
Forum of Mathematics, Sigma (2020), Vol. 8, e34, 63 pages
doi:10.1017/fms.2020.26 1

CATEGORICAL COMPLEXITY

SAUGATA BASU 1 and UMUT ISIK2

1 Department of Mathematics, Purdue University, West Lafayette, IN 47906, USA;
email: sbasu@math.purdue.edu

2 Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA;
email: isik@math.uci.edu

Received 14 January 2018; accepted 21 March 2020

Abstract

We introduce a notion of complexity of diagrams (and, in particular, of objects and morphisms) in
an arbitrary category, as well as a notion of complexity of functors between categories equipped
with complexity functions. We discuss several examples of this new definition in categories of wide
common interest such as finite sets, Boolean functions, topological spaces, vector spaces, semilinear
and semialgebraic sets, graded algebras, affine and projective varieties and schemes, and modules
over polynomial rings. We show that on one hand categorical complexity recovers in several settings
classical notions of nonuniform computational complexity (such as circuit complexity), while on
the other hand it has features that make it mathematically more natural. We also postulate that
studying functor complexity is the categorical analog of classical questions in complexity theory
about separating different complexity classes.

2010 Mathematics Subject Classification: 18A10, 68Q15 (primary); 14Q20 (secondary)

1. Introduction

It is usual to associate some measure of complexity to mathematical objects. For
example, the complexity of a polynomial is often measured by its degree, or
alternatively by the volume of its Newton polytope, or the number the monomials
appearing in it with nonzero coefficients, or the least number of operations needed
for an algorithm to evaluate the polynomial at a given point. Once a notion of
complexity is fixed, one can make quantitative statements about properties of the
objects in terms of their complexity. In the case of polynomials for example, there
are many results on upper bounds on the topological invariants of the variety that

c© The Author(s) 2020. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and
reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University
Press must be obtained for commercial re-use or in order to create a derivative work.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

http://journals.cambridge.org/action/displayJournal?jid=FMS
HTTPS://ORCID.ORG/0000-0002-2441-0915
mailto:sbasu@math.purdue.edu
mailto:isik@math.uci.edu
https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 2

the polynomial defines (see for example, the survey [BPR05]), the number of
steps needed to desingularize the variety [BGMW11], and many other functions
defined on the space of polynomials, in terms of the chosen complexity measure.

The notion of complexity also arose in theoretical computer science as a means
of studying efficiency of algorithms and also to measure the intrinsic hardness
of certain algorithmic problems. The latter led to the development of structural
complexity theory and in particular to the famous P versus NP questions for
discrete complexity classes, which remain unresolved until today. Even though
these arose first in the context of decision problems and Boolean functions,
there have been subsequent attempts to generalize the scope of computational
complexity to other classes of mathematical objects—for example, the Blum–
Shub–Smale (B–S–S) theory for computations over reals as well as complex
numbers [BCSS98], over more general structures [Poi95], for polynomials
[Val79a, Val79b, vzG87], and for constructible sheaves and functions [Bas15].
Some of these generalizations are motivated by costs of computations in certain
models of computations, while others by the desire to have a sound internal notion
of complexity for mathematical objects. Remarkably, there exist analogs of the P
versus NP question in all the generalizations mentioned above. Thus, it seems
that there should be a more fundamental way of looking at questions arising in
computational complexity theory, which unifies these various viewpoints.

The goal of the current paper is to develop this general theory of complexity
via a categorical approach that reconciles the intuitive notion of complexity of
mathematical objects with the different notions of computational and circuit
complexities used in theoretical computer science.

We start by defining a categorical notion called a diagram computation. In an
arbitrary category C with a chosen set of morphisms called basic morphisms,
diagram computations can be used to construct diagrams and, in particular,
objects and morphisms in C as follows. At the first level, one starts with a
diagram consisting entirely of basic morphisms and then successively adds limits
and colimits of arbitrary subdiagrams, along with the accompanying morphisms
from/to those subdiagrams, to construct more and more complex diagrams. Any
diagram isomorphic to a subdiagram of the final resulting diagram is said to
be computed by the diagram computation. This allows us to associate, to each
object, arrow, or diagram in C, a complexity by counting the number of limits,
colimits, and basic morphisms used in its most efficient computation. Diagram
computations come in three kinds, the full version described above, called a mixed
computation, and two more restricted ones where one is either allowed to use only
the so-called constructive limits or only constructive colimits. This leads to the
notions of mixed complexity, limit complexity, and colimit complexity of objects,
arrows, or any diagrams in C.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 3

Although our notion of complexity bears some similarity with a more classical
view of complexity coming from logic, namely descriptive complexity [Imm95],
there is one important respect in which our notion of complexity differs
significantly from all classical notions. In our categorical world, isomorphic
objects should have identical complexity—which is indeed the case with
our definition. Thus, we are able to define a good notion of complexity in
the category, say, of affine or projective schemes, which is independent of
embeddings. This is very natural from the mathematical point of view—making
our theory completely geometric in those settings—but is sometimes at odds with
ordinary complexity theory, which deals with embedded objects (like subsets of
the Boolean hypercube or subvarieties of Cn). Nevertheless, we will show that,
with the appropriate choice of category and basic morphisms, even noncategorical
notions of complexity can be meaningfully embedded in categorical ones.

A fundamentally new point of view emerges when one thinks about the
categorical analogs of classical complexity questions. For every functor between
two categories for which complexity is defined, one can define a natural notion of
complexity of the functor. Unlike, the complexity of diagrams, which are numbers,
the complexity of a functor is a function f : N → N, and one can ask whether
the complexity of such a functor is bounded from above by a polynomial. In this
way, classical questions about separation of complexity classes become, in the
categorical world, questions about polynomial boundedness of the complexity
of certain natural functors. With this shift of viewpoint, one can pose many
questions about complexities of functors, which have no direct analogs in the
world of computational complexity. Well-studied properties of functors such as
preservation of limits and colimits, adjointness, and so on are important from this
point of view.

The importance of functor complexity was already suggested in [Bas15],
where the complexities of adjoint pairs of functors between the categories of
semialgebraically constructible sheaves on finite-dimensional real affine spaces
were posited as generalizing the P versus NP question in the real B–S–S model.

We remark here that connections between computability and logic on one hand
and category theory and topos theory on the other hand have a long history
(see for example, [LS88, MLM94]). A more recent work on computability and
complexity in categorical structures using the notion of Kan extensions appears in
[Yan15]. However, our goal is different, and it is to develop a completely general
notion of complexity, based on category theory, that is useful in studying basic
objects in algebra and geometry from a quantitative point of view. To the best of
our knowledge, this task has not been undertaken before.

We now give a brief summary of our results. After the basic definitions in
Section 3, we look at several key examples. For sets, the colimit complexity of

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 4

a set S is card(S)+ 1 (Proposition 3.15). Infinite sets are ‘noncomputable’ in this
theory. For topological spaces, colimit computations starting from simplices and
face maps define a simplicial complexity for topological spaces. Similarly, mixed
computations starting from points and intervals give rise to cubical complexity.
These measure how hard it is to make a space from simplices and cubes,
respectively. Another important example is one where we recover monotone
Boolean complexity from the categorical complexity in the lattice of subsets of a
finite set.

In order to relate the new notion of categorical complexity, with pre-existing
notions of (nonuniform) complexity, such as circuit complexity, or lengths of
straight-line programs (we refer the reader to the books [BCS97, Bür00] for these
notions), we prove certain comparison theorems. The first set of such theorems is
about affine varieties, affine schemes, and algebras over a field. We show that
the affine zero-set of a polynomial with low arithmetic circuit complexity has
low limit complexity (Theorem 4.2); on the other hand, if X is a variety with
low limit complexity, then it is isomorphic to the zero-set of a polynomial with
low arithmetic circuit complexity (Theorem 4.5). The same results hold for affine
schemes and algebras. For projective schemes in Pn: by building affine pieces with
limits and then gluing them using colimits, we show that the mixed complexity of
a projective scheme is bounded above by a constant multiple of n2 N , where N is
the arithmetic circuit complexity of its defining equations.

The categorical complexities of isomorphic varieties are equal by definition,
while circuit complexity, being a nongeometric attribute, does not share this
property. In order to reconcile these two notions, we consider in Section 5 two
additional categories where circuit complexity of polynomials is, in a sense,
embedded into categorical complexity. The first of these is the category of pairs of
graded algebras, constructed specifically to make this embedding possible. Still, it
remains to be seen how complexity in this category compares to arithmetic circuit
complexity of polynomials, or to the complexity of projective varieties discussed
in [Isi19]. The second category considered here is the category of modules over
polynomial rings, where we prove that the colimit complexities of a sequence

of morphism diagram (k[x1, . . . , xn]
17→ fn
−−−→ k[x1, . . . , xn])n>0 are bounded by a

quasipolynomial function of n, if and only if the arithmetic circuit complexities
of the sequence (fn)n>0 are also bounded by a quasipolynomial function of n (cf.
Remark 5.8).

In Section 6, we discuss the behavior of categorical complexity under the action
of functors. Limit and colimit computations are preserved under right and left
adjoints, respectively. We define the complexity of a functor F : C → D as a
function C(F)(n) of n, where C(F)(n) is the supremum of the complexity of
F(D), where D runs over all diagrams in C whose complexity is less than or

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 5

equal to n. We posit that the question of whether the complexity of the ‘image
functor’ (see Definition 6.8) on the morphism category C•→• is polynomially
bounded, is the categorical analog of the P versus NP problem for the category
C (cf. discussion in the beginning of Section 6.4). We investigate this question in
the context of limit complexity in the categories of semilinear and semialgebraic
sets and answer it in the negative. Our final result is an analysis of the colimit
complexity of the image functor for the category of modules over polynomial
rings.

Finally, in Section 7, we list several open problems and future research direction
in the area of categorical complexity.

We assume no prior knowledge of category theory in this paper and have
included all relevant definitions. For background in category theory, we refer
the reader to the books [Awo10, ML98, Sim11]. For background in complexity
theory, we refer the reader to the books [BCS97, Bür00]. Finally, we make use
of certain basic functors from algebraic geometry, and we refer the reader to the
book [MO15] as an accessible source for these.

2. Categories and functors

In this section, we recall some basic definitions from category theory and
introduce some notation that will be useful in what follows.

DEFINITION 2.1 (Categories). A category C consists of

(1) a class Ob(C) whose elements are the ‘objects of the category C’;

(2) for every pair A, B of objects of C, a set C(A, B) of ‘morphisms’ or ‘arrows’
from A to B;

(3) for every triple A, B,C of objects of C, a composition law

C(A, B)× C(B,C)→ C(A,C),

which will be denoted by (f, g) 7→ g ◦ f ;

(4) for every object A of C, a morphism 1A ∈ C(A, A) called the identity
morphism on A.

The above data are subject to the following two axioms.

(a) (Associativity). Given morphisms f ∈ C(A, B), g ∈ C(B,C), h ∈ C(C, D),

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 6

(b) (Identity). Given morphisms f ∈ C(A, B), g ∈ C(B,C), the following
equalities hold.

1B ◦ f = f,
g ◦ 1B = g.

We say that a category C is a small category if its class of objects is a set.
For any category C, we will denote by Copp the category whose morphisms are

defined by
Copp(A, B) = C(B, A),

for every pair of objects A, B of C.

NOTATION 2.2. We will denote a morphism f ∈ C(A, B) often as f : A → B,
and also denote the source A by dom(f), and the target B by codom(f).

NOTATION 2.3. The following categories will appear later in the paper.

(A) The category Set, whose objects are sets and whose morphisms are maps
between sets.

(B) The category Vectk , where k is a field, and whose objects are k-vector spaces
and whose morphisms are linear maps.

(C) The category Grp of groups and homomorphisms.

(D) The category SL (respectively, SA) of embedded semilinear (respectively,
semialgebraic) sets and affine (respectively, polynomial) maps. More
precisely, each object of SL (respectively, SA) is a semilinear (respectively,
semialgebraic) subset A ⊂ Rn for some n > 0, and a morphism
(A ⊂ Rn) → (B ⊂ Rm) is a map f : A → B such that there exists a
commutative square

A� _

��

f
// B� _

��

Rn g
// Rm

where g : Rn
→ Rm is an affine (respectively, polynomial) map. In other

words, f is the restriction to A of an affine (respectively, polynomial) map
from Rn to Rm .

(E) The category Algk of k-algebras over a field k.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 7

(F) The category AffVark of affine varieties and the category AffSchk of affine
k-schemes for a field k.

(G) The category R-Mod, where R is a polynomial ring in finitely many
variables.

(H) The category Top of topological spaces.

DEFINITION 2.4 (Functors). A (covariant) functor F from a category A to B
consists of the following:

(1) a mapping Ob(A)→ Ob(B) (the image of A will be written as F(A));

(2) for every pair of objects A, A′ of A, a mapping A(A, A′) → B(F(A),
F(A′)) (the image of f ∈ A(A, A′)) is written as F(f)).

The above data is subject to the following axioms.

(a) for every pair of morphisms f ∈ A(A, A′), g ∈ A(A′, A′′),

F(g ◦ f) = F(g) ◦ F(f);

(b) for every object A of A,
F(1A) = 1F(A).

A contravariant functor F from a category A to B is a covariant functor from
Aopp to B.

DEFINITION 2.5 (Natural transformations between functors). Let F,G be two
(covariant) functors from a category C to D. A natural transformation θ : F → G
is a family of arrows (θC : F(C)→ G(C))C in D, indexed by objects C of C, such
that for each pair of objects C,C ′ of C and f ∈ C(C,C ′), the following diagram
commutes:

F(C)

F(f)
��

θC // G(C)

G(f)

��

F(C ′)
θC ′ // G(C).

We will denote the class of all natural transformations between two functors
F,G by Nat(F,G). A natural transformation θ ∈ Nat(F,G) is called an
isomorphism if it admits an inverse.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 8

DEFINITION 2.6. Two functors F : C → D and U : D → C are said to be an
adjoint pair (with F left-adjoint to U and U right-adjoint to F), if there exist for
each object C of C and D of D, bijective maps

C(C,U (D))→ D(F(C), D), f 7→ f],
D(F(C), D)→ C(C,U (D)), g 7→ g[,

which are inverses to each other and are moreover natural in C and D.
More precisely, for every k ∈ C(A,C), ` ∈ D(D, B),

(U (`) ◦ f ◦ k)] = ` ◦ f] ◦ F(k),
U (`) ◦ g[◦ k = (` ◦ g ◦ F(k))[

both hold.

REMARK 2.7. In Definition 2.6, the functors F,U induce functors F ,U from the
product category Copp

×D to Set defined by

F(C, D) = D(F(C), D),
U(C, D) = C(C,U (D)),

with F(f, g),G(f, g) defined in the obvious manner for f, g arrows in
the categories Copp and D, respectively. Then, the naturality condition in
Definition 2.6 translates into the fact that the functors F and U are natural
transformations.

EXAMPLE 2.8. The functor F : Set→ Grp, which takes a set to the free group
generated by the set, and the forgetful functor U : Grp → Set form an adjoint
pair (with F left-adjoint to U).

We also need the notion of universal elements.

DEFINITION 2.9 (Representable functors, Yoneda’s lemma, and universal
elements). Let C be a category and F a functor from C to Set. Then for
each object A of C, C(A, ·) is a functor from C to Set. The map

λA : Nat(C(A, ·), F)→ F(A)

defined by
λA(φ) = φA(idA)

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 9

is bijective. This statement is referred to as Yoneda’s lemma. Now, if φ ∈
Nat(C(A, ·), F) is an isomorphism, then we say that F is representable (by A),
and u = λA(φ) is called a universal element of F . The element u has the property,
that for any object B of C and f ∈ C(B, A), there is a unique element t ∈ F(B),
such that u = F(f)(t).

If F is a contravariant functor from C to (Set), then it is representable by an
object A of C, if and only if the corresponding covariant functor from Copp to sets
is representable, and in this case a universal element of this covariant functor will
be called a universal element of F .

DEFINITION 2.10 (Graphs and diagram categories). A directed graph I is a
quadruple (V, E, s, t), where V, E are sets (referred to as the sets of vertices
and edges of I) and s, t : E → V are maps. (For e ∈ E , we will sometimes
refer to s(e) as the source and t (e) as the target of the edge e.) A homomorphism
φ = (φ1, φ2) : I → I ′ of directed graphs I = (V, E, s, t), I ′ = (V ′, E ′, s ′, t ′) is
a pair of maps φ1 : V → V ′, φ2 : E → E ′ such that the two diagrams

E
φ2 //

s
��

E ′

s′

��

V
φ1 // V ′

, E
φ2 //

t
��

E ′

t ′

��

V
φ1 // V ′

commute.
For a small category C, we will denote by U (C) the directed graph whose set

of vertices is the set of objects of C and whose set of edges is the set of all
morphisms of C, along with the maps s, t taking a morphism to its codomain
and domain, respectively. Even if the category C is not small, we will continue
to use the notation U (C) to denote its underlying graph, keeping in mind that
this will always restrict our attention to subgraphs of U (C) with finite sets
of vertices.

Let C be a category and let U (C) be the underlying directed graph. Let I = (V,
E, s, t) be any directed graph. By a diagram in C, we mean a directed graph
homomorphism D : I → U (C). The graph I will be called the shape of D,
and we will denote by v(D) (respectively, e(D), s(D), t (D)) the set of vertices
(respectively, edges, sources, and targets of edges) of the graph I .

We say that the diagram D is discrete if the edge set E of I is empty.
By a subdiagram of a diagram D : I → U (C), with I = (V, E), we mean the

restriction DJ : J →U (C), with J = (V ′, E ′) a full subgraph of I , that is, V ′ ⊂ V ,
and E ′ = {e ∈ E | s(e) ∈ V ′, t (e) ∈ V ′}. The restrictions to not necessarily full
subgraphs will be specified as not necessarily full subdiagrams.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 10

For I = (V, E, s, t) and two diagrams, D1 : I → U (C), D2 : I → U (C), a
morphism between D1 and D2 is a collection of morphisms ϕ = (ϕv : D1(v)→

D2(v))v∈V such that for all e ∈ E , D2(e)◦ϕD1(s(e)) = ϕD1(t (e)) ◦D1(e). This defines
the category of diagrams, C I , of the category C with shape I .

REMARK 2.11. Note that in Definition 2.10, I is just a directed graph and does
not have a composition operation on it. As such, there is no a priori assumption
of functoriality/commutativity for diagrams.

It is possible to associate a category, Pth(I), to each directed graph I , called
the path category of I , and define (path) diagrams as actual functors from Pth(I)
to a category C [Sim11]. The diagrams we consider in this paper are not functors
in this sense.

Also, note that our notion of a full subdiagram is not the same as the full
subfunctor of the diagram functor from the path category of I . So if I is the
directed graph 1→ 2→ 3 and D a diagram of a category C of shape I , then the
restriction of D to the full subgraph corresponding to the vertex set J = {1, 3}
is the diagram whose image is the subgraph of U (C) consisting of two vertices
D(1), D(3) and an empty set of edges.

DEFINITION 2.12 (Cones and limits). Given an object W of C, a constant
diagram with value W and shape I = (V, E, s, t) is the diagram D : I → U (C),
with D(v) = W for all v ∈ V and D(e) = 1W for all e ∈ E .

Given a diagram D : I → U (C) and an object W of C, a cone over D with
vertex W is a morphism D′→ D, where D′ is a constant diagram of shape I with
value W . Note that if D′ is the constant diagram of shape I and value W , then a
cone ϕ : D′ → D is determined by morphisms ϕ(v) : W → D(v) such that the
following diagram commutes for each e ∈ E :

W
ϕ(s(e)

{{

ϕ(t (e))

$$

D(s(e))
D(e)

// D(t (e)).

(1)

Note that the cone over D : I → C with vertex W can also be thought of as a
new diagram, whose associated directed graph is obtained from the graph of I by
adding one extra vertex v0 and an edge, ev, for each vertex v of I , with source v0

and target v (cf. Figure 1). This diagram of course has the extra property that all
subdiagrams of the form (1) commute.

Given a diagram D : I → U (C), with I = (V, E, s, t), the map C I (·, D), that
associates to each object W of C the set of cones over D with vertex W defines a
contravariant functor from C to Set.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 11

Figure 1. Cone over D with vertex W .

A universal element of this functor is called the limit of D (denoted by lim D).
In other words, lim D is a cone lim D : D′→ D, where D′ is a constant diagram
of shape I (say with value L) such that for any cone ϕ : D′′ → D, where D′′

is a constant diagram of shape I with value M , there exists a unique morphism
ϕ′ : M → L such that the following diagram commutes (denoting by ϕ′ also the
induced morphism in C I (D′′, D)):

D′′
ϕ′

//

ϕ

D′

lim D

~~

D

.

We will denote by I (lim D) the directed graph (V ′, E ′, s ′, t ′), where

V ′ = V ∪ {v0}, v0 6∈ V,

E ′ = E ∪
⋃
v∈V

{ev},

and s ′, t ′ are defined by

s ′(e) = s(e),
t ′(e) = t (e),

}
if e ∈ E,

s ′(e) = v0,

t ′(e) = v.

}
if e = ev, v ∈ V .

We will also sometimes abuse notation and refer to the value L of the limit also
by lim D.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 12

EXAMPLE 2.13 (Products, pullbacks, equalizers, and composition). The limit of
a discrete diagram is called a product. Limits of diagrams of shapes

• // • •oo , • //
//
•

are usually referred to as pullbacks and equalizers, respectively. Note also that
taking the composition of two morphisms is a particular case of taking limits of
diagrams of shape

• // • // • .

DEFINITION 2.14 (Cocones and colimits). By dualizing (that is, reversing the
direction of the arrow) in Definition 2.12, we obtain the notion of cocones and
colimits of diagrams. Given a diagram D : I → U (C) and an object W of C, a
cocone over D with vertex W is a morphism D → D′, where D′ is a constant
diagram of shape I with value W . Note that if D′ is the constant diagram of
shape I and value W , then a cone ϕ : D → D′ is determined by morphisms
ϕ(v) : D(v)→ W such that the following diagram commutes for each e ∈ E :

W

D(s(e))

ϕ(s(e)
;;

D(e)
// D(t (e))

ϕ(t (e))
cc .

Given a diagram D : I → U (C), with I = (V, E, s, t), the map C I (D, ·),
that associates to each object W of C the set of cocones over D with vertex W
defines a covariant functor from C to Set. A universal element of this functor is
called the colimit of D (denoted by colim D). In other words, colim D is a cocone
colim D : D→ D′, where D′ is a constant diagram of shape I (say with value C)
such that for any cocone ϕ : D→ D′′, where D′′ is a constant diagram of shape I
with value M , there exists a unique morphism ϕ′ : C→ M such that the following
diagram commutes (denoting by ϕ′ also the induced morphism in C I (D′′, D)):

D′
ϕ′

// D′′

D
colim D

``

ϕ

>> .

We will denote by I (colim D) the directed graph (V ′, E ′, s ′, t ′), where

V ′ = V ∪ {v0}, v0 6∈ V,

E ′ = E ∪
⋃
v∈V

{ev},

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 13

and s ′, t ′ are defined by

s ′(e) = s(e),
t ′(e) = t (e),

}
if e ∈ E,

s ′(e) = v,
t ′(e) = v0.

}
if e = ev, v ∈ V .

We will sometimes abuse notation and refer to the value C of the colimit also by
colim D.

EXAMPLE 2.15 (Coproducts, pushforwards, and coequalizers). By reversing the
direction of the arrows of the diagrams in Example 2.13 and taking colimits, we
obtain the definitions of coproducts, pushforwards, and coequalizers (respectively,
from the definitions of products, pullbacks, and equalizers).

3. Definition of diagram computations

In this section, we define diagram computations and categorical complexity.
As explained in Section 1 (Introduction), diagram computations come in three
different flavors—namely, limit, colimit, and mixed limit–colimit computations.
The associated notions of complexities of diagrams will be called limit, colimit,
and mixed complexity, respectively.

We fix a category C for the rest of this section and also fix a set A of morphisms
in C. The morphisms in A will be referred to as the basic morphisms in C.

3.1. Limit and colimit computations. We define a notion of computation in
C, called a limit computation, by starting with these basic morphisms and adding
a finite limit at each step; similarly, in a colimit computation, we build objects by
adding colimits of subdiagrams.

DEFINITION 3.1. A limit computation (respectively, a colimit computation) in
C is a finite sequence of diagrams (D0, . . . , Ds), with D j : I j = (V j , E j , s j ,

t j)→ U (C), 0 6 j 6 s, where we have the following:

(i) D0(e) ∈ A for each edge e of I0.

(ii) For each i = 1, . . . , s, Di is obtained from Di−1 by adding a limit or colimit
cone of a subdiagram. More precisely, there is a subdiagram Di−1|Ji of Di−1

with

Ji = (V ′i−1, E ′i−1, s ′i = si |E ′i−1
, t ′i = ti |E ′i−1

), V ′i−1 ⊂ Vi−1, E ′i−1 ⊂ Ei−1

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 14

such that denoting I (lim Di−1|Ji) = (V ′, E ′, s ′, t ′) (respectively,
I (colim Di−1|Ji) = (V

′, E ′, s ′, t ′)),

(1) Vi = Vi−1 ∪ {v0}, where v0 is the unique vertex of V ′ \ Vi−1;

(2) Ei = Ei−1 ∪
⋃

v∈V ′i−1
{ev};

(3) for e ∈ Ei ,
si(e) = si−1(e),
ti(e) = ti−1(e),

}
for e ∈ Ei−1,

si(e) = v0 (respectively, v),
ti(e) = v (respectively, v0),

}
for e = ev, v ∈ V ′i−1;

(4) for e ∈ Ei ,

Di(e) = Di−1(e) for e ∈ Ei−1,

Di(e) = (lim Di−1|Ji)v (respectively, (colim Di−1|Ji)v),
for e = ev, v ∈ V ′i−1,

(cf. Definitions 2.10, 2.12, and 2.14).

(iii) (Constructivity) For each i, 0 < i 6 s, if the unique vertex v0 ∈ Vi \ Vi−1

belongs to J j for some j, i < j 6 s, then Ji is a subgraph of J j . (In other
words, if a limit L i = lim Di−1|Ji (respectively, colimit Ci) produced in the
i th step of the computation is used again in the subdiagram D j−1|J j used
at the j th step of the computation, then Ji is a subgraph of J j , that is, the
subdiagram that produced L i (respectively, Ci) must be a subdiagram of
D j−1|J j .)

The computation (D0, . . . , Ds) is said to compute a diagram D if D is
isomorphic to a (not necessarily full) subdiagram of Ds . In particular, an object in
C is computed by (D0, . . . , Ds) if an object isomorphic to it appears in Ds .

REMARK 3.2. Note that in Definition 3.1, we are not assuming that all limits or
colimits of finite diagrams exist but in each particular computation (D0, . . . , Ds),
for each i, 0 6 i < s, the limit or colimit of the subdiagram Di |Ji of Di is assumed
to exist. Thus, the notion of a limit/colimit computation is still well defined even
if the category C does not admit limits or colimits of all finite diagrams. See also
Remark 3.4.

REMARK 3.3. One could take Parts (i) and (ii) as the definition of limit
(respectively, colimit) computation. However, in order that our notion of
categorical complexity is closer to the classical notions—such as circuit

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 15

complexity in certain relevant categories (see Section 4), we also consider
the constructivity condition. This roughly means that the limit (or colimit)
computation does not forget how an object was constructed. It also prevents
objects of exponential rank/size from being constructed; cf. Example 3.16.

REMARK 3.4. Of course, one may not be able to obtain every object, morphism,
or diagram from a given set of basic morphisms A in a category C. We will think
of such objects/morphisms/diagrams as noncomputable in C with respect to A.

We now describe a basic syntax for writing down the limit or colimit
computations. The computation is described by a set expressions, each expression
in a line. The first kind of expression is of the form

i. source, f ,target

and describes objects and/or morphisms that are added to D0. Here, i is an
identifier that can be any string. In subsequent lines, the identifier ‘i’ is used
to refer to the source, and ‘i’’ is used to refer to the target of the basic morphism
f ∈ A that is added to D0 by this expression. source and target are the
identifiers of the vertices that are the intended source and target of the new
morphism being attached to D0.

If the source is a new vertex that did not exist in the diagram before, then
we write i.i, f ,target, or i._, f ,target for it. If only the target is
new, we write i.source, f ,i’ or i.source, f ,_; we write i.i, f ,i’
or i._, f ,_ if both are new, distinct vertices, and i._, f ,i if both are new
and are the same vertex.

There is no need to list all the morphisms in D0 at the beginning, so we will
have these steps as intermediate steps as well; as long as the morphisms attach
only to other vertices in D0, they be can be considered as part of D0.

The second kind of expression is that of the form

i. lim(a,b,...)

which describes steps where a limit is added to the subdiagram. The identifiers
a,b,... describe the vertices in the subdiagram whose limit is being taken.
In subsequent steps, i is used to refer to the limit added. Similarly, we write
i. colim(a,b,...) for describing colimit computations. We may use the
notation i->a to refer to morphisms created during the computation.

We start with two basic examples about constructions in the category of sets.

EXAMPLE 3.5. Let C be the category of sets and let A consist of a single
morphism id : {1} → {1}. Consider the colimit computation described by

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 16

1. _,{1}
id
−→ {1},1

2. _,{1}
id
−→ {1},2

. . .

n. _,{1}
id
−→ {1},n

n+1. colim(1,2,...,n)

For each k 6 n, the step k. _,{1}
id
−→ {1},k is adding a new copy of {1} to the

diagram (that is, the vertex labeled k with a self-loop corresponding to id). In the
end, n+1 is the set with n elements.

EXAMPLE 3.6. Continuing with the previous example, we now make a colimit

computation that produces the morphism {0, 1, 2}
f
−→ {0, 1, 2} in the category of

sets, where f (0) = 0, f (1) = 0, f (2) = 1.

The morphism 6->8 is f , in the sense that the full subdiagram containing 6

and 8 is isomorphic to {0, 1, 2}
f
−→ {0, 1, 2}.

We will come back to sets later. We now discuss a more detailed example where
we annotate each step in the computation.

EXAMPLE 3.7. Consider the category Vectk of vector spaces over a field k. Let A
consist of the scalar multiplication morphisms k

c
−→ k for each c ∈ k, the addition

morphism k2 +

−→ k, the two projections π1, π2 : k2
→ k, and morphisms 0→ k,

k → 0. Say, the characteristic of k is 0 and we wish to compute the morphism
f : k3

→ k2, f (x, y, z) = (2x + 2y + 3z, y + z). We describe the computation
as follows.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 17

REMARK 3.8. Two facts about limits and colimits are useful in thinking about
the above example and other computations.

The first (as already noted in Example 2.13) is that if f : X → Y and g : Y →

Z are morphisms, then the limit of the diagram X
f
−→ Y

g
−→ Z is (isomorphic

to) X , and the induced morphism X → Z is equal to the composition g ◦ f .
So, compositions are obtained using limits. The second fact is the following. Let
D : I = (V, E, s, t) → C be a diagram, and L = lim D, and let ϕ : C → D
be a cone over D, where C is a constant diagram of shape I and value X . Let
I ′ = (V ′, E, s ′, t ′) be the graph, with V ′ = V ∪ {v0, v1}, E ′ = E ∪

⋃
v∈V {ev, e′v},

s ′(e) = s(e),
t ′(e) = t (e),

}
for e ∈ E ,

s ′(e) = v0,

t ′(e) = v,

}
for e = ev,

s ′(e) = v1,

t ′(e) = v,

}
for e = e′v,

}
for v ∈ V ,

and D′ : I ′→ C be the diagram defined by,

D′(v) = D(v), for v ∈ V ,
D′(v0) = L ,
D′(v1) = X,

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 18

Figure 2. One extra limit.

D′(e) = D(e), for e ∈ E ,
D′(e) = (lim D)v, for e = ev, v ∈ V ,
D′(e) = ϕv, for e = e′v, v ∈ V .

Then, lim D′ is isomorphic to X , and morphism X → L in this corresponding
limit cone is the unique morphism coming from the universal property of the
limit L . Thus, in a limit computation, once the cones corresponding to L and X
are computed, in order to obtain the morphism X → L , which is implied by the
universal property of limits, one needs to take just one additional limit.

A similar fact holds for colimits (with the arrows reversed). In other words, let
D : I = (V, E, s, t)→ C be a diagram, and M = colim D, and let ϕ : D → C
be a cocone over D, where C is a constant diagram of shape I and value Y .
Then, in a colimit computation, once the cocones corresponding to M and Y are
computed, in order to obtain the morphism M → Y , which is implied by the
universal property of colimits, one needs to take just one additional colimit.

3.2. Mixed limit–colimit computations. We now discuss computations
where we can use limits and colimits together. We call these mixed computations.

DEFINITION 3.9. A mixed computation is a finite sequence (D0, . . . , Ds) of
diagrams with Di : Ii → U (C), where D0 consists only of morphisms in A, and
for each i = 1, . . . , s, Di is obtained from Di−1 by adding either the limit of a
subdiagram with the corresponding cone morphisms or colimit of a subdiagram
with the corresponding cocone morphisms.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 19

Note that there is no constructivity assumption for mixed computations. To
include it would have been too restrictive and would have prevented natural
applications like gluing geometric objects already constructed.

EXAMPLE 3.10 (Monotone Boolean circuits). Let Bn be the lattice of subsets of
{0, 1}n , which is a category whose objects are the subsets of {0, 1}n , and with
HomBn (A, B) = {ι} if A ⊂ B, where ι : A→ B is the inclusion, and HomBn (A,
B) = ∅ otherwise. Let Z i = {(x1, . . . , xn) ∈ {0, 1}n | xi = 1}. Let An be the set
of basic morphisms {idZi | i = 1, . . . , n}. Let B =

∐
∞

n=1 Bn be the disjoint union
of these categories and A =

∐
∞

n=1 An .
We show that there is a correspondence between multi-output monotone

Boolean circuits with n inputs and mixed computations in Bn . Given a monotone
Boolean circuit, consider the corresponding straight-line program with Boolean
operations. Start a mixed computation in Bn with a copy of each of the subsets Z i .
These correspond to the input variables z1, . . . , zn of the straight-line program.
Subsequent entries zn+1, zn+2 . . . will correspond to newly constructed objects
in the mixed computation. For each operation in the straight-line program of
the form zi = z j ∧ zk , take the limit of the objects corresponding to z j and zk ;
similarly, take the colimit for zi = z j ∨ zk . To make a straight-line program from a
mixed computation, start with the input variables z1, . . . , zn and add k − 1 new ∧
operations for each limit of k objects and k− 1 new ∨ operations for each colimit
of k objects (ignoring the arrows does not change the limit/colimit).

Thus, mixed computations in Bn are in direct correspondence with monotone
straight-line programs or, equivalently, monotone Boolean circuits.

EXAMPLE 3.11. Consider the category Top of topological spaces. Let I = [0,
1] be the unit interval, and let the basic morphisms consist of I

id
−→ I ,I → pt ,

pt
0
−→ I , and pt

1
−→ I . We can build all cubes using limits and then can glue these

using colimits to construct many topological spaces.

We will reconsider mixed computations when we look at the complexity of
projective schemes.

3.3. Cost and complexity. Let c0 : A→ Z>0 be any function, considered as
the cost of the basic morphisms.

DEFINITION 3.12. The cost of the computation (D0, . . . , Ds) is the number of
steps plus the cost of the initial diagram D0 consisting of basic morphisms, that
is,

c(D0, . . . , Ds) = s +
∑

f ∈edges(I0)

c0(D0(f)).

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 20

If c0 is not specified, then we consider it to be the constant function 1, so every
basic morphism will have unit cost. This will be the case in almost every example
we consider.

DEFINITION 3.13. The limit (respectively, colimit; respectively, mixed)
complexity, clim

C,A,c0
(D) (respectively, ccolim

C,A,c0
(D); respectively, cmixed

C,A,c0
(D)), of

a diagram D in a category C is the cost of the limit (respectively, colimit;
respectively, mixed) computation using basic morphisms A, which has the
smallest cost among all such computations that compute D. When c0 is the
constant function 1, we will omit it from the subscript and just write clim

C,A(D),
ccolim
C,A (D), or cmixed

C,A (D).
For a morphism f : X → Y in C, the complexity c(f) of f is the complexity of

the corresponding diagram mapping two objects and a single morphism X
f
−→ Y .

For an object X in C, the complexity c(X) of X is the complexity of the diagram
with one object, X .

EXAMPLE 3.14 (Gluing simplices). Let C = Top be the category of topological
spaces and let A be the set of all face embeddings ∆n ↪→ ∆m corresponding
to each strictly increasing map [n] → [m], where ∆n is the standard n-simplex.
Colimit computations correspond to gluing operations between simplices. The
colimit complexity then measures how many simplices are needed to construct a
given topological space by gluing.

We now go back to considering C = Set with the basic morphisms A consisting
of a single morphism id : {1} → {1}.

PROPOSITION 3.15 (Colimit complexity of sets). In the category Set, let

A = {id : {1} → {1}}, c0(id) = 1.

Then, for any set finite set S,

ccolim
Set,A(S) = card(S)+ 1.

Proof. Since finite sets of equal size are isomorphic, a computation will compute
S if and only if it computes any set of cardinality equal to card(S). As in
Example 3.5, starting with card(S) copies of {1} and taking their colimit, we
get a set of cardinality card(S). So, the complexity is bounded from above by
card(S) + 1. To see that this is the most efficient way of producing a set with
card(S) elements, we use Lemma 3.19, which states that if we only care about
building a single object, then a colimit computation can be replaced by a single

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 21

colimit on D0 consisting of basic morphisms. Since the identity on {1} is the only
basic morphism in this case, taking the colimit of card(S) copies of {1} is the most
efficient way to obtain an object isomorphic to S.

EXAMPLE 3.16 (Nonconstructive colimit complexity). The following example
shows the difference between colimit computations and nonconstructive
computations. Consider the computation

1. _,{1}
id
−→ {1},1

2. _,{1}
id
−→ {1},2

3. colim(1,2)
4. colim(1,2)
5. colim(3,4)
6. colim(3,4)
...

...

2a-1. colim(2a-3,2a-2)
2a. colim(2a-3,2a-2)
2a+1. colim(2a-1,2a)

This computation produces a set of size 2a . Observe that the steps 5 to 2a+1
are not constructive. To make them constructive, one would need to include 1,
. . .2i-2 in the colimit in step 2i-1, 3 6 i 6 a + 1, and include 1, . . .2i-2 in
the colimit in step 2i, 3 6 i 6 a. This would produce in step 2a+1 a set with
just two elements.

EXAMPLE 3.17 (Nonconstructive mixed complexity). Using mixed
computations, one can construct a set of doubly exponential complexity. Consider
for example the following mixed computation.

1. _,{1}
id
−→ {1},1

2. _,{1}
id
−→ {1},2

3. colim(1,2)
4. colim(1,2)
5. lim(3,4)
6. lim(3,4)
...

...

2a-1. lim(2a-3,2a-2)
2a. lim(2a-3,2a-2)
2a+1. lim(2a-1,2a)

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 22

It is easy to check that it produces a set of cardinality 22a . So the mixed complexity
of a finite set card(S) is O(log log card(S)).

One important feature of categorical complexity is that it allows one to define
complexity of not just single objects or even morphisms of a given category
(equipped with a set of basic morphisms), but one has a notion of complexity of
arbitrary (finite) diagrams of the category as well. This last notion has no analog
in classical theory of computational complexity.

We illustrate this feature in the following simple example.

EXAMPLE 3.18. We will consider the colimit complexity (in the category Vectk ,
where k is a field) of two diagrams consisting of the inclusion morphisms of n2

different subspaces of dimension two in a 2n-dimensional k-vector space.
In the first diagram, the subspaces are assumed to be generic (Case (a) below),

and we prove that the colimit complexity of the diagram is in O(n3) (which agrees
with the intuition that to specify n2 inclusions of two-dimensional subspaces in a
2n-dimensional vector space, we need to specify a matrix in k2n×2n2).

In the second diagram, the subspaces are in a special position (Case (b)
below), and we prove that the colimit complexity of the diagram is in O(n2)

(intuitively, only 2n distinct columns appear in the 2n × 2n2 corresponding to
the inclusion if the basis vectors are chosen properly). Categorical complexity
helps in quantifying the distinction in the complexity of the two diagrams having
the same shape. There is no analog in classical computational complexity, which
deals mainly with membership questions (and thus from the point of view of
category theory complexities of objects rather than general diagrams) of this kind
of distinction.

We consider the category Vectk of vector spaces over a field k and let A
consist of the scalar multiplication morphisms k

c
−→ k for each c ∈ k, the addition

morphism k2 +

−→ k, the two projections π1, π2 : k2
→ k, and morphisms 0→ k,

k → 0 (as in Example 3.7).

(a) Let n > 2, S1, . . . , Sn2 ⊂ V be subspaces of a finite-dimensional k-vector
space V , and suppose that dim V = 2n, dim Si = 2, 1 6 i 6 n2, and
dim(Si ∩ S j) = 0, 1 6 i < j 6 n2.

Consider the diagram shown in Figure 3, where the φi , 1 6 i 6 n2, are the
inclusion homomorphisms.

We now show how to produce the above diagram in Figure 3 using a colimit
computation.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 23

Figure 3. Subspace diagram.

Let for each i , 1 6 i 6 n2, S′i , S′′i be one-dimensional subspaces of Si such
that Si = S′i ⊕ S′′i , and let ψ ′i , ψ

′′

i denote the inclusions of S′i , S′′i into V ,
respectively.

Similarly, let E1, . . . , E2n ⊂ V be one-dimensional subspaces of V such
that V = E1 ⊕ · · · ⊕ E2n . Then, V is canonically isomorphic to the direct
product E1×· · ·×E2n and let πi : V → Ei denote the canonical projections.

For each 1 6 i 6 2n, 1 6 j 6 n2, we first use colimit computation to obtain
a diagram computing the 2n3 linear morphisms, φi, j = πi ◦ (ψ

′

j ⊕ ψ
′′

j) :

S′j ⊕ S′′j → Ei , to obtain the diagram shown in Figure 4.

The colimit computation to obtain the diagram shown in Figure 4 is as
follows. For each j, 1 6 j 6 n, first take the colimit of S′j and S′′j to obtain
the diagram

S′j

""

S′′j

||

S′j ⊕ S′′j

and then successively for each i, 1 6 i 6 n, take colimits of the diagrams

Ei

S′j

""

πi◦ψ
′

j

;;

S′′j

||

πi◦ψ
′′

j

cc

S′j ⊕ S′′j

φi, j

OO

and observe (cf. Remark 3.8) that we obtain the morphisms φi, j . Note that
the morphisms πi ◦ψ

′

j , πi ◦ψ
′′

j being morphisms between one-dimensional
k-vector spaces are basic. It is easy to check that the total cost of the colimit
computation described above is

2n3
+ n2
+ 2n3

= 4n3
+ n2.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 24

Figure 4. Subspace diagram before taking the last colimit.

Figure 5. Diagram after taking the last colimit.

We then take the colimit of the whole diagram computed till now (as
shown in Figure 5), and obtain the desired diagram as a subdiagram (whose
morphisms are shown in blue in Figure 5).

The total cost is 4n3
+ n2
+ 1 = O(n3).

(b) We now consider subspaces S1, . . . , Sn2 in a special position, and prove that
colimit complexity of the corresponding diagram can be much smaller.

Let V = V ′ ⊕ V ′′, where dim V ′ = dim V ′′ = n. Let L ′i ⊂ V ′, L ′′i ⊂ V ′′,
1 6 i 6 n be subspaces with dim L ′i = dim L ′′i = 1, 1 6 i 6 n, and suppose
that S1, . . . , Sn2 are the subspaces L ′i ⊕ L ′′j ⊂ V = V ′ ⊕ V ′′, 1 6 i, j 6 n.

Let V ′ (respectively, V ′′) be the direct sum of one-dimensional subspaces
E ′1, . . . , E ′n (respectively, E ′′1 , . . . , E ′′n). Then V ′ = E ′1⊕· · ·⊕E ′n, V ′′ = E ′′1⊕
· · ·⊕E ′′n , and moreover, V ′ (respectively, V ′′) is also canonically isomorphic
to the direct product E ′1 × · · · × E ′n (respectively, E ′′1 × · · · × E ′′n). Let for
1 6 i 6 n, π ′i : V

′
→ E ′i (respectively, π ′′i : V

′′
→ E ′′i) denote the canonical

projections. Also, for 1 6 j 6 n, let ψ ′j : L
′

j → V ′ (respectively,ψ ′′j : L
′′

j →

V ′′) denote the inclusion morphisms, and denote φ′i, j = π
′

i ◦ψ
′

j (respectively,
φ′′i, j = π

′′

i ◦ ψ
′′

j).

In this case, we can construct the diagram in Figure 3 in the following way.

First construct the diagram containing the morphisms φ′i, j and φ′′i, j as shown
in Figure 6. This costs 2n2.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 25

Figure 6. Colimit computation of arrangement of subspaces in a special position
before taking any colimits.

Next take colimits of the n2 subdiagrams circled in blue (corresponding
to pairs of vertices L i , L ′j , 1 6 i, j 6 n) to obtain the diagram shown in
Figure 7. Finally, take a colimit of the entire diagram constructed so far to
obtain the diagram shown in Figure 8. It is an easy exercise to check that
the required diagram occurs as a subdiagram (whose morphisms are shown
using blue broken arrows in Figure 8) of the diagram so obtained. The total
cost is 3n2

+ 1 = O(n2).

Thus, while both arrangements of linear subspaces S1, . . . , Sn2 ⊂ V in Parts
(a) and (b) contain the same number of subspaces, and would require the same
number of polynomials to define (say, using a first-order formula in the language
of reals), the second one is ‘simpler’ than the first in terms of its categorical
colimit complexity.

3.4. Useful facts about limit and colimit computations. We now collect a
few facts that will be useful for proving statements about objects and morphisms
computed by limit and colimit computations.

The following lemma, which was already used in the proof of Proposition 3.15,
shows that if the aim is to produce a specific object, intermediate steps in a

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 26

Figure 7. Colimit computation of arrangement of subspaces in a special position
after taking n2 colimits.

Figure 8. Colimit computation of arrangement of subspaces in a special position
after taking the final colimit.

limit or colimit computation are unnecessary. The key here is the constructivity
assumption.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 27

LEMMA 3.19. Assume C has finite limits (respectively, colimits). An object
produced in a limit computation (respectively, colimit computation) is a limit
(respectively, colimit) of a diagram consisting only of basic morphisms.

Proof. Let (D0, . . . , Ds) be a limit computation and let X be an object appearing
in Ds . The point of the statement is that constructivity ensures that the information
that would be added in intermediate limits is also included in the final limit that
would produce X .

More precisely, let L i = lim Di−1|Ji be the limit added to the diagram at the i th
step. Let J ′i = I0 ∩ Ji . So we have that Di−1|J ′i is the portion of the subdiagram of
Di−1|Ji , which is also in D0. We claim that L i

∼= lim Di−1|J ′i . Indeed, the universal
property of limits and constructivity imply that cones from any object Z to Di−1|J ′i
can be uniquely extended to cones from Z to Di−1|Ji , and therefore lim Di−1|J ′i
satisfies the same universal property as L i .

The analogous proof holds for colimits.

The following remarks are very useful for working with objects and morphisms
produced in limit computations.

REMARK 3.20. If the category C has finite products and equalizers, then we can
write any limit L as an equalizer; see for example, [Awo10, 5.4]. More precisely,
suppose that J = (V, E, s, t) is a finite graph and D : J → U (C) a diagram.
Consider the following diagram:

∏
v∈V D(v)

φ
//

ψ
// ∏

e∈E D(t (e)) , (2)

where φ is the canonically defined morphism from
∏

v∈V D(v) to the product∏
e∈E D(t (e)) induced from the morphisms(

prt (e) :
∏
v∈V

D(v)→ t (e)
)

e∈E

,

and ψ is the canonically defined morphism from
∏

v∈V D(v) to the product∏
e∈E D(t (e)) induced from the morphisms(

D(e) ◦ prs(e) :
∏
v∈V

D(v)→ t (e)
)

e∈E

,

with both maps being defined by the universal property of products.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 28

Let L
f
−→
∏

v∈V D(v) in the following diagram be the equalizer of diagram (2):

L
f
//
∏

v∈V D(v)
φ

//

ψ
// ∏

e∈E D(t (e)) .

Then the object L along with the morphisms(
prD(v) ◦ f : L → D(v)

)
v∈V

is isomorphic to the limit, lim D, of D.

REMARK 3.21. If X
f
−→ Y is a morphism computed by a limit computation, and

neither of X and Y is in D0, then X must have been computed as a limit of a
diagram that contains Y . By constructivity, the diagram whose limit is X must
contain the diagram that produced Y as a subdiagram. Therefore, if X = lim D,
where D : (V, E) → U (C) is a diagram of basic morphisms, then Y = lim D′,
where D′ is the subdiagram corresponding to a full subgraph (V ′, E ′) ⊂ (V, E).
We then have a commuting diagram

X //

f

��

∏
v∈V D(v)

φ
//

ψ
//

π

��

∏
e∈E D(t (e))

π ′

��

Y //
∏

v∈V ′ D(v)
φ′

//

ψ ′
// ∏

e∈E ′ D(t (e))

.

In particular, f is induced by the projection π .

We have corresponding facts for colimits as well.

REMARK 3.22. If the category C has finite coproducts and coequalizers, then we
can write any colimit M as a coequalizer. More precisely, suppose that J = (V,
E, s, t) is a finite graph and D : J → U (C) is a diagram. Consider the following
diagram: ∐

e∈E D(s(e))
φ

//

ψ
// ∐

v∈V D(v) , (3)

where φ is the canonically defined morphism from
∐

e∈E D(s(e)) to
∐

v∈V D(v)
induced from the morphisms(

js(e) : D(s(e))→
∐
v∈V

D(v)
)

e∈E

,

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 29

and ψ is the canonically defined morphism from
∐

e∈E D(s(e)) to
∐

v∈V D(v)
induced from the morphisms(

jt (e) ◦D(e) : D(s(e))→
∐
v∈V

D(v)
)

e∈E

,

with both maps being defined by the universal property of coproducts.

Let
∐

v∈V D(v)
f
−→ M in the following diagram be the coequalizer of diagram

(3):

∐
e∈E D(s(e))

φ
//

ψ
// ∐

v∈V D(v)
f

// M.

Then the object M with the morphisms

(f ◦ jD(v) : D(v)→ M)v∈V

is isomorphic to the to colimit, colim D, of D.

REMARK 3.23. If Y
f
−→ X is a morphism computed by a colimit computation,

and neither of X and Y is in D0, then X must have been computed as a colimit of
a diagram that contains Y . By constructivity, the diagram whose colimit is X must
contain the diagram that produced Y as a subdiagram. Therefore, if X = colim D,
where D : (V, E)→ U (C) is a diagram of basic morphisms, then Y = colim D′,
where D′ is the subdiagram corresponding to a full subgraph (V ′, E ′) ⊂ (V, E).
We then have a commuting diagram∐

e∈E D(s(e))
φ

//

ψ
// ∐

v∈V D(v) // X

∐
e∈E ′ D(s(e))

φ
//

ψ
//

j′

OO

∐
v∈V ′ D(v)

j

OO

// Y

f

OO ,

where j, j′ are the morphisms induced by the universal property of coproducts. In
particular, f is induced by the morphism j.

4. Diagram computations, circuits, and algebraic varieties

We now make a comparison between the arithmetic circuit complexity of
polynomials and the limit complexity of the varieties, which are their zero-sets.
For simplicity, we will start with the category of affine algebraic varieties, but
what we describe will make sense in other settings like affine schemes and
algebras.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 30

4.1. Limit computations in affine varieties, schemes, and k-algebras. Let
C be the category AffVark of affine algebraic varieties over a field k. Let A consist
of the following basic morphisms.

A1 c
−→ A1, for each c ∈ k,

A1
× A1 +

−→ A1,

A1
× A1 ×

−→ A1, (4)

A1
× A1 π1,π2

−−→ A1,

A1
→ A0, and A0 c

−→ A1, for each c ∈ k.

Each of these morphisms is considered to have unit cost.

EXAMPLE 4.1. As an example, let us make a limit computation of the morphism

A3 x2
+yz
−−−→ A1 using these basic morphisms.

The following shows that a similar computation can be done to compute any
polynomial map.

THEOREM 4.2. Let f ∈ k[x1, . . . , xn] be a polynomial of degree d. Assume that f
is computed by a straight-line program (cf. [Bür00, Definition 2.1]) Γ of length
N. Then, the limit complexity (and therefore the categorical complexity) of the
zero-set X ⊂ An of f is in O(N).

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 31

Proof. Using the operations in the straight-line program Γ , we will construct a

morphism An f
−→ A1. X is then the limit An f

−→ A1 0
←− A0.

Associated to each straight-line program of length s, there is a morphism
(f1, . . . , fs) : An

→ As , where f1, . . . , fs are the polynomials computed in each
line of the diagram. Let Γ = (Γ1, . . . , ΓN), where Γi is the i th instruction in the
straight-line program Γ . For the first n instructions of Γ , which introduce the
variables x1, . . . , xn as polynomials, we have the map An id

−→ An . The space An

is constructed in a limit computation by taking the limit of n disjoint copies of
the diagram consisting of A1 mapping to itself by 1. To get the map An id

−→ An ,
we take the limit of the whole diagram obtained so far which costs n + 2. Note
that our diagram also contains all the projections from the source and target
of idAn to the n components. This is the base case of the following inductive
construction.

Assume that, for n 6 k 6 N − 1, we have produced, in a limit computation, a
morphism (f1, . . . , fk) : An

→ Ak corresponding to the polynomials computed
by each line of (Γ1, . . . , Γk), together with the projections p1, . . . , pk from Ak to
k copies of A1, all of which are in D0.

Assume that Γk+1 is the multiplication of the i th and j th lines of the program,
that is, fk+1 = fi f j . We can then perform the following steps of the computation.
For convenience, we have added, as if they were basic morphisms, the portion of
the diagram used for the next steps as the first k + 1 steps in this description:

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 32

1. _,An (f1,..., fk)
−−−−→ Ak ,1’

2. 1’,Ak p1
−→ A1,2’

3. 1’,Ak p2
−→ A1,3’

. . .
k+1. 1’,Ak pk

−→ A1,(k+1)’

k+2. _,A2 π1
−→ A1,(i+1)’

k+3. k+2,A2 π2
−→ A1,(j+1)’

k+4. lim((k+2),(i+1)’,(j+1)’, 1’,1)

k+5. k+2,A2 ×
−→ A1,_

k+6. lim(2’,3’,...,(k+1)’,(k+4)’)
k+7. lim((k+4), 1,1’,2’,3’,..., (k+1)’, k+2, (k+5)’,k+6)

In the end, the map (k+7)->(k+6) is the map An (f1,..., fk+1)
−−−−−−→ Ak+1, and the

projection maps for the next step are the maps

(k+6)->2’,(k+6)->3’,. . . ,(k+6)->(k+1)’, (k+6)->(k+5)’.

The process for addition steps is similar, with the step k+5 modified. For scalar
multiplication, it is similar with two steps less. For constants appearing in the
computation, we add a new variable and take the fiber product with A0 c

−→ A1

to fix the variable to the value c. Repeating this process until k = N , we see that
(f1, . . . , fN) is produced in O(N) steps. We can then compose with the projection

to the last coordinate, by taking a limit, to produce An f
−→ A1. To obtain the zero-

set of f , we add A0 0
−→ A1 to this last A1 and take the limit.

It should also be noted that the way we made a limit computation for An f
−→ A1

was not the most efficient, but this way gives the cleanest inductive argument. For
efficiency, the intermediate limit steps can be removed; cf. Lemma 3.19.

REMARK 4.3. The proof above shows that we can, by starting from a number of
A1 added as basic objects, construct any polynomial functions f1 : An

→ A1. We
will use this fact later.

We now consider a converse for Theorem 4.2 and show that, given a limit
computation with low cost, an object X computed by it is isomorphic to the zero-
set of a polynomial whose arithmetic circuit complexity is low. Since diagram
computations produce objects up to isomorphism, categorical complexity does
not reflect the complexity of every polynomial that might be used to cut out
X in a larger space. For example, X could be the graph of a polynomial map
f : An

→ A1 with very high arithmetic circuit complexity, but since X would be
isomorphic to An , its limit complexity would be very small, which does not say

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 33

anything about the arithmetic circuit complexity of f . This is discussed in more
detail in Section 5.1.

We first recall the definition of an arithmetic circuit over a field k and that of
the arithmetic circuit complexity of a polynomial map.

DEFINITION 4.4 (Arithmetic circuit complexity). An arithmetic circuit C over a
field k and variables X1, . . . , Xn is a finite directed acyclic graph such that

(i) every vertex of the directed graph with indegree 0 is labeled either by a
variable or an element of k;

(ii) every other vertex is labeled by either + or ×.

The size of an arithmetic circuit is the number of vertices in the associated directed
graph. Each vertex of C is associated to a polynomial in k[X1, . . . , Xn] computed
at that vertex (in the obvious way). We say that a polynomial is computed by an
arithmetic circuit C if it appears as the polynomial associated to some vertex of
the circuit. For a tuple of polynomials f = (f1, . . . , fm) ∈ k[X1, . . . , Xn], we say
that the arithmetic circuit complexity of the induced polynomial map f : kn

→ km

is the size of the arithmetic circuit of the smallest size that computes each of the
polynomials f1, . . . , fm .

THEOREM 4.5. Let (D0, . . . , Ds) be a limit computation in AffVark , whose cost
equals C = c(D0, . . . , Ds). Then we have the following:

(i) If X is an object computed by (D0, . . . , Ds), then X is isomorphic to the
zero-set of a polynomial morphism Am1 → Am2 whose components are
polynomials of degree at most 2. The total arithmetic circuit complexity of
the map is bounded above by 4C.

(ii) Every morphism f : X → Y in Ds is the restriction of a projection Am1 →

Am2 , where Am1 and Am2 are the spaces from Part (i), where X and Y are
embedded respectively.

Proof. If s = 0, then the statement is true since the basic morphisms are A1 c
−→ A1,

A1
× A1 +,×

−−→ A1, A1
× A1 π1,π2

−−→ A1, A1
→ A0, and A0 c

−→ A1.
For the general case, constructivity implies that, as far as the isomorphism class

of an object X in Ds is concerned, the intermediate limits in a limit computation
can be removed (Lemma 3.19). Using the notation of the proof of Lemma 3.19, if
X = L i is produced as a limit in the diagram computation, then X ∼= lim Di−1|J ′i ,
where Di−1|J ′ is a subdiagram of D0.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 34

As discussed in Remark 3.20, we can write X = L i as an equalizer. Let J ′i =
(V, E), L i

∼= lim Di−1|J ′i ; writing D = Di−1|J ′i , L i is isomorphic to the limit of

∏
v∈V D(v)

φ
//

ψ
// ∏

e∈E D(t (e)),

where φD(t (e)) = πD(t (e)) and ψD(t (e)) = D(e) ◦ πD(s(e)).
Since J ′i ⊂ I0, we have that each D(v) or D(t (e)) is A1, A2, or a point; and D(e)

are addition, multiplication, constant, projection, or multiplication by a constant.
So the above equalizer is of the form

Am1

φ
//

ψ
// Am2 ,

and L i is isomorphic to the zero-locus of Am1
φ−ψ
−−→ Am2 . For the complexity of

φ − ψ , observe that m1,m2 6 2C and that each component of φ − ψ is a very
simple polynomial, which can be produced in two steps.

We now consider the second assertion. This follows directly from the discussion
in Remark 3.21. We observe that any morphism f : X → Y appearing in Ds but
not in D0 must be a cone map from a limit X = L i = lim Di−1|Ji to an object
Y appearing in Di−1|Ji . By the above construction, we know that X and Y are
zero-loci of morphisms whose sources are products of objects in subdiagrams of
D0. Moreover, constructivity implies that the subdiagram for Y is contained in the
subdiagram for X . The morphism f is then the restriction of the projection from
the subdiagram for X to the subdiagram for Y .

The above arguments can also be considered for the category of affine schemes
instead of varieties. Let k be a field and let AffSchk be the category of affine
schemes. Consider the same set A of morphisms as in the case of affine varieties:
A1 c
−→ A1, for each c ∈ k, A1

× A1 +

−→ A1, A1
× A1 ×

−→ A1, A1
× A1 π1,π2

−−→ A1,
A1
→ A0, and A0 c

−→ A1.
One can also consider the category Algk of k-algebras with basic morphisms

k[x]
c
−→ k[x], for each c ∈ k,

k[x]
x⊗1+1⊗x
−−−−−→ k[x] ⊗ k[x],

k[x]
x⊗x
−−→ k[x] ⊗ k[x],

k[x]
id⊗1, 1⊗id
−−−−−→ k[x] ⊗ k[x],

k
1
−→ k[x], and

k[x]
x 7→c
−−→ k, for each c ∈ k.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 35

These correspond to the basic morphisms considered for AffVark under the
adjoint equivalence

AffSchk

k[·]
//
Algop

k
Spec
oo .

Without any modification to the proofs, Theorems 4.2 and 4.5 hold when
AffVark is replaced by AffSchk or Algk .

4.2. Mixed computations in projective schemes. Let C be the category Schk

of all schemes over a field k. Letting A consist of the morphisms above as in the
affine scheme case, we get a definition of complexity in the category of schemes.

The morphisms in A are actually enough to produce all projective schemes
using mixed computations. For example, in order to make P1, we can produce the
following diagram as a subdiagram of a computation and take its colimit:

A1 A1

Z(xy − 1) ⊂ A2

π1

ff

π2

88

Note that Z(xy − 1) is isomorphic to A1
− {0}.

PROPOSITION 4.6. Let X ⊂ Pn
k be the zero-scheme of homogeneous polynomials

f1, . . . , fm ∈ k[x0, . . . , xn]. Assume that, for each i , there is an arithmetic circuit
of size ci computing fi . Then, the categorical complexity of X is in O(n2(c1 +

· · · + cs)).

Proof. We first show how to construct Pn by a mixed computation and then
modify the construction to make the zero-scheme X of f1, . . . , fm .

The last step in making Pn will be to take the colimit of the diagram

A0 = An A1 = An A2 = An . . . An = An

Z0,1

__ ??

Z0,2

gg 77

Z1,2

__ ??

. . . Zi, j . . . Zn−1,n

==

There are n + 1 copies of An in the first row, which correspond to the standard
covering U0, . . . ,Un of Pn by affine opens. In the second row, there is an
object Z i, j for each pair (i, j) with i < j ; with each Z i, j corresponding to the

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 36

intersections Ui ∩U j of the affine opens in the chart, each is therefore isomorphic
to the complement of a hyperplane in An .

We will construct each Z i j as a subscheme of An
× An

= Ai × A j , considered
with coordinates x1, . . . , xn, y1, . . . , yn , defined by the equation

yi x j − 1 = 0, (5)

and, for each l ∈ {1, . . . , i − 1, i + 1, . . . , n}, the equation

yi xl − yl = 0. (6)

These equations describe the graph of the transition maps

(x1, . . . , xn) 7→

(
x1

x j
,

x2

x j
, . . . ,

xi−1

x j
,

1
x j
,

xi+1

x j
, . . . ,

x j−1

x j
,

x j+1

x j
, . . . ,

xn

x j

)
between the affine opens in the standard covering of Pn . Here, each affine open Ui ,
corresponding to points in homogeneous coordinates [a0

ai
: · · · :

ai−1
ai
: 1 : ai+1

ai
: · · · :

an
ai
] is parameterized by simply omitting the i th variable. The maps Z i, j → Ai and

Z i, j → A j are the restrictions of the projection maps from Ai × A j .
To carry out the computation, start with (n + 1) sets of n copies of A1. Make

Ai the limit of the i th set of n A1’s. Using the procedure described in the proof
of Theorem 4.2 (cf. Remark 4.3), construct each Z i, j as the zero-set of equations
(5) and (6). Making the projections to the Ai (cf. second part of Remark 3.8), we
get the diagram above. At this point, the colimit of this diagram can be taken to
produce Pn .

To make the zero-scheme X of f1, . . . , fm in Pn , we continue in order to make
the following diagram.

X0 X1 X2 . . . Xn

Z ′0,1

\\ AA

Z ′0,2

ee 99

Z ′1,2

]] BB

. . . Z ′i, j . . . Z ′n−1,n

@@

Here the X i are isomorphic to X∩Ui and the Z ′i, j are isomorphic to X∩Ui∩U j . To
make the X i , de-homogenize f1, . . . , fm for each Ai so that we get the equations
for the subscheme of Ai that corresponds to X ∩Ui . Using the procedure in
Theorem 4.2, take the zero-scheme of these de-homogenized equations in each Ai .
To make the Z ′i, j , make the map X i × X j → Ai × A j and pull back Z i, j . Finally,
take the colimit of the diagram above to get a scheme isomorphic to X .

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 37

5. Categorical complexity of morphisms versus circuit complexity of
polynomials

Although the motivation behind studying categorical complexity in various
categories is a natural problem in its own right, it is still interesting to compare
this new notion with pre-existing notions of computational complexity in certain
special categories. For a pre-existing notion of complexity, the closest in spirit
(in the categories we consider below) is that of arithmetic circuit complexity
of polynomials. The goal of this section is to see how closely we can recover
arithmetic circuit complexity (defined in Definition 4.4) (or equivalently, straight-
line program complexity). We remark that arithmetic circuit complexity is one of
the most widely studied frameworks for nonuniform computational complexity
theory (see for example, [Bür00]).

We discuss three categories where we can compare the arithmetic circuit
complexity of a polynomial f ∈ k[x1, . . . , xn] with the categorical complexity
of a morphism diagram. In the first one, we look at the morphism diagram

D f = (An f
−→ A1) in AffVark and see that its complexity can be very different

from the arithmetic circuit complexity of f . The second category, the category
of graded pairs of algebras, is an attempt at removing this discrepancy. The
third category is the category of modules over k[x1, . . . , xn], where we prove
concrete comparison results between the arithmetic circuit complexity of f and

the categorical complexity of the morphism diagram k[x1, . . . , xn]
1 7→ f
−−→ k[x1,

. . . , xn].

5.1. Complexity of polynomial morphisms in AffVark. We consider the
category AffVark with the basic morphisms discussed above (4). Given a
polynomial

f ∈ k[x1, . . . , xn],

what is the categorical complexity of the diagram D f = (An f
−→ A1) in AffVark?

First, observe that since we have A0 0
−→ A1 as a basic morphism, we can use the

pullback of the diagram

An f
// A1 A00oo

to obtain the inclusion morphism V ↪→ An , where V = Z(f) is the affine
subvariety of An defined by f . Thus,

clim
AffVark ,A(Z(f)) 6 clim

AffVark ,A(D f)+ 2,

where A is the set of basic morphisms given in (4).

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 38

Categorical computations produce diagrams up to isomorphism, and
categorical complexity is defined for isomorphism classes of diagrams. So,
the complexity of f is equal to the complexity of any other An g

−→A1 where there
is an automorphism φ : An

→ An such that

An

φ

��

f
// A1

id
��

An g
// A1

commutes. Therefore, the complexity of D f in AffVark is invariant under
polynomial automorphisms of An (and the complexity of the variety Z(f) is equal
to that of φ(Z(f)) for any polynomial automorphism φ of An).

For example, let p ∈ k[x1, . . . , xn] be any polynomial, and let

g ∈ k[x1, . . . , xn, xn+1], g = xn+1 + p(x1, . . . , xn).

Let f = πn+1 sending (x1, . . . , xn+1) to xn+1, and

φ(x1, . . . , xn+1) = (x1, . . . , xn, xn+1 + p(x1, . . . , xn)).

Then, we have the following commuting diagram:

An+1 πn+1
// A1

An+1

(x1,...,xn ,xn+1+p(x1,...,xn))

OO

xn+1+p(x1,...,xn)

<<

So, the diagram Dxn+1+p(x1,...,xn) is isomorphic to An+1 πn+1
−−→ A1. So, while the

circuit complexity of xn+1 + p(x1, . . . , xn) can be very high (for example, p
could be the permanent, or worse, a generic polynomial), the limit complexity
of Dxn+1+p(x1,...,xn) as well as that of V (xn+1 + p(x1, . . . , xn)) is bounded by O(n).
This is because, geometrically, the zero-set of xn+1+ p(x1, . . . , xn) is very simple;
it is the graph of −p, and is therefore isomorphic to An .

It should also be noted that reductions in circuit complexity do not immediately
lead to reductions in the complexity in AffVark . One can construct an arithmetic
circuit for the polynomial p(x1, . . . , xn) given one for xn+1 + p(x1, . . . , xn)

with only a constant increase in size. However, this does not lead to a diagram
computation of Dp(x1,...,xn) from a diagram computation of Dxn+1+p(x1,...,xn) with
only a constant increase in cost. Still, we can ask whether polynomials that are
believed to be hard to compute in the arithmetic circuit model also have high
categorical complexity. For example, we have the following question.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 39

QUESTION 5.1. Is the limit/mixed complexity of An2 permn
−−→ A1 polynomially

bounded in n?

5.2. Complexity of pairs of graded algebras. It is possible that the difference
between complexity of D f in AffVark and the arithmetic circuit complexity of
f is caused by the large number of automorphisms of An . The goal of this
section is to consider a category where arithmetic circuit complexity is possibly
close to categorical complexity, and we can hope to bound the arithmetic circuit
complexity of a polynomial f from above by a polynomial function of the
categorical complexity of the corresponding morphism (or that of the algebraic
variety defined by f), and thus match the result in Part (i) of Theorem 4.5, which
contains an inequality in the other direction.

The automorphism group of Pn
k is much smaller than that of An

k . Indeed,
Aut(Pn

k)
∼= PGL(n+ 1, k), where PGL(n+ 1, k) denotes the group of invertible

(n + 1)× (n + 1) matrices with entries in k modulo multiplication by k∗ (see for
example, [MFK94, Ch. 0, §5 b)]). Thus, the automorphisms of Pn

k are all linear,
and hence the complexity of a projective hypersurface Z(f) ⊂ PN

k should be
closer to the arithmetic circuit complexity of its defining polynomial f . However,
since the basic objects are not projective, it is better to consider the corresponding
setup in the category of graded algebras.

To this end, we could consider the category GrAlgk of graded algebras (given
a graded k-algebra S, the projective scheme Proj S will be the corresponding
geometric object). The following set of morphisms will be taken to be the basic
morphisms.

k[zn
]
+

−→ k[xn, yn
] , zn

7→ xn
+ yn,

k[z2n
]
·

−→ k[xn, yn
] , z2n

7→ xn yn,

k[zn
]

i1
−→ k[xn, yn

] , zn
7→ xn,

k[zn
]

i2
−→ k[xn, yn

] , zn
7→ yn,

k[zn
]

c×
−→ k[zn

] , zn
7→ czn, c ∈ k,

k[zn
] −→ k , zn

7→ 0.

(7)

Note that k[xn, yn
] ∼= k[xn

] ⊗k k[yn
] is the coproduct of k[xn

] and k[yn
] in

GrAlgk , and hence using colimits we can build graded polynomial rings in any
number of variables. Also, the last morphism in list (7) allows us, ‘geometrically
speaking’, to build the inclusion of a variety V ↪→ PN

k defined by a set of
homogeneous polynomials of the same degree. More precisely, in terms of graded
algebras, if V is defined by the ideal a with generators g1, . . . , gM ∈ k[z0, . . . , zN]

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 40

homogeneous of the same degree, then the morphism k[z0, . . . , zN] → k[z0, . . . ,

zN]/a can be constructed by taking the colimit of the diagram

k k[y0, . . . , yM]
0oo

yi 7→gi // k[z0, . . . zN], (8)

noting that the morphism k[y0, . . . , yM]
0
−→ k can be built from the basic

morphism k[z] −→ k, z 7→ 0 (cf. equation (7)) by taking colimits.

REMARK 5.2. We should remind the reader here of one unpleasant aspect of the
translation between algebra and geometry via taking Proj of graded rings. Unlike
the functor

Spec : Algop
k → AffSchk,

the map
Proj : GrAlgop

k → ProjSchk

is not a functor since to a morphism of graded k-algebras one can associate only
a partial map between the corresponding projective schemes, and for graded
k-algebras R and R′, Proj R and Proj R′ could be isomorphic, without R
being isomorphic to R′. Thus, isomorphisms of projective varieties considered
in this section do not necessarily correspond exactly to isomorphisms of the
corresponding graded algebras. It might be possible to consider as our objects
equivalence classes of graded algebras S giving isomorphic Proj S, but we will
not attempt to do this here.

Now consider for a tuple of homogeneous polynomial

f = (f0, . . . , fN) ∈ k[x0, . . . , xn]
N+1,

the diagram

k[z0, . . . , zN]
zi 7→ fi
−−−→ k[x0, . . . , xn]

denoted also by D f .
However, the complexity of D f could still possibly be different from the

arithmetic circuit complexity of f . The problem arises if morphism Pn
k → PN

k
induced by f is an embedding of varieties. More precisely, an embedding
ν : Pn

k = Proj k[x0, . . . , xn] → PN
k = Proj k[z0, . . . , zN]. In terms of graded

algebras, this would correspond to a morphism D f : k[z0, . . . , zN] → k[x0,

. . . , xn] given by a tuple f = (f0, . . . , fN) of homogeneous polynomials of
the same degrees, with D f being the map zi 7→ fi . For example, ν could be
the Veronese embedding of degree d , and in which case N =

(n+d
d

)
, and f

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 41

would be the tuple of all monomials in x0, . . . , xn of degree d . But the inclusion
ν(Pn

k) ↪→ PN
k also corresponds to a morphism of graded algebras, namely k[z0,

. . . , zN] → k[z0, . . . , zN]/a, where a is the homogeneous ideal of ν(Pn
k). Suppose

that a is generated by the homogeneous polynomials g0, . . . , gM . In the case
where ν is a Veronese embedding, the polynomials gi can be taken to be a set
of quadratic binomials. Now the morphism k[z0, . . . , zN] → k[z0, . . . , zN]/a can
be constructed by taking the colimit (see (8) above).

If the gi ’s have small colimit complexity compared to the fi ’s, then the
second morphism will have smaller colimit complexity. And thus the categorical
complexity of the embedding ν : Pn

k → PN
k could be determined by a categorical

computation involving only the polynomials g0, . . . , gM , and in principle could
be much smaller than the arithmetic circuit complexity of f .

To prevent the phenomenon described above, which might cause the categorical
complexity of a morphism D f to diverge from the arithmetic circuit complexity of
f , we consider the category whose objects are pairs (X,Pn

k), with X a subvariety
of Pn

k . Or rather, we consider the corresponding morphisms of the coordinate
algebras. We denote by GrAlgPairsk the category whose objects are surjective

morphisms (A
f
−→ B), where A is isomorphic to some polynomial ring k[x0, . . . ,

xn] graded by degree. For example, suppose that A = k[x] and B = k[x]/(x2)

both graded by degree, and A
f
−→ B the canonical surjection.

In order to define categorical complexity in GrAlgPairsk , we define the basic
morphisms as follows. For each n > 1, we include in the set of basic morphisms
the following set of morphisms (all polynomial rings appearing below are graded
by degrees and the degrees of the indeterminates x, y, z, . . . appearing in the
morphisms are all equal to 1):

(k[zn
]
∼

−→ k[zn
])
+

−→ (k[xn, yn
]
∼

−→ k[xn, yn
]) , zn

7→ xn
+ yn,

(k[z2n
]
∼

−→ k[z2n
])
·

−→ (k[xn, yn
]
∼

−→ k[xn, yn
]) , z2n

7→ xn yn,

(k[zn
]
∼

−→ k[zn
])

i1
−→ (k[xn, yn

]
∼

−→ k[xn, yn
]) , zn

7→ xn,

(k[zn
]
∼

−→ k[zn
])

i2
−→ (k[xn, yn

]
∼

−→ k[xn, yn
]) , zn

7→ yn,

(k[zn
]
∼

−→ k[zn
])

c×
−→ (k[zn

]
∼

−→ k[zn
]) , zn

7→ czn, c ∈ k,

(k[zn
]
∼

−→ k[zn
]) −→ (k[xn

]
(x 7→0)
−−−→ k) , (zn

7→ xn, zn
7→ 0).

(9)

REMARK 5.3. Note that in all but the last morphism in the above list, the pairs
occurring as source and target of the morphism consist of isomorphic objects,
and the morphism between them is diagonal (that is, of the form (φ, φ) for some
morphism φ in the category GrAlgk). Only in the last morphism this is not true,
and the morphism between the pair in this case is (id, φ), where φ is precisely the

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 42

morphism used to build inclusion of varieties GrAlgk (cf. (8)). This remark will
be used in what follows.

Note that we can obtain the morphism

(k[zn
]
(zn
7→0)
−−−→ k)

(zn
7→0)
−−−→ (k[xn

]
∼

−→ k[xn
])

as the colimit diagram:

(k[tn
]
∼

−→ k[tn
])

tn
7→zn ,tn

7→0
��

tn
7→0,tn

7→0
// (k[yn

]
∼

−→ k[yn
])

��

(k[zn
]
(zn
7→0)
−−−→ k)

(zn
7→0)

// (k[xn
]
∼

−→ k[xn
])

Given a tuple of homogeneous polynomials

f = (f0, . . . , fN) ∈ k[x0, . . . , xn]
N+1,

we consider the categorical complexity of the diagram M f defined as

(k[z0, . . . , zN]
∼

−→ k[z0, . . . , zN])
M f
−→ (k[z0, . . . , zn]

∼

−→ k[x0, . . . , xn]), zi 7→ fi .

Following the same proof as Theorem 4.2, we have the next proposition.

PROPOSITION 5.4. Given a tuple of homogeneous polynomials

f = (f0, . . . , fN) ∈ k[x0, . . . , xn]
N+1

having arithmetic circuit complexity M, the colimit complexity of the morphism
diagram M f is in O(M).

We claim also that the phenomenon described previously in the nonembedded
setting does not occur in this embedded pair setting. Consider, for example, an
embedding ν : Pn

k → PN
k as before, but now consider the embedding of the pair

(Pn
k ,Pn

k) into PN
k ,PN

k) by the diagonal morphism (ν, ν). In terms of pairs of graded
algebras, this would correspond to a morphism

M f = (D f ,D f) :

(k[z0, . . . , zN]
∼

−→ k[z0, . . . , zN])→ (k[x0, . . . , xn]
∼

−→ k[x0, . . . , xn]),

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 43

given by a tuple f = (f0, . . . , fN) of homogeneous polynomials of the same
degrees, with D f being the map zi 7→ fi . Suppose also as before that the inclusion
ν(Pn

k) ↪→ PN
k also corresponds to a morphism of graded algebras, namely k[z0,

. . . , zN] → k[z0, . . . , zN]/a, where a is the homogeneous ideal of ν(Pn
k). Suppose

that a is generated by the homogeneous polynomials g0, . . . , gM . However, unlike
in the nonembedded case, we cannot construct the morphism

(k[z0, . . . , zN]
∼

−→ k[z0, . . . , zN])→ (k[z0, . . . , zN]/a
∼

−→ k[z0, . . . , zN]/a)

using the polynomials gi and taking a colimit, since the morphism k[z]
0
−→ k used

to construct the morphism k[y0, . . . , yM]
0
−→ k in the colimit in (8) is available

only in the second slot of the pairs and not in the first (see Remark 5.3).
We can now ask whether the converse of Proposition 5.4 is true.

QUESTION 5.5. For a tuple of homogeneous polynomials f = (f0, . . . , fN) ∈

k[x0, . . . , xn]
N+1 for which the colimit complexity of the morphism M f in

GrAlgPairsk is M, is the arithmetic circuit complexity of f polynomially bounded
in M?

5.3. Arithmetic circuit and categorical complexity of modules over
polynomial rings. We now consider the relationship between arithmetic
circuit complexity and categorical complexity in categories of modules. Unlike in
the categories of affine varieties and graded algebras (namely, Affk , GrAlgk ,
GrAlgPairsk) considered in the last two sections, we are able to relate
polynomially the arithmetic circuit complexity and categorical complexity of
polynomials (and their induced morphisms in the module category) by proving
inequalities in both directions. Thus, we are able to prove a stronger relation
between circuit complexity and categorical complexity—though the category is
perhaps less interesting from the geometric point of view than the ones considered
previously.

Let R = k[x1, . . . , xn]. We consider the category R-Mod of R-modules.
We consider colimit computations in R-Mod with the following set of basic
morphisms.

R
xi
−→ R, for each i = 1, . . . , n,

R
c
−→ R, for each c ∈ k,

R
i1,i2
−−→ R ⊕ R, (10)

R
∆
−→ R ⊕ R,

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 44

R ⊕ R
+

−→ R,
R→ {0}.

For a polynomial f ∈ k[x1, . . . , xn], we consider the corresponding morphism

R
f
−→ R that sends 1 to f . Recall that a formula is an arithmetic circuit or

straight-line program where past intermediate computations cannot be reused (see
[Bür00, §2.2.1]).

PROPOSITION 5.6. If a polynomial f ∈ k[x1, . . . , xn] is computed by a formula

of size s, then the diagram R
f
−→ R is computed by a colimit computation in

R-Mod with cost bounded by O(s).

Proof. Without loss of generality, assume that all sum and product gates have fan-
in at most two. We will build, for each formula C , a diagram DC whose colimit
will contain R

pc
−→ R, where pC is the output polynomial of C . This will be done

inductively on the size of C .
Each DC will be a diagram of the form

R // // R

whose colimit is R with the morphism from the R on the right to the colimit
being idR and the morphism from the R on the left to the colimit being defined by
1 7→ pC .

If the output pC of C is one of the variables xi , let DC be the diagram R
xi
−→ R.

If it is just a constant, then DC is R
c
−→ R.

If the top gate of C is a product gate with C ′ and C ′′ as the left and right
subcircuits, then we set DC by chaining together DC ′ and DC ′′ :

R // // R // // R .

The map from the leftmost R to the colimit is the composition R
pC ′
−→ R

pC ′′
−→ R,

which is R
pC ′ pC ′′
−−−→ R.

If the top gate of C is a sum gate with C ′ and C ′′ as the left and right subcircuits,
then we define DC as

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 45

R //

i1

��

// R
i1

��

R ∆// R ⊕ R R ⊕ R + // R

R //

i2

]]

// R

i2

AA

.

where the top and bottom rows are DC ′ and DC ′′ . The colimit of this diagram is
again R with the map from the leftmost R to the colimit being pC + pC ′ .

What about a converse? What does the existence of a colimit computation in

R-Mod that produces R
1 7→ f
−−→ R say about the complexity of f ?

THEOREM 5.7. Let R = k[x1, . . . , xn]. If R
f
−→ R is computed in a colimit

computation with cost c in R-Mod, then there is an arithmetic circuit of size
poly(c) with inputs x1, . . . , xn , which computes f .

Proof. First of all note that R is a unique factorization domain. Hence, given
any finite tuple (f1, . . . , fq) of elements of R, there exists a unique (up to
multiplication by units) greatest common divisor (GCD) of f1, . . . , fq . We will
need an algorithmic fact related to the computation of GCD in the proof below
(cf. (5.3)).

Consider a diagram D : I → R-Mod consisting only of the basic morphisms
described above in (10). Assume that we have colim D = R.

For each vertex v ∈ I , we have that D(v) is R, R ⊕ R or {0}. For each v such
that D(v) = R, let fv be the image of 1 under the morphism R

1 7→ fv
−−−→ R from

D(v) to the colimit R. If D(v) = {0}, then we set fv = 0. If D(v) = R⊕ R, then
we set two polynomials fv and fv′ so that the map R ⊕ R → R to the colimit is
given by (1, 0) 7→ fv and (0, 1) 7→ fv′ . We will prove that each fv is computed
by a polynomially sized circuit.

We are considering the fv’s as unknowns in a system of equations. For each
arrow in D, we consider one or two R-linear equations. For an arrow D(v1) →

D(v2) of the form given in the left column, we add the equations in the right
column:

R
xi
−→ R fv1 − xi fv2

R
c
−→ R fv1 − c fv2

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 46

R
i1,i2
−−→ R ⊕ R fv1 − fv2 or fv1 − fv′2

R
∆
−→ R ⊕ R fv1 − fv2 − fv′2

R ⊕ R
+

−→ R fv1 − fv2 and fv′1 − fv2

R→ {0} fv1 = 0 and fv2 = 0.

In this way, we obtain a homogeneous system of k[x1, . . . , xn]-linear equations;
A Ef = 0, A ∈ Matn2×s(R). Tuples Ef = (fv1, fv2, fv3, . . . , fvs) ∈ k[x1, . . . , xn]

s

that satisfy this system of equations correspond to cocones of the diagram D with
target R.

Since the colimit of D is R, for any such cocone corresponding to (fv1, . . . , fvs),

there will be a map (colim D = R)
1 7→g
−−→ R making the diagram containing the

new cocone, the colimit cocone and the map R
1 7→g
−−→ R commute. This implies

that g divides each fv j . Since the colimit is the initial cocone, we can find the
tuple of polynomials corresponding to the colimit cocone by taking (fv1

h ,
fv2
h , . . . ,

fvs
h), where h = gcd(fv1, . . . , fvs). Thus, assuming the colimit is R, to compute

the map from every D(v) to the colimit, it suffices to: (i) find a solution to the
above system of equations for D and (ii) divide by gcd(fv1, . . . , fvs).

To solve the system A Ef = 0, we use Gaussian elimination over the field
k(x1, . . . , xn). Let R and C be square matrices with entries in k(x1, . . . , xn) such
that R AC is a diagonal matrix, in the sense that it contains an r × r minor that
is Ir , with r < s, and all other entries are 0. Following the steps of Gaussian
elimination, there exist circuits (or straight-line programs) with division that
produce each entry of R and C in time poly(s). Also, observe that the entries
of R and C have degree at most s. Without loss of generality, assume R ACe1 = 0.
Then

Ce1 =

(
p1

q1
, . . . ,

ps

qs

)T

∈ k(x1, . . . , xn)
s

is a solution to A Ef = 0.
Before we proceed further and get this solution into k[x1, . . . , xn]

s , we make
a small digression into algorithms about straight-line programs. We consider the
following, which are both proven by the algorithms in Kaltofen’s work [Kal88]:

(GCD) Greatest common divisor: Given polynomials f1, . . . , fq ∈ k[x1, . . . , xn],
which are the output of a circuit of size s ′, there is a circuit of size poly(s ′)
that produces the GCD of f1, . . . , fq .

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 47

(DE) Denominator extraction: Given a reduced rational function

p(x)
q(x)

∈ k(x1, . . . , xn),

produced by a circuit with division of size s ′, there is a circuit of size
poly(s ′) that produces q .

In loc. cit., randomized algorithms that produce the output circuits for both DE
and GCD are presented. But the circuits that output the gcd and the denominator
are themselves not randomized. This will be enough in our nonuniform setting;
we only use the existence of the polynomial size circuits that produce the gcd
and the denominator and do not use the algorithm that produces the circuits
themselves.

Going back to the proof, we made a system of equations A Ef = 0 from the
diagram of basic morphisms and got a solution of the form

Ce1 = (p1/q1, . . . , ps/qs)
T
∈ k(x1, . . . , xn)

s

and wanted to produce a solution in k[x1, . . . , xn]
s instead. To do this, first use

Kaltofen’s GCD to assume without loss of generality that each pi
qi

is reduced.
Then use Kaltofen’s DE to extract the denominators qi from each fraction. The
element q1q2 . . . qsCe1 is in k[x1, . . . , xn]

s and is a solution to A Ef = 0. Now
divide q1q2 . . . qsCe1 by the gcd of all of its entries to obtain (fv1, . . . , fvs) ∈ k[x1,

. . . , xn]
s . The polynomials f1, . . . , fs correspond to the morphisms from D to the

colimit R. Each fv is produced by a circuit with division, but since the degrees
of fv are polynomially bounded, each such circuit can be turned into a circuit
without division using Strassen’s method [Str73]. This concludes the proof that
for any diagram of basic morphisms with R as a colimit, every colimit cocone
morphism from an object in D sends 1 to an fv, which is computed by a circuit
of size polynomial in s.

We now prove the theorem. Let R
1 7→ f
−−→ R be a subdiagram of a colimit

computation with initial step D0. Call the source R1 and the target R2. By
Lemma 3.19, there is a subdiagram D′0 ⊂ D0 of basic morphisms whose colimit
is R1; and (cf. Remark 3.23) there is a subdiagram D′′0 ⊂ D0, which contains D′0,
and whose colimit is R2, with the induced map R1 → R2 being a map that sends
1 7→ f . This implies, combined with the first part of this proof applied to both
D′0 and D′′0 , that f is the quotient of two polynomials computed by polynomially
sized circuits. Hence, by Strassen’s method, f is computed by a circuit of size
polynomial in the size of D0.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 48

REMARK 5.8. Note that the set of sequences of polynomials having formula
sizes bounded by some quasipolynomial function (that is, a function of the
form nlogc n) coincides with the sequence of polynomials having arithmetic circuit
complexity bounded by some quasipolynomial function over any field; that is,
using the notation in [Bür00], VQPe = VQP [Bür00, Corollary 2.27]. Thus,
Proposition 5.6 and Theorem 5.7 together imply that the colimit complexities

of a sequence of polynomial morphisms (k[x1, . . . , xn]
1 7→ fn
−−−→ k[x1, . . . , xn])n>0

are bounded by a quasipolynomial function of n if and only if the arithmetic
circuit complexity of the sequence (fn)n>0 is also bounded by a quasipolynomial
function.

6. Functors

In this section, we discuss the interplay of categorical complexity with functors
between categories.

6.1. Preservation under functors. Let F : C → D be a functor. If D
is a diagram in C, the image diagram F(D) is defined in the obvious way.
If F preserves finite limits, then for every limit computation (D0, . . . , Ds)

in C, starting with a set of basic morphisms A will correspond to a limit
computation (F(D0), . . . , F(Ds)) in D, which starts with basic morphisms in
F(A). Therefore, in this case, we have

clim
D,F(A)(F(D)) 6 clim

C,A(D).

We have the analogous statement for colimit computations if F preserves colimits.
Since equivalences preserve limits and colimits, categorical complexity, limit

complexity, colimit complexity and mixed complexity are all invariant under
equivalences of categories. A more general case is that of adjoint functors. Let
R : C → D be a functor right-adjoint to a functor L : D → C. Then, since
right adjoints preserve limits and left adjoints preserve colimits, we have the
following.

LEMMA 6.1. Let R : C → D and L : D → C be a pair of adjoint functors. Let
A be a set of basic morphisms in C and A′ be a set of basic morphisms in D such
that R(A) ⊂ A′ and L(A′) ⊂ A. Then we have inequalities of complexities

clim
D,A′(R(D)) 6 clim

C,A(D),

ccolim
C,A (L(D

′)) 6 ccolim
D,A′(D

′),

for every diagram D in C and D′ in D.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 49

EXAMPLE 6.2. Let Vectk be the category of vector spaces over a field k. As the
free vector space functor Fr : Set→ Vectk is left-adjoint to the forgetful functor
Fo : Vectk → Set, we have that Fr preserves colimits. In particular, the colimit
complexity of a vector space is bounded above by its dimension.

6.2. Complexity of functors. We discussed in Section 6.1 above, how certain
functors preserve limits or colimits, and does also corresponding notions of
complexities as well. In this section, we will study complexities of general
functors. The first step is to define the complexity of a functor between categories.

DEFINITION 6.3. A complexity function on a category C is a function that takes
(finite) diagrams of C to N ∪ {∞}.

EXAMPLE 6.4. For example, if A is a set of morphisms of C (assumed to have
unit cost), then clim

C,A, ccolim
C,A , cmixed

C,A are all examples of complexity functions on C.

DEFINITION 6.5 (Complexity of functors). Let C,D be two categories with
complexity functions, φ,ψ , and let F : C → D be a functor. We define the
complexity, Cφ,ψ(F) : N→ N by

Cφ,ψ(F)(n) = sup
{
ψ(F(D)) | I a finite directed graph, D ∈ C I , φ(D) 6 n

}
.

If F is an endofunctor (that is, C = D) and φ = ψ , then we will denote Cφ,ψ(F)
just by Cφ(F).

One key example of functor complexity comes from image functors. In order
to define the image functor, we first need to recall a few relevant notions from
category theory.

6.3. Monomorphisms, slice categories, and the image functor. Let C be any
category. Recall the following standard definitions.

DEFINITION 6.6 (Monomorphisms). A morphism f : A → B in a category C
is called a monomorphism if for all pairs of morphisms g, h : C → A, f ◦ g =
f ◦ h H⇒ g = h.

DEFINITION 6.7 (Slice category). Let A be an object of C. The slice category,
C/A, is the category whose objects are morphisms B→ A, and whose morphisms

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 50

are commutative diagrams:

B
f

//

��

C

��

A

,

which compose in the obvious way.
The full subcategory of C/A consisting of monomorphisms f : C � A is

denoted by Sub(A) (subobjects of A).

DEFINITION 6.8. We say that a category C has images if for every object A of C,
the inclusion functor iC,A : Sub(A) → C/A has a left adjoint imC,A (cf. [Joh02,
Lemma 1.3.1]).

Sub(A)
iC,A
// C/A

imC,A
ww

.

REMARK 6.9. Note that the adjointness imC,A a iC,A is equivalent to saying that
given a monomorphism f : B � A and a morphism g : C → A in C/A, there is
a natural isomorphism

C/A(g, iC,A(f)) ∼= Sub(A)(imC,A(g), f),

where the isomorphism takes θ ∈ C/A(g, iC,A(f)) given by the diagram

C θ //

g

��

B

f
��

A

to the element in Sub(A)(imC(g), f) described by the diagram

dom(imC/A(g))
imC/A(g)

&&

imC/A(θ)
// B

f
��

A

.

In particular, taking f = imC,A(g), the image under the inverse of the
isomorphism defined above of the element 1 f ∈ Sub(A) induces a morphism
ε(g) : B → dom(imC/A(f)), making the following diagram commute:

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 51

B
ε(g)

//

g

��

dom(imC/A(f))

imC/A(g)
xx

A

.

We now extend the image functor from the slice categories C/A to the diagram
category C•→•.

PROPOSITION 6.10. Suppose that C is a category that has pullbacks and images.
Then in the diagram category C•→•, letting MonC denote the full subcategory of
monomorphisms, and iC : MonC → C•→• the inclusion functor, there exists a left
adjoint imC to iC .

Proof. The functor imC is defined as follows. For an object f : C → A of C•→•,
we set imC(f) = imC/A(f). For a morphism, θ = (θ0, θ1) of C•→•, given by the
following commutative diagram,

C
θ1 //

f
��

B

g

��

A
θ0 // D,

consider the pullback diagram

C ′
θ ′1 //

��

dom(imC,B(g))

imC,B (g)

��

A
θ0 // D

.

Since, the morphism imC,B(g) dom(imC,B(g))→ D is a monomorphism, and the
pullback of a monomorphism is again a monomorphism, the left vertical arrow is
a monomorphism. Moreover, from the universal property of the pullback applied
to the diagram

C

f

��

ε(g)◦θ1

&&

dom(imC/B(g))

imC,B (g)

��

A
θ0 // D

,

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 52

we obtain the commuting diagram

C

f

��

ε(g)◦θ1

&&��

C ′
θ ′1 //

��

dom(imC/B(g))

imC,B (g)

��

A
θ0 // D

,

where the dotted diagonal arrow is isomorphic to ε(f) : C → dom(imC/A(f))
(using the fact that the left vertical arrow is a monomorphism). We set imC(θ) =

θ ′ = (θ ′1, θ0) ∈ MonC(imC(f), imC(g)).
To check imC is left-adjoint to iC is an easy (if tedious) exercise.

EXAMPLE 6.11 (Examples of categories with images). Most of the categories
introduced before have images (and also pullbacks). It is easy to verify that the
categories Vectk , Set, Top, SL, SA have images as well as pullbacks. The fact
that the last two categories (see Notation 2.3, Part D for their definitions) have
images is a consequence of the fact that the images of semilinear (respectively,
semialgebraic) sets are closed under taking images under affine (respectively,
polynomial) maps.

6.4. Complexity of the image functor. The P versus NP question in
computational complexity (say, in the real B–S–S model of computation) is
fundamentally about comparing the complexities of sequences of semialgebraic
sets, which belong to an ‘easy’ class (that is, the B–S–S complexity class PR),
with the complexities of sequences obtained by taking images under certain
projections of sequences belonging to the ‘easy’ class (by taking the images
under projections of sequences in the class PR, one obtains the B–S–S complexity
class NPR). A formal definition of PR,NPR (and indeed of the whole polynomial
hierarchy PHR) can be found in [BZ10, §1.2.1] and will not be repeated here.
(We only note that existential quantifiers used in the definition of NPR in [BZ10]
geometrically correspond to taking the image under projection, or more precisely,
elimination of existential quantifiers geometrically corresponds to taking the
image under a linear projection map.) By replacing the notion of B–S–S
complexity by other nonuniform notions of complexity, one can extend these
definitions to the nonuniform case as well (see [Isi19] and [BP18]). Finally, what
is perhaps closest to the point of view of this paper, in [Bas15], a sheaf theoretic
analog of the classes PR and NPR is defined. The elements of these classes

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 53

Figure 9. The directed graph I ′.

are no longer sequences of semialgebraic sets, but rather of semialgebraically
constructible sheaves, and the role of taking images under projection maps is
replaced by the direct image functor. A ‘P versus NP’ conjecture in this general
setting is formulated in [Bas15] (Conjecture 3.83). It should be clear from the
above discussion that the P versus NP question is intimately related to studying
how badly the complexity of certain objects (say semialgebraic sets) blows up
(that is, whether the blow-up is polynomially bounded or not) after taking the
image under certain tame maps. The notion of ‘complexity’ of a sequence of
sets in the formulations described above is different in each case, but is related
for example to the number of steps taken by a B–S–S machine, or the size of an
arithmetic circuit, required for testing membership in the corresponding sequence
of sets.

With the discussion above as background, we proceed to define an analog of the
P versus NP question in the categorical setting. The main idea is to replace ‘taking
images under projections’ by the image functor in the category under question
(assuming it has an image functor) and replacing the notion of ‘complexity’ by
categorical complexity. The categorical analog turns out to be simpler, coordinate
independent, and also free of taking sequences.

In this paper, we do not attempt to prove any formal relationships between
the categorical and standard versions of the P versus NP question, leaving such
questions for future investigations. However, we hope the discussion in the
previous paragraph makes clear the analogy between the standard ‘P versus NP’
questions, with the categorical analog.

First, observe that for any category C, a diagram D : I = (V, E, s, t)→ C•→•
in the diagram category of C•→• induces a diagram D′ : I ′ = (V ′, E ′, s ′, t ′)→ C
as follows (cf. Figure 9).

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 54

Here V ′ = V 0
∪ V 1, where V i

= {vi
| v ∈ V } is a copy of V for i = 0, 1, and

E ′ = E0
∪ E1

∪
⋃

v∈V {ev}, where E i
= {ei

| e ∈ E} is a copy of E for i = 0, 1,
and

s ′(ei) = s(e)i

t ′(ei) = t (e)i

}
for e ∈ E, i = 0, 1,

s ′(ev) = v0,

t ′(ev) = v1.

}
for v ∈ V ,

and

D′(e0) = D(s(e))
D′(e1) = D(t (e))
D′(ev) = D(v), v ∈ V,

remembering that for each vertex v ∈ V , D(v) is a morphism of C.
Using the notation introduced above, we have the following definition.

DEFINITION 6.12 (Image complexity). If A is a set of morphisms in C, we
will denote for ∗ = lim, colim,mixed for any diagram D of C•→• (respectively,
MonC); we define the image complexity c∗C•→•,A(D) (respectively, c∗MonC ,A(D)) of
the diagram D by

c∗C•→•,A(D) = c∗C,A(D
′)

(respectively, c∗MonC ,A(D) = c∗C,A(D
′)), where the right-hand side is the

(limit, colimit or mixed) complexity of the diagram D′ in the category C
(cf. Definition 3.13), with A as the set of basic morphisms.

Now suppose that a category C has images and A is a set of morphisms of C.
Recall the definition of the complexity of a functor between two categories with
complexity functions (cf. Definition 6.5). Applying Definition 6.5 to the functor

imC : C•→• → MonC,

with complexity functions c∗C•→•,A and c∗MonC ,A (with ∗ = lim, colim,mixed), on
the source and target of the functor imC , we obtain the function

Cc∗C•→•,A,c
∗

MonC ,A
(imC)(n).

DEFINITION 6.13 (Complexity of the image functor). With ∗ = lim, colim,
mixed, we will denote

IFC∗C,A(n) = Cc∗C•→•,A,c
∗

MonC ,A
(imC)(n) (11)

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 55

and call IFC∗C,A the ∗-complexity of the image functor of the category C (with
respect to the basic set of morphisms A).

Now for any category C that has images, and for any subset A of morphisms of
C, and ∗ = lim, colim,mixed, we can ask the following question.

QUESTION 6.14. Is the function

IFC∗C,A

bounded by some polynomial?

6.5. The image functor in the categories SL and SA. First, observe that the
class of semilinear (respectively, semialgebraic) sets is closed under taking images
of affine (respectively, polynomial) maps. This is a consequence of Fourier–
Motzkin elimination (respectively, Tarski–Seidenberg principle). However, the
answer to Question 6.14 may depend on the type of categorical complexity that is
being considered.

We consider the cases of limit and mixed complexity, starting with the limit
complexity in the categories SL and SA. We prove the answer to Question 6.14
in SL and SA for limit complexity with the choice of the basic morphisms
defined below. This should not be too much of a surprise since the power of
limit computation with these choices of basic morphisms is quite limited. Only
closed convex polyhedral subsets of Rn can be constructed in SL (respectively,
basic closed semialgebraic sets) using limit computations. (A basic closed
semialgebraic set is a semialgebraic set defined by a conjunction of a finite
number of weak polynomial inequalities of the form P > 0.) Moreover, in the
case of the category SL, we prove a polynomial upper bound on the number of
facets of an object in terms of limit complexity (Lemma 6.15 below). The negative
answer to Question 6.14 in this case can be deduced by exhibiting a sequence of
morphisms of polynomially bounded complexity such that the number of facets of
the image grows super-polynomially. We exhibit such a sequence using the well-
known properties of cyclic polytopes. In the case of the category SA, the situation
is even simpler since it is well known that images under polynomial maps (in fact,
projections along a coordinate) of a basic closed semialgebraic set need not be
basic closed. We exhibit a simple example of this phenomenon.

6.5.1. Limit complexity of the image functor in SL. Recall that the objects of
the category SL are (embedded) semilinear sets and morphisms between such
sets, which are restrictions of affine mappings. Let A consist of the scalar

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 56

multiplication morphisms R c
−→ R for each c ∈ R, the addition morphism

R2 +
−→ R, and morphisms [0,∞) ↪→ R, R→ 0. It is easy to see that using limit

computations, one can produce every morphism f : (A ⊂ Rm) → (B ⊂ Rn),
where A, B are closed polyhedral subsets of Rm and Rn , respectively.

LEMMA 6.15. The number of facets of each object A is bounded from above by
(clim

SL,A(A))
2.

Proof. Let (D0, . . . , Ds) be the sequence of diagrams of a limit computation of
A. We prove by an induction on s the following statement from which the lemma
will follow.

For each vertex v of Ds , let hs(v) = card(Hs(v)), where Hs(v) is the set of
vertices of Ds which was introduced by taking a limit, and which has v in its cone.
We follow the convention that if v is a vertex of D0, then Hs(v) = {v}. Because
of the constructivity assumption, hs(v) is well defined.

We claim that the number of facets of A is bounded by
∑

v∈Ds
hs(v). We prove

the claim by an induction on s. The claim is clearly true if s = 0 since the objects
that are domains or codomains of the basic morphisms have at most one facet, and
hs(v) = 1 for each vertex of D0. Now, assume that the claim holds for all s ′ < s.

For each vertex v of Ds−1, let Av = Ds−1(v). Let Vs−1 be the set of vertices of
Ds−1, which do not belong to the limit cone of any vertex v of Ds−1 not equal to
itself. Then, A is the intersection of the product of the polytopes Av, v ∈ Vs−1 with
an affine subspace. This implies that the number of facets of A is bounded by the
sum of the number of facets of Av, v ∈ Vs−1. Now use the induction hypothesis to
finish the proof of the claim.

It is clear that the lemma follows from the claim since for each vertex v of Ds ,
hs(v) is bounded by the total number of vertices of Ds , which itself is bounded
by the cost of the diagram computation (D0, . . . , Ds).

Consider now the following example. Denote by θm(t)= (t, t2, . . . , t2m)⊂ R2m

the moment curve in R2m . The convex hull of n distinct points on the moment
curve is called a cyclic polytope, Cyl(n,m). For n > 2m, the number of facets of
Cyl(n,m) is given by [Gal63, Theorem 4](

n − m
m

)
+

(
n − m − 1

m − 1

)
.

In particular, the number of facets of Cyl(4m + 1, 2m) equals 4m. It is easy
to derive that the limit complexity of Cyl(4m + 1, 2m) is bounded by O(m2).
Now let πm : R4m

→ R2m be the projection on the first 2m coordinates.
Clearly, πm(Cyl(4m + 1, 2m)) = Cyl(4m + 1,m), and the number of facets

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 57

of Cyl(4m + 1,m) equals (
3m + 1

m

)
+

(
4m

m − 1

)
,

which is clearly exponential in m. It follows from Lemma 6.15 that the limit
complexity of πm(Cyl(4m + 1, 2m)) is exponentially large in m.

Thus, the object πm : Cyl(4m + 1, 2m)→ R2m of the category SL•→• has limit
complexity polynomially bounded in m; the limit complexity of (imSL)(πm) is
exponentially large in m. It follows from this example the next proposition.

PROPOSITION 6.16. The function IFClim
SL,A is not polynomially bounded (where

A consists of the scalar multiplication morphisms R c
−→ R for each c ∈ R, the

addition morphism R2 +
−→ R, and morphisms [0,∞) ↪→ R, R→ 0).

6.5.2. Limit complexity of the image functor in SA. The case of the category
SA with respect to limit complexity is simpler. Recall that the objects of the
category SA are (embedded) semialgebraic sets and morphisms between such
sets, which are restrictions of polynomial mappings. Let A consist of the scalar
multiplication morphisms R c

−→ R for each c ∈ R, the addition morphism R2 +
−→ R,

the multiplication morphism R2 ·

−→ R, and morphisms [0,∞) ↪→ R, R→ 0. It
is not difficult to see that the objects of SA that can be constructed using a limit
computation are exactly the basic closed semialgebraic sets. On the other hand,
it is well known that the image under polynomial maps (for example, projections
along some coordinates) of a basic closed semialgebraic set need not be a basic
closed semialgebraic set. For example, consider the real variety V defined by

(X1 − X 2
3)(X2 − X 2

4) = 0.

Denoting by π : R4
→ R2 the projection to X1, X2-coordinates, π(V) = {(x1, x2)

∈ R2
| x1 > 0 ∨ x2 > 0}, which is not a basic closed semialgebraic set (as

observed by Lojasiewicz; see [AR94, page 466]), and hence π(V) has infinite
limit complexity.

The next proposition follows.

PROPOSITION 6.17. The function IFClim
SA,A is not polynomially bounded (where

A consists of the scalar multiplication morphisms R c
−→ R for each c ∈ R,

the addition morphism R2 +

−→ R, the multiplication morphism R2 ·

−→ R, and
morphisms [0,∞) ↪→ R, R→ 0).

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 58

6.5.3. Complexity of the image functor with respect to mixed complexity in SL
and SA. Mixed computation is much more powerful than limit computation, and
we are unable to resolve the following question, which we posit as the categorical
analog of the P versus NP question in the categories SL and SA (refer to the
discussion in the beginning of this section).

QUESTION 6.18. Are the functions IFCmixed
SL,A, IFCmixed

SA,A polynomially bounded
(with the set of morphisms A being the same as in Propositions 6.16 and 6.17,
respectively)?

We also make the following conjecture.

CONJECTURE 6.19. The function IFCmixed
SA,A is bounded singly exponentially.

This should be thought of as the categorical analog of the existence of
algorithms with singly exponential algorithms for the elimination of one block
of existential quantifiers in the first-order theory of the reals (see for example,
[BPR06]).

6.6. The image functor in the category k[x1, . . . , xn]-Mod and colimit
complexity. We have considered complexity of the image functor with respect
to limit and mixed complexity in several categories. We now consider the image
functor from the point of view of colimit complexity in the category R-Mod,
where R = k[x1, . . . xn], with the set basic morphisms defined in (10).

We describe a method for writing a colimit computation to compute the image
of morphism of modules. A careful analysis of the part of the proof of Proposition
6.20, which makes use of the existence of Gröbner basis of modules, would give
an upper bound for the complexity of the image functor in R-Mod. With a naive
analysis, we can only obtain an unnecessarily high bound (doubly exponential),
so we leave the complexity analysis (that is the explicit dependence on the
parameter s) out of the following statement.

PROPOSITION 6.20. Let M
ϕ
−→ N be a morphism diagram in R-Mod, computed

by a colimit computation of size s. Then, there is a colimit computation that
computes im(ϕ)→ N of size bounded by some function of s.

Proof. By Lemma 3.19 and Remark 3.23, the colimit computation that produces
M

ϕ
−→ N can be simplified to produce (only) M

ϕ
−→ N in two colimit steps. The

first one is taking the colimit of diagram DM of basic morphisms, which produces
M . The second one is the colimit of a larger diagram DN ⊃ DM together with M

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 59

and all the cocone morphisms from the objects in DM to M . Replacing colimits
with coequalizers and coproducts, we have that M is isomorphic to the quotient⊕

ρ∈s(DM)

R jρ AM //
⊕

γ∈v(DM)

R jγ // M,

where γ runs over all the vertices in DM and ρ runs over all sources of arrows in
DM ; and jρ and jγ are 0, 1, or 2, based on whether the corresponding basic object
is {0}, R, or R2. (Note that when using Remark 3.23, we are implicitly using the
fact that in the category R-Mod, the coequalizer of two morphisms φ,ψ : A→ B
is isomorphic to the cokernel of φ − ψ .)

Similarly we can write N as a quotient,⊕
ρ∈s(DN)

R jρ ⊕
⊕

v∈v(DM)

R jv //
⊕

γ∈v(DN)

R jγ ⊕ M // N . (12)

Since M is the colimit of DM , we can remove the extra sum on the left and the
M summand in the middle. So N is the quotient:⊕

ρ∈s(DN)

R jρ A //
⊕

γ∈v(DN)

R jγ // N

Combining the direct sums, we get a commuting diagram with exact rows:

Rm2
AM //

i2

��

Rm1 //

i1

��

M

ϕ

��

// 0

Rn2 A // Rn1 // N // 0,

where the maps i1 and i2 are the inclusion of the first m1 and m2 coordinate spaces,
respectively. Written this way, the map ϕ from M to N is induced by the inclusion
of the generators of M into the generators of N .

To construct the image im(ϕ), we need to find the relations among the images
of the generators of M , that is, the first m1 generators of N . It is possible to
use Gröbner basis methods to obtain a presentation of im(ϕ), that is, obtain a
B = m1 × u matrix with entries in R such that

Ru B // Rm1

i1

��

// imϕ //

ι

��

0

Rn2 // Rm2 // N // 0

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 60

(see for instance [KR00, Proposition 3.3.1, Part (b)]). The size of the matrix B
and the degrees of the polynomials appearing in it are bounded by some explicit
(possibly doubly exponential or worse) function of the degrees of the polynomials
appearing in the matrix A coming from the analysis of algorithms for computing
Gröbner basis of submodules of a free R-module given a set of generators. The
important point for us is that these degrees and the size of B are thus bounded by
some function of s (the colimit complexity of the given morphism M

ϕ
−→ N).

It is easy to see that using the basic morphisms and colimits, one can realize
using a colimit computation any R mod homomorphisms between two free R-
modules of finite rank, with cost depending on the degrees of the polynomials
appearing in the matrix corresponding to the homomorphism. Thus, we can obtain
the homomorphism Ru B

−→ Rm1 using colimit computation of size bounded by
some function of s.

We can now obtain the R-module im(ϕ) using a colimit computation by taking
the colimit of the following diagram:

0← Ru B
−→ Rm1 .

The inclusion homomorphism ι : im(ϕ)
ι
−→ N can be computed by constructing

N again by taking the basic object R’s in the computation of im(ϕ) corresponding
to the generators of M and constructing any remaining generators and relations
for N from (12).

7. Open problems and future directions

In this section, we list some open problems suggested by the contents of this
paper.

(1) Resolve Questions 5.1 and 5.5.

(2) Prove singly exponential upper bound on the mixed complexity of the
image functor in the semialgebraic category. This would correspond to
the singly exponential complexity algorithms for computing the image of
semialgebraic sets under polynomial maps, which follow from the critical
point method in algorithmic real algebraic geometry (see for example,
[BPR06, Ch. 14]).

(3) Prove singly exponential upper bound on the categorical complexity of the
image functor in the category R-Mod (cf. Proposition 6.20).

(4) One important research direction in quantitative semialgebraic geometry
has been to prove tight bounds on the topological complexity of

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

Categorical complexity 61

semialgebraic sets in terms of various parameters bounding the sizes of the
formulas defining them—such as the number of polynomial inequalities,
their degrees or the number of monomials in their support, or even the
additive complexity (see for example, [BPR05]). One could ask for similar
results in the categorical setting. In the language introduced in this paper,
this would mean investigating the complexity of the homology functor
H : SA→ Z-Mod.

(5) Investigate the relationship between the B–S–S complexity classes over the
real numbers and the (mixed)-categorical complexity of objects in SA.

(6) Prove or disprove that the image functor in various categories has
polynomially bounded (mixed) complexity. This is the categorical
version of the P versus NP question in ordinary complexity theory (see
Questions 6.14 and 6.18).

(7) Note that the image functor imC has a right adjoint iC whose complexity
is clearly bounded polynomially (in fact, CiC ,A(n) = n for any set A of
basic morphisms in C). More generally, functors often come in adjoint pairs,
and often it is easy to show that one of them has polynomially bounded
complexity, while the other is conjecturally hard (that is, not polynomially
bounded). More examples are given in the category of constructible sheaves
in [Bas15]. As already noted, left-adjoint functors preserve colimits and
thus are well behaved with respect to colimit computations, while right-
adjoint ones preserve limits and are well behaved with respect to limit
computations. It will be interesting to analyze the role of adjointness on
mixed limit–colimit computations in different categories.

(8) Extend the notion of categorical and functor complexity to categories
that are further enriched—for example, triangulated categories, derived
categories, and so on. This would enable one to study for example the
complexity of sheaves in the derived category and various natural functors
(for example, the six operations of Grothendieck) from the point of view of
categorical complexity. A first attempt toward studying the complexity of
constructible sheaves and their functors is undertaken in [Bas15]. However,
the definition of complexity in [Bas15] is not categorical.

Acknowledgements

The first author was supported in part by NSF grants CCF-1319080, CCF-
1618981, DMS-1620271, and CCF-1910441 while working on this paper.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.26

S. Basu and U. Isik 62

Conflict of Interest: None.

References

[AR94] C. Andradas and J. M. Ruiz, ‘Ubiquity of Lojasiewicz’s example of a nonbasic
semialgebraic set’, Michigan Math. J. 41(3) (1994), 465–472. MR 1297702.

[Awo10] S. Awodey, Category Theory (Oxford University Press, Oxford, UK, 2010).
[Bas15] S. Basu, ‘A complexity theory of constructible functions and sheaves’, Found.

Comput. Math. 15(1) (2015), 199–279.
[BP18] S. Basu and D. Patel, ‘Connectivity of joins, cohomological quantifier elimination,

and an algebraic Toda’s theorem’, Preprint, 2018, arXiv:1812.07483.
[BPR05] S. Basu, R. Pollack and M.-F. Roy, ‘Betti number bounds, applications and

algorithms’, in Current Trends in Combinatorial and Computational Geometry:
Papers from the Special Program at MSRI (Cambridge University Press, Cambridge,
UK, 2005), 87–97. MSRI Publications, 52.

[BPR06] S. Basu, R. Pollack and M.-F. Roy, Algorithms in Real Algebraic Geometry,
Algorithms and Computation in Mathematics, 10 (Springer, Berlin, 2006), MR
1998147 (2004g:14064).

[BZ10] S. Basu and T. Zell, ‘Polynomial hierarchy, Betti numbers, and a real analogue of
Toda’s theorem’, Found. Comput. Math. 10(4) (2010), 429–454. MR 2657948.

[BGMW11] E. Bierstone, D. Grigoriev, P. Milman and J. Włodarczyk, ‘Effective Hironaka
resolution and its complexity’, Asian J. Math. 15(2) (2011), 193–228. MR 2838220.

[BCS97] P. Bürgisser, M. Clausen and M. Amin Shokrollahi, Algebraic Complexity Theory,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], 315 (Springer, Berlin, 1997), With the collaboration of
Thomas Lickteig. MR 1440179.

[BCSS98] L. Blum, F. Cucker, M. Shub and S. Smale, Complexity and Real Computation
(Springer, New York, 1998), With a foreword by Richard M. Karp. MR 1479636
(99a:68070).

[Bür00] P. Bürgisser, Completeness and Reduction in Algebraic Complexity Theory,
Algorithms and Computation in Mathematics, 7 (Springer, Berlin, 2000).

[Gal63] D. Gale, Neighborly and Cyclic Polytopes, Proceedings of Symposia in Pure
Mathematics, VII (American Mathematical Society, Providence, RI, 1963), 225–232.
MR 0152944.

[Imm95] N. Immerman, ‘Descriptive complexity: a logician’s approach to computation’, Not.
Amer. Math. Soc. 42(10) (1995), 1127–1133. MR 1350010.

[Isi19] M. Umut Isik, ‘Complexity classes and completeness in algebraic geometry’, Found.
Comput. Math. 19(2) (2019), 245–258. MR 3937954.

[Joh02] P. T. Johnstone, Sketches of an Elephant: a Topos Theory Compendium, Oxford Logic
Guides, 43 1 (The Clarendon Press, Oxford University Press, New York, 2002), MR
1953060.

[Kal88] E. Kaltofen, ‘Greatest common divisors of polynomials given by straight-line
programs’, J. ACM (JACM) 35(1) (1988), 231–264.

[KR00] M. Kreuzer and L. Robbiano, Computational Commutative Algebra. 1 (Springer,
Berlin, 2000), MR 1790326.

[LS88] J. Lambek and P. J. Scott, Introduction to Higher Order Categorical Logic,
Cambridge Studies in Advanced Mathematics, 7 (Cambridge University Press,
Cambridge, 1988), Reprint of the 1986 original. MR 939612.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
http://www.arxiv.org/abs/1812.07483
https://doi.org/10.1017/fms.2020.26

Categorical complexity 63

[MFK94] D. Mumford, J. Fogarty and F. Kirwan, Geometric Invariant Theory, 3rd edn,
Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and
Related Areas (2)], 34 (Springer, Berlin, 1994), MR 1304906.

[ML98] S. M. Lane, Categories for the Working Mathematician, 2nd edn, Graduate Texts in
Mathematics, 5 (Springer, New York, 1998), MR 1712872.

[MLM94] S. M. Lane and I. Moerdijk, Sheaves in Geometry and Logic, Universitext (Springer,
New York, 1994), A first introduction to topos theory, Corrected reprint of the 1992
edition. MR 1300636 MR 1300636.

[MO15] D. Mumford and T. Oda, Algebraic Geometry. II, Texts and Readings in Mathematics,
73 (Hindustan Book Agency, New Delhi, 2015), MR 3443857.

[Poi95] B. Poizat, Les petits cailloux, Nur al-Mantiq wal-Ma’rifah [Light of Logic and
Knowledge], 3, Aléas, Lyon, 1995, Une approche modèle-théorique de l’algorithmie.
[A model-theoretic approach to algorithms]. MR 1333892.

[Sim11] H. Simmons, An Introduction to Category Theory (Cambridge University Press,
Cambridge, 2011), MR 2858226.

[Str73] V. Strassen, ‘Vermeidung von divisionen’, J. Reine Angew. Math. 264 (1973),
184–202.

[Val79a] L. G. Valiant, ‘Completeness classes in algebra’, in Proceedings of the Eleventh
Annual ACM Symposium on Theory of Computing (ACM, New York, NY, USA,
1979), 249–261.

[Val79b] L. G. Valiant, ‘The complexity of computing the permanent’, Theoret. Comput. Sci.
8(2) (1979), 189–201.

[vzG87] J. von zur Gathen, ‘Feasible arithmetic computations: Valiant’s hypothesis’,
J. Symbolic. Comput. 4(2) (1987), 137–172.

[Yan15] N. S. Yanofsky, ‘Computability and complexity of categorical structures’, Preprint,
2015, CoRR arXiv:1507.05305.

https://doi.org/10.1017/fms.2020.26 Published online by Cambridge University Press

http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
http://www.arxiv.org/abs/1507.05305
https://doi.org/10.1017/fms.2020.26

	Introduction
	Categories and functors
	Definition of diagram computations
	Limit and colimit computations
	Mixed limit–colimit computations
	Cost and complexity
	Useful facts about limit and colimit computations

	Diagram computations, circuits, and algebraic varieties
	Limit computations in affine varieties, schemes, and k-algebras
	Mixed computations in projective schemes

	Categorical complexity of morphisms versus circuit complexity of polynomials
	Complexity of polynomial morphisms in AffVark
	Complexity of pairs of graded algebras
	Arithmetic circuit and categorical complexity of modules over polynomial rings

	Functors
	Preservation under functors
	Complexity of functors
	Monomorphisms, slice categories, and the image functor
	Complexity of the image functor
	The image functor in the categories SL and SA
	Limit complexity of the image functor in SL.
	Limit complexity of the image functor in SA.
	Complexity of the image functor with respect to mixed complexity in SL and SA.

	The image functor in the category k[x1,…,xn]-Mod and colimit complexity

	Open problems and future directions
	References

