Specificity proteins 1 and 4, hippocampal volume and first-episode psychosis

Montserrat Fusté,* Iria Meléndez-Pérez,* Victoria Villalta-Gil, Raquel Pinacho, Núria Villalmanzo, Narcís Cardoner, José M. Menchón, Josep Maria Haro, Carles Soriano-Mas** and Belén Ramos**

Summary
We assessed specificity protein 1 (SP1) and 4 (SP4) transcription factor levels in peripheral blood mononuclear cells and conducted a voxel-based morphometry analysis on brain structural magnetic resonance images from 11 patients with first-episode psychosis and 14 healthy controls. We found lower SP1 and SP4 levels in patients, which correlated positively with right hippocampal volume. These results extend previous evidence showing that such transcription factors may constitute a molecular pathway to the development of psychosis.

Declaration of interest
None.

Copyright and usage
© The Royal College of Psychiatrists 2016.

Method
We studied 11 patients with first-episode psychosis (FEP group) from the acute psychiatric ward of Parc Sanitari Sant Joan de Déu and 14 age- and gender-matched healthy controls. Inclusion and exclusion criteria, clinical assessments and treatments are detailed in the online data supplement. All participants gave written informed consent after a full description of the study, which was approved by the Institutional Review Board and the Institutional Ethics Committee.

Participants had a blood sample drawn and underwent a structural magnetic resonance imaging (MRI) scan. Blood analyses consisted of PBMC isolation and subsequent total protein or RNA extraction. We then performed protein and gene expression determinations for SP1 and SP4 as previously described (see online data supplement). A high-resolution spoiled gradient recalled echo (SPGR) T₁-weighted anatomical scan was acquired for each participant on a 1.5 Tesla MRI scan (Signa Horizon, General Electric Medical Systems, Milwaukee, Wisconsin, USA) (repetition time (TR) = 1234 ms, echo time (TE) = 5.18 ms, 160 sagittal slices, voxel size 0.43 x 0.43 x 1 mm, field of view (FOV) = 512 mm x 512 mm, slice thickness, 1 mm, no gap). Scan processing and analysis were performed as detailed in the online data supplement. Our analyses aimed to (a) examine voxel-wise volumetric differences between the two groups, and (b) investigate the relationship between regional brain volumes and specificity protein and gene expression levels in both groups.

Results
Sociodemographic, clinical and cell-related data are provided in online Table DS1. SP4 protein levels were reduced in the FEP group compared with the control group (t_{(23)} = 2.052, P = 0.0259), and we also observed a trend for SP1 protein level reduction (t_{(23)} = 1.659, P = 0.0553) (online Fig. DS1(a)). Conversely, between-group differences were not observed in SP1 and SP4 gene expression levels (online Fig. DS1(b)). Exploratory imaging whole-brain analyses did not reveal any significant finding. By contrast, in ROI analyses we observed a right hippocampal volume reduction in the FEP group compared with the control group (peak difference at the Montreal Neurological Institute coordinates (26, −15, −12), with a t-value of 2.92 and a statistical significance of P_{FWERT} = 0.046). Moreover, right hippocampal volume was associated with SP4 and SP1 protein levels in the FEP group but not in the control group (online Fig. DS2). Specifically, the FEP group showed significant positive associations between right hippocampal volume and SP4 (21, −16, −14, t = 4.67, P_{FWERT} = 0.002) and SP1 (21, −16, −14, t = 4.30; P_{FWERT} = 0.004) levels (Fig. DS2). By contrast, we did not find any relationship between the SP1 and SP4 gene expression levels and hippocampal volumes. Moreover, in the FEP group, SP1 and SP4 protein and gene expression levels, as well as regional hippocampal volumes, were not associated with age, daily antipsychotic doses or measurements of disease severity.

Discussion
Our findings show that a reduction of SP1 and SP4 protein levels in peripheral cells is significantly associated with a smaller right
hippocampal volume in individuals with first-episode psychosis. Hippocampal volume reduction in humans could be linked to specificity protein molecular mechanisms. Studies with Sp4 null mutant mice have shown a reduction of dentate granule cell density in the hippocampus. Sp4 hypomorphic transgenic mice displayed different morphological and molecular alterations such as dentate gyrus vacuolisation and a decrease in NRI N-methylD-aspartate (NMDA) receptor subunit levels. In addition, Sp4 hypomorphic mice showed some hippocampal-dependent behavioural deficits that could be related to cognitive impairments described in schizophrenia. Importantly, cortical and cerebellar granule neuron studies reported that Sp4 is modulated by NMDA receptor activity, suggesting that Sp4 could contribute to altered NMDA-dependent glutamatergic signalling. Similar regulation could occur in hippocampal neurons. Furthermore, post-mortem studies revealed a dysregulation in Reelin gene expression, which is a key neurodevelopmental gene relevant to psychosis. The fact that associations between Sp1 and Sp4 and right hippocampal volume exclusively at the protein, but not at the gene, expression level suggests that these factors might be regulated by post-translational events, leading to protein degradation. Indeed, several studies have shown that different insults lead to the ubiquitination of Sp1 and/or Sp4 and subsequent degradation by the proteasome, suggesting that similar modifications could be occurring in the hippocampus of people with first-episode psychosis. In this regard, it has been shown that hypoxia in rats leads to oxidative-dependent degradation of Sp3 by the proteasome in the hippocampus, raising the possibility that a hypoxia-degenerative mechanism in the early phases of psychosis could be involved in the reduced hippocampal volume of individuals with first-episode psychosis associated with specificity proteins.

Limitations of this study include the small sample size and participants taking antipsychotics. Negative findings should be interpreted with caution because of the limited power of our analyses. Replication with a larger sample of unmedicated patients with first-episode psychosis is warranted. Furthermore, it remains to be established whether Sp4 and Sp1 changes in peripheral cells in the early stages of the disease are paralleled by specific transcriptional alterations in hippocampal neurons that result in hippocampal volume reduction. However, our findings describe for the first time a direct association between Sp1 and Sp4 and hippocampal volume in people with first-episode psychosis, suggesting that these associations may ultimately be of relevance for the development of psychosis.

References

Montserrat Fusté, MBBS, MSc, Unitat de recerca, Parc Sanitàri Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, CIBERSAM, Sant Boi de Llobregat (Barcelona), Spain; Joan de Déu Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK; Iria Meléndez-Pérez, MSc, Unitat de recerca, Parc Sanitàri Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, CIBERSAM, Sant Boi de Llobregat (Barcelona), Spain; Victoria Villalta-Gil, PhD, Unitat de recerca, Parc Sanitàri Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, CIBERSAM, Sant Boi de Llobregat (Barcelona), Spain; Narcis Cardoner, MD, PhD, Jose M. Menchón, MD, PhD, Belvitge Biomedical Research Institute-IDIBELL, Psychiatry Department, Bellvitge University Hospital, CIBERSAM and Department of Clinical Sciences, School of Medicine, University of Barcelona, Spain; Josep Maria Haro, MD, PhD, Unitat de recerca, Parc Sanitàri Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, CIBERSAM, Sant Boi de Llobregat (Barcelona), Spain; Carles Soriano-Mas, PhD, Belvitge Biomedical Research Institute-IDIBELL, Psychiatry Department, Bellvitge University Hospital, CIBERSAM and Department of Psychology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain; Belén Ramos, PhD, Unitat de recerca, Parc Sanitàri Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, CIBERSAM, Sant Boi de Llobregat (Barcelona), Spain.

Correspondence: Belén Ramos, Unitat de recerca, Parc Sanitàri Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Dr. Antonio Pujadas, 42, 08830– Sant Boi de Llobregat (Barcelona), Spain. Email: bramos@jsjd.org

First received 30 May 2014, final revision 2 Sep 2014, accepted 3 Nov 2014

Funding
This study was supported by a Rio Hortega Research Training Fellowship from ISCIII and Fondo de Investigación Sanitaria and an AFIR program from Parc Sanitari Sant Joan de Déu awarded to M.F.-C.S.-M. is funded by a Miguel Servei contract from the Carlos III Health Institute (CPI10/00606). Financial support for this work comes from the Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) awarded to B.R., C.S.-M., J.M.M. and N.C., Plan Nacional de Investigación BFU2008-01103 (MCINN-Spain) and Ministerio de Ciencia e Innovación (SAF2009-14222) (J.P.M.); Plan Nacional de Investigación BFU2008-01103 (MCINN-Spain) and Investigación Biomedica en Red de Salud Mental (CIBERSAM) awarded to B.R., C.S.-M., J.M.M. and N.C., Plan Nacional de Investigación BFU2008-01103 (MCINN-Spain) and Ministerio de Ciencia e Innovación (SAF2009-14222) (J.P.M.); Plan Nacional de Investigación BFU2008-01103 (MCINN-Spain) and Ministerio de Ciencia e Innovación (SAF2009-14222) (J.P.M.); Plan Nacional de Investigación BFU2008-01103 (MCINN-Spain) and Ministerio de Ciencia e Innovación (SAF2009-14222) (J.P.M.); Plan Nacional de Investigación BFU2008-01103 (MCINN-Spain) and Ministerio de Ciencia e Innovación (SAF2009-14222) (J.P.M.).

Acknowledgements
We thank Dr. Charlotte Rose for the English language correction of the manuscript.

592