 =
∣∣∣∣

N∑ aneinθ

|n|it

∣∣∣∣
4

=
N∑

n1,n2,n3,n4

an1an2 ān3 ān4e
iθ(n1+n2−n3−n4)

∣∣∣∣n3n4

n1n2

∣∣∣∣
it

.

(4.2)
Integrating with respect to θ, we obtain

‖∆−it/2f‖4
L4

θ
=

∫ 2π

0
|∆−it/2f(θ)|4 dθ

2π
=

N∑
n1+n2=n3+n4

an1an2 ān3 ān4

∣∣∣∣n3n4

n1n2

∣∣∣∣
it

. (4.3)

Now we may form the long-time average. Let

S = lim
T→∞

1
2T

∫ T

−T

N∑
n1+n2=n3+n4

an1an2 ān3 ān4

∣∣∣∣n3n4

n1n2

∣∣∣∣
it

dt. (4.4)

Terms with |n1n2| �= |n3n4| vanish, hence we arrive at

S =
N∑

n1+n2=n3+n4
|n1n2|=|n3n4|

an1an2 ān3 ān4 . (4.5)

Now separate the case S+ : n1n2 = n3n4 from S− : n1n2 = −n3n4 to give

S =
N∑

n1+n2=n3+n4
n1n2=n3n4

an1an2 ān3 ān4 +
N∑

n1+n2=n3+n4
n1n2=−n3n4

an1an2 ān3 ān4 . (4.6)
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The circular case

The S+ sum reduces to the system

n2
1 + n2

2 = n2
3 + n2

4

n1 + n2 = n3 + n4,
(4.7)

which corresponds to the intersections of circles and lines at lattice points Z2. This
Diophantine system is considered by Zygmund [12], and Bourgain [4, § 2], in the context
of the Schrödinger group. We may evaluate S+ precisely; all off-axis points (n1, n2) on the
lattice {−N, . . . , N} × {−N, . . . , N} give contributions to the sum. Those with n1 �= n2

generate two solutions (n3, n4) and (n4, n3), whereas those of form (n1, n1) give just one.
Thus we obtain

S+ = 2
{ N∑

|an1 |2
}2

−
N∑

|an1 |4 (4.8)

and deduce that
‖f‖4

L2
θ

� S+ � 2‖f‖4
L2

θ
. (4.9)

The hyperbolic case

The other term S− is a sum over intersections of hyperbolae and parallel lines

n3 + n4 = n1 + n2

n3n4 = −n1n2.
(4.10)

This general Diophantine system may be solved by change of variables. Solutions are less
clear than for S+. The sum is over a more sparse set, as the only possible solutions are
given by

n3, n4 = 1
2

(
n1 + n2 ±

√
(n1 + 3n2)2 − 8n2

2

)
, (4.11)

where n3 and n4 are integers. In general, S− is non-empty, for instance (n1, n2, n3, n4) =
(2, 3, 6,−1) is an element for N � 6. All solutions may be generated using forms reminis-
cent of Pythagorean triples. Setting X = n1 +3n2 and Y = n2, we arrive at the following
case of Pell’s equation:

X2 − 8Y 2 = k2, (4.12)

with k integral. Here we rely on the fact that Q(
√

−2) is a Euclidean domain [6]. Now
assume (X, Y, k) have no pairwise common factor. The only possible common divisor of
X + k, X − k is 2. Thus X + k = 2P 2, X − k = 4Q2 give the general solution of (4.12)
with (X, Y ) positive:

(X, Y, k) = (P 2 + 2Q2, PQ, P 2 − 2Q2), (4.13)

where P, Q �= 0. These give the minimal solutions of S− via

(n1, n2, n3, n4) =
(
X − 3Y, Y, 1

2 (X − 2Y + k), 1
2 (X − 2Y − k)

)
. (4.14)
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Putting x = P − Q and y = Q leads to the symmetric form
⎛
⎜⎜⎜⎝

n1

n2

n3

n4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

P 2 + 2Q2 − 3PQ

PQ

P 2 − PQ

2Q2 − PQ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x(x − y)
y(x + y)
x(x + y)

−y(x − y)

⎞
⎟⎟⎟⎠ (4.15)

for non-zero |x| �= |y|. These are the basic solutions, which we can scale to give the general
solution in the integer lattice to (4.10). We must allow an additional factor p, where p is
odd and square-free, giving the explicit expansion

S− = 8 Re
∑

0<x<y
p∈P

ap(x2−xy)ap(y2+xy)āp(x2+xy)āp(y2−xy), (4.16)

where P = {±1,±3,±5,±7,±11,±13,±15, . . . }. The summation is over the valid range
of coefficients, that is to say all subscripts must fall inside {−N, . . . ,+N}, so that x and
y must be less than

√
N/2p. We can now make the required estimate:

S− � 2‖f‖4
L2

θ
. (4.17)

Adding this bound to (4.9) gives the right-hand side of Theorem 1.1 for finite sums.

5. General L2 case

We extend the previous result to the whole of L2
θ, making use of the theory of vector-

valued Bohr almost-periodic functions, from [3] and [11].

Definition 5.1. Let X be a Banach space, and g : R → X be continuous. We say
that τ ∈ R is an ε-almost period of g if

‖g(t + τ) − g(t)‖X � ε (t ∈ R). (5.1)

The function g is Bohr almost periodic if for each ε > 0, there exists λ > 0 such that each
interval (t, t + λ) contains at least one ε-almost period τ . Let B4

t X be the completion of
the space of Bohr almost periodic X-valued functions for the norm

‖g‖4
B4

t X = lim
T→∞

1
2T

∫ T

−T

‖g(t)‖4
X dt. (5.2)

The Mean Value Theorem for almost periodic functions shows that this limit exists; the
Uniqueness Theorem proves that this is indeed a valid norm.

Theorem 5.2. The map f �→ ∆−it/2f is bounded L2
θ → B4

t L4
θ with norm at most 4.

Proof. Given f as in Theorem 1.1, let fN =
∑

|n|<N aneinθ, so that, fN → f in L2
θ, as

N → ∞. Now let FN (t, θ) =
∑

|n|<N aneinθ|n|−it. These partial sums are almost periodic
in t, with values in L4

θ, and give a Cauchy sequence (FN ) in B4
t L4

θ, the Banach space
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obtained by completing the space of finite sums
∑

m,n bneinθr−it
m with respect to the

norm (5.2), where X = L4
θ. Let F be the limit of this sequence in B4

t L4
θ. The Fourier

coefficients depend continuously on the B4
t L4

θ norm, so that we can regard F as a function
with

F (t, θ) = ∆−it/2f(θ), (5.3)

as the interpretation in L2
θ is unambiguous. Since

‖FN‖B4
t L4

θ
→ ‖F‖B4

t L4
θ

and ‖fN‖L2
θ

→ ‖f‖L2
θ
,

as N → ∞, we deduce the general theorem from the finite sum case:

‖F‖4
B4

t L4
θ

� 4‖f‖4
L2

θ
. (5.4)

�
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