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Abstract

Crop production is at the core of a ‘perfect storm’ encompassing the grand challenges of
achieving food and nutrition security for all, in the face of climate change, while avoiding fur-
ther conversion of natural habitats for agriculture and loss of biodiversity. Here, we explore
current trends in crop modelling related to these grand challenges by reflecting on research
presented at the Second International Crop Modelling Symposium (iCropM2020). A keyword
search in the book of abstracts of the symposium revealed a strong focus on ‘climate change’,
‘adaptation’ and ‘impact assessment’ and much less on ‘food security’ or ‘policy’. Most
research focused on field-level investigations and far fewer on farm(ing) systems levels –
the levels at which management decisions are made by farmers. Experimentation is key to
development and testing of crop models, yet the term ‘simulation’ outweighed by far the
terms ‘experiments’ and ‘trials’, and few contributions dealt with model improvement.
Cereals are intensively researched, whereas roots, tubers and tropical perennials are under-
researched. Little attention is paid to nutrient limitations apart from nitrogen or to pests
and diseases. The aforementioned aspects represent opportunities for future research where
crop models can help in devising hypotheses and driving new experimentation. We must
also ensure that crop models are fit for their intended purposes, especially if they are to pro-
vide advice to policymakers. The latter, together with cross-scale and interdisciplinary efforts
with direct engagement of stakeholders are needed to address the grand challenges faced by
food and agricultural systems in the next century.

Introduction

Mankind is facing what could be termed a ‘perfect storm’: the grand challenges of achieving
food and nutrition security for all in the face of climate change, while avoiding further land use
change for agriculture coupled with loss of biodiversity and other ecosystem services. This is
perhaps the most challenging perfect storm ever faced, in which crop production plays a cen-
tral role. Therefore, what is the role of crop models and crop modelling in addressing the grand
challenges?

Crop modelling has played a major role in the development of our basic understanding and
underlying processes that have revealed the extent of the challenges faced. For example, crop
models have been used to quantify the magnitude of crop yield gaps (van Ittersum et al., 2016;
Schils et al., 2018), the gaps between food demand and availability (Keating et al., 2014), and
the land area needed to feed the population now and in the future (Gerten et al., 2020),
coupled with the potential need for expansion of agriculture into natural habitats if yield
gaps are not closed (Stehfest et al., 2019). Crop models have also proved indispensable in
evaluating and selecting the most promising options for adaptation to climate change across
the globe (Knox et al., 2012; Rosenzweig et al., 2014; Webber et al., 2015). Yet, large knowledge
gaps remain. Although approaches to simulate limitations of water and nitrogen availability on
crop growth are well-established (e.g. Shibu et al., 2010), much less attention has been placed
on phosphorus or potassium limitations or on yield reduction due to pests and diseases
(Donatelli et al., 2017; Rötter et al., 2018). Moreover, crop model development and application
focused largely on the major cereal crops and much less on root and tuber crops or tropical
perennials (Rosenzweig et al., 2014; Beza et al., 2017).

Crop models come in many forms and are designed for different purposes, ranging from
understanding of physiological processes (Yin et al., 2003; Chenu et al., 2009) to the simula-
tion of crop behaviour in the field (Jones et al., 2003; Keating et al., 2003; Steduto et al., 2009).
Crop models have also been deployed in the field of agronomy to inform operational decisions
on water and nutrient management, to identify optimal sowing dates and to explore the feasi-
bility of new cropping systems (e.g. Asseng et al., 2014; Silva et al., 2017b). There has been
significant progress linking crop models with quantitative genetics (Yin et al., 2003; Chenu
et al., 2009), with major genetic loci (Messina et al., 2006; White et al., 2008) or with remote
sensing (Huang et al., 2019), and in expanding the capabilities of the models to simulate
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product quality (Nuttall et al., 2017) and the impact of extreme
weather events on crop growth (Rötter et al., 2018), to name a few.

It is widely recognized that building ‘model monsters’ captur-
ing all possible processes and integration levels is undesirable, if
not impossible, as it tends to amplify errors and uncertainties.
Yet, unravelling the grand challenges requires an understanding
of constraints, synergies and trade-offs in crop production at dif-
ferent levels (van Ittersum et al., 2003). Analyses of agricultural
systems require attention to the crop, the cropping system, the
farm system (including livestock), to farming systems (Giller
et al., 2006) and to regional scales (van Ittersum et al., 2003).
We are increasingly asked to think within a broader ‘food systems’
framework (Brouwer et al., 2020), and considerable thought has
gone into understanding how different integration levels can be
linked (Ewert et al., 2011; Passioura, 2020).

This paper does not intend to provide an exhaustive review of
crop models and their strengths and pitfalls – for this, the reader
is referred to the compendium on crop modelling of Boote (2019)
and to the special issue on ‘Next Generation Models’ (Antle et al.,
2017). Our aim is to reflect on how crop modelling can contribute
to address the grand challenges for the agricultural sector in the
next century. To do this, we draw upon earlier experiences with
crop modelling in Wageningen University and upon a keyword
search in the book of abstracts of the ‘Second International
Crop Modelling Symposium’ (iCropM2020) held on 3–5
February 2020 in Montpellier, France. The iCropM2020 is a cen-
tral international scientific symposium for crop modellers
although we acknowledge we miss important research in related
fields by restricting our analysis largely to this conference. For
this reason, we also highlight examples of research which we con-
sider illustrative of problems and potential areas where future
research should be focused.

Detailed information on the keywords search is presented in
Table S1. The keyword search covered the whole book of abstracts
of the ‘Second International Crop Modelling Symposium’ includ-
ing abstracts, titles, acknowledgments, references and affiliations.
If more than one keyword was found in an abstract, these were
recorded as separate hits. We recognize the limitations of the
approach taken, such as the occurrence of false positives which
should be borne in mind when interpreting Fig. 1 and Table 1.
Nonetheless, we consider the findings to be indicative of current
research activities.

Grand challenges for the 21st century

Grand challenges for the next decades were framed in the
Sustainable Development Goals (SDGs) of the United Nations
(United Nations, 2015). In light of the SDGs, the agricultural sector
is asked to contribute to ending hunger, achieving food security
and improved nutrition through sustainable agriculture (SDG 2)
while protecting, restoring and promoting sustainable use of terres-
trial ecosystems and halting biodiversity loss (SDG 15) and, at the
same time, taking action to combat climate change (SDG 13).
Diverging paradigms regarding what to produce where, and how,
is a fourth grand challenge for the agricultural research community
in the years ahead.

Ensuring food and nutrition security for all

Analysis of ‘food wedges’ indicates that even if food losses are
avoided and food demand is reduced through changing diets, at
least 46% of future food demand in 2050 must come from

increased food production (Keating et al., 2014). The demand
for food in the future will, no doubt, vary across regions, depend-
ing on projected population growth rates and improvements in
economic well-being. For instance, the population of Africa is
expected to grow exponentially until the end of the century
whereas the population in Asia is expected to plateau in 2050
and decline thereafter (United Nations, 2019).

Satisfying the additional production needed to meet future
food demand requires an understanding of the gap between the
potential or water-limited yield and the actual farm yield cur-
rently achieved (van Ittersum et al., 2013). The potential (Yp)
and water-limited yields (Yw) are ceilings that indicate the max-
imum yields that can be achieved under irrigated and rainfed con-
ditions, respectively. Mapping these yield ceilings for the main
crops and growing regions provides, in effect, a planetary bound-
ary for the maximum amount of food that can be produced.
There is increasing evidence that crop yields of smallholders in
Africa reach only ca. 20% of Yw or less (Tittonell and Giller,
2013) while in Europe and North America actual yields approach
80% of Yp or Yw (Silva, 2017; Schils et al., 2018; see also www.
yieldgap.org). The causes of these yield gaps differ per region
with the lack of inputs being a key determinant for smallholders
in Africa (Sanchez, 2002; Silva et al., 2019) and the timeliness and
spatial distribution of the inputs applied being more important in
Europe (Silva et al., 2017a).

Product quality, health and nutrition are also gaining increas-
ing attention in the analysis of food systems (Brouwer et al.,
2020). This is important to broaden the food security debate
beyond staple (cereal) crops only and to assess the role of nutri-
tional diversity as a key component of agricultural systems. It
also helps to contextualize health and nutrition with other macro-
economic transformations such as rising incomes and a growing
middle class.

Avoiding land use change and biodiversity loss

Closing yield gaps is essential to prevent future food demand
being simply met through expansion of existing farmland (Foley
et al., 2011). Farmland expansion is undesirable given the asso-
ciated biodiversity loss (Zabel et al., 2019) and greenhouse gas
emissions (van Loon et al., 2019). In fact, the area of farmland
under staple crops at the global level has expanded at the rate
of 12.6 Mha/year during the period 2002–14, rates of change
never seen before in human history (Cassman and Grassini,
2020). More than half of the increase in farmland is attributed
to increased areas of rice, maize, wheat and soybean replacing nat-
ural ecosystems in Africa, South America and Asia.

Area expansion has indeed been the key pathway to increase
production of staple crops in Africa, while in Europe and Asia
increases in cereal production occurred through yield gap closure
(data not shown). Despite the large land resources considered to
be suitable for agriculture in Africa (Chamberlin et al., 2014), it is
important to spare land for nature and avoid greenhouse gas
emissions associated with land clearing. This is particularly
true, given that most biodiversity is found outside of protected
areas in production landscapes managed by people, where agri-
cultural expansion represents a serious threat (Baudron and
Giller, 2014). Land sparing and land sharing are both realistic
options to increase agricultural production while minimizing
negative consequences for biodiversity, but the preferred pathway
largely depends on local circumstances.
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Climate change adaptation and mitigation

Climate change is expected to put global food supply on a razor’s
edge due to its negative impact on crop yields (Rosenzweig et al.,
2014) coupled with a future reduction in the area of land suitable
for farming in the tropics (Ramankutty et al., 2002). The steady
increase of CO2 and other greenhouse gases in the atmosphere
over the last few decades is the main driver of the temperature
rise and changing rainfall patterns and of the associated increases
in climate variability and frequency of extreme weather events.
Crop models have been widely used for climate change impact
assessments and most evidence indicates rising temperatures are
expected to negatively affect future cereal yields (Bassu et al.,
2014; Asseng et al., 2015; Li et al., 2015) and that this can be offset
by a CO2 ‘fertilization effect’ to a certain extent (Long et al., 2006).

Experimental field research through the ‘FACE’ experiments
(e.g. Long et al., 2006) has been of critical importance to under-
stand the physiological responses of crops to changing

temperatures and CO2 concentrations. Given that experiments
cannot reproduce the impacts of future climates with confidence,
crop models are a key tool to understand and explore potential
impacts of climate change on food production. To be credible
tools, crop models must be based on solid physiological under-
standing of how crops respond to environmental signals – knowl-
edge that can only be gained through detailed experimentation.

The keywords ‘climate change’, ‘adaptation’ and ‘impact
assessment’ occurred 482, 383 and 204 times in the book of
abstracts of the iCropM2020 (Fig. 1a). The aforementioned num-
bers were considerably larger than those for food security (n =
75), insurance (n = 67), climate variability (n = 38) or policy (n
= 47). The data do indeed confirm the large number of crop
model applications dealing with climate change adaptation and
show an imbalance with other topics which would also benefit
from the insights provided by crop models. Examples of the latter
include exploratory studies mapping the suitability of a given

Fig. 1. Summary results of the keyword search in the book of
abstracts of the iCropM2020: (a) research topics, (b) simulation
and experimentation, (c) model applications, (d ) focus crops,
(e) crop traits studiedand ( f ) core disciplines. Further informa-
tion about the keyword search is provided in Table S1.
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region to introduce new crops (Nendel et al., 2020) or
resource-use efficiency assessments at regional scale (Silva et al.,
2020). We also note that most crop model applications currently
target cropping systems (n = 276) at the field scale (n = 405;
Table 1), with findings being often directly extrapolated to the
regional level. Extrapolations from field to region are simple
and attractive but they do not account for explanatory factors at
the farm level, the most important decision-making level. To
overcome this limitation, spatially-explicit crop models have
been incorporated with farming systems modelling to evaluate
trade-offs in management options while considering heterogen-
eity of farming systems (Capalbo et al., 2017; Antle et al., 2018;
Descheemaeker et al., 2020).

Current agricultural systems need to adapt and contribute to
mitigate future climate change, and farmers are the people making
key management decisions that drive that process. As such, it is
critical to contextualize adaptation and mitigation options at a ‘sys-
tems level’ and within the broader livelihoods of farmers (e.g.
Descheemaeker et al., 2020). Our keyword search indicated a rela-
tively high frequency of words associated with the term ‘farm scale’
(n = 314), but we note that more than two-thirds of these records
refer to words such as ‘farmer(s)’ or ‘farming’ (data not shown),
while the term ‘farming system’ received considerably less attention
(n = 18, Table 1). Case studies in the Netherlands and Zimbabwe
clearly indicate the need for farm and farming system level analysis
(Descheemaeker et al., 2020). The findings indicate that large farms

are more likely to benefit from climate-smart agriculture technolo-
gies than small farms, and price variability or poor soil fertility are
as important as climate change in explaining future farm
performance (Descheemaeker et al., 2020).

Diverging paradigms for the future of agriculture

The fourth grand challenge for agricultural scientists is to arrive at
a consensus on what should be produced where, and how (Foran
et al., 2014). Different paradigms have been proposed to address
these issues, all with their pros and cons (Wezel et al., 2014).
We are confronted by a plethora of approaches and definitions –
ecological intensification, sustainable intensification, agroecology,
agroecological intensification, organic agriculture, conservation
agriculture, circular agriculture, regenerative agriculture – each
with its own protagonists and flag-bearers. ‘Alternative’ approaches
are often juxtaposed against an undefined ‘conventional’ or indus-
trial agriculture claiming the high ground. We argue that although
this polarization may help in scoring political points it helps little
in addressing the problems facing humanity – dogma has no place
in agronomy nor science at large (Giller et al., 2017).

Diverging paradigms remain a contentious point and put con-
siderable pressure on the prioritization of the research agenda
needed to address the grand challenges introduced earlier, for
which there is a general consensus. A solid, prioritized research
agenda for the agricultural sector is needed to ensure that scarce

Table 1. Overview of growth factors that crop models can and cannot account for when simulating crop yields and hierarchical levels at which crop models have
been applied

Can/can’t do Frequency Selected examples and references

Defining factors

Radiation ✓✓✓ 84 Proximal sensors to determine RUE (Chapman et al., 2020)

Temperature ✓✓✓ 284 Temperature effects at leaf-layer scale (Albasha et al., 2020)

✓✓ 446 Soybean suitability in Europe (Nendel et al., 2020)

Sowing ✓✓✓ 172 Yield variability in a Mediterranean environment (Bassu et al., 2020)

Total 986

Limiting factors

Water ✓✓ 1226 Irrigation requirements of olive orchards (Lopez-Bernal et al., 2020)

Nutrients (largely N) ✓ 406 Multi-model comparison in Africa (Falconnier et al., 2020)

Total 1632

Reducing factors

Pests × 77 Population dynamics in maize models (Rasche and Taylor, 2020)

Diseases × 63 Diseases in wheat models (Bregaglio et al., 2020)

Weeds × 90 Diversification and crop-weed canopies (Colbach et al., 2020)

Total 230

Hierarchical levels

Field scale ✓✓✓ 405 WOFOST calibration for Dutch potato cultivars (ten Den et al., 2020)

Farm scale × 314 Farm productivity and resilience in Malawi (Ngwira et al., 2020)

Cropping system ✓✓ 276 Rotations and climate change in Germany (Kersebaum et al., 2020)

Farming system × 18 No study was found dealing specifically with farming systems.

Food system × 10 No study was found dealing specifically with food systems.

‘Frequency’ refers the number of keywords counted in the book of abstracts of the iCropM2020. References refer to abstracts included in the book of abstracts of the iCropM2020 and were
selected for illustrative purposes. Peer-reviewed articles are cited for the contributions already published. ✓✓✓ = very well; ✓✓ = fairly well; ✓ = well; × = not very well.
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research funds are used effectively and to avoid that humanity is
pushed towards short-term solutions in the medium- and long-
term that may prove unsustainable.

What crop models can and can’t (yet) do

Crop models to generate and test hypotheses

Approaches to crop modelling build upon three fundamental con-
cepts: system, model and simulation (de Wit, 1993). A ‘system’ is
defined as a limited part of reality that contains interrelated ele-
ments, and the totality of the relations within a system is known
as ‘system structure’. A ‘model’ is a simplified representation of a
system, and both models and systems have a structure.
Explanatory models are of particular interest as they build upon
different levels of organization and knowledge. Explanatory
models may be defined as dynamic or static, depending on whether
or not they represent systems that change with time. Simulation
models are a genre of dynamic models which consider changes
in states and rates over time, whereas optimization models or stat-
istical models are examples of static models. Finally, ‘simulation’
refers to the building of mathematical models and the study of
model behaviour in reference to that of the system it represents.

Models can only be used to solve practical problems once they
have been tested for their usefulness and once their errors and
uncertainties have been quantified. Disagreements between
model outputs and reality are to be expected as the conceptualiza-
tion of the studied system and the development of a model to
represent it involves simplifications and assumptions (de Wit,
1993). Such disagreements and model failures are the starting
point for model improvement. Models are essentially complex
hypotheses, and model testing and improvement involves the
identification of the explanatory processes in the model respon-
sible for an unacceptable representation of reality, and their modi-
fication. Experiments with both the model and the system are
crucial in this regard as a means to generate new information
that can be used to test and improve elements of the model.
Model development and improvement are thus a continuous
cycle of simulation and experimentation as new questions and
hypotheses are generated and tested (see Rötter et al., 2018, for
an example on weather extremes).

‘No simulation without experimentation’ is a mantra often
attributed to C.T. de Wit. This proposition lacks a formal refer-
ence, but it is known to have been used by C.T. de Wit with ‘char-
acteristic conviction’ (van Keulen, 2008). An extended version
was later reformulated by Leffelaar (1987) as ‘no simulation with-
out experimentation’ and ‘no experimentation without simula-
tion’. Rötter et al. (2018) recast the proposition as ‘no
modelling without experimentation and no experimentation with-
out modelling’; yet ‘simulation’ is a much broader concept than
‘modelling’ alone (de Wit, 1993). During the iCropM2020, the
propositions ‘if you don’t understand it you can’t model it, if
you don’t model it you can’t understand it’ (Hammer, 2020)
and ‘we learn most when the models don’t work’ (Giller, 2020)
were also proposed to highlight the role of crop models to gener-
ate and test hypotheses (Loomis et al., 1979).

C.T. de Wit’s proposition remains highly relevant for the agri-
cultural research community to remind us that simulation is as
important as experimentation and that these two should go
hand-in-hand at the core of a research cycle. Yet, this appears
not to be reflected in the book of abstracts of the iCropM2020
(Figs 1b and 1c). Firstly, the number of records with the keyword

‘simulation’ (n = 1143) far outweighs those with ‘field trials’ (n =
93) or ‘field experiments’ (n = 303, Fig. 1b). Secondly, the number
of records with terms like ‘model parametrization’ (n = 469) or
‘model calibration’ (n = 439) also far outweigh those with ‘model
evaluation’ (n = 284), ‘model validation’ (n = 124) or ‘model
improvement’ (n = 18, Fig. 1c). Thirdly, ‘model prediction’ (n =
251) is more common than ‘model exploration’ (n = 12, Fig. 1c).
Field studies are expensive, laborious and unable to test multiple
genotype × environment ×management interactions (G × E ×M),
which crop models can do in a very cost-effective way. Yet, despite
the aforementioned limitations, experiments provide the bedrock on
which models are developed and remain crucial to re-calibrate mod-
els or test model improvements.

‘Forgotten’ crops, growth factors and traits

Many crop models have been developed specifically for cereal crops
and most modelling exercises devoted their attention to cereal crops.
This is justified given the large area share of cereals and their import-
ance as a staple food in most regions. The iCropM2020 was no
exception (Fig. 1d). Crops such as ‘wheat’ (n = 498), ‘maize’ (n =
379) and ‘rice’ (n = 121) featured much more prominently than
‘potato’ (n = 46), ‘banana’ (n = 19) or ‘cassava’ (n = 16, Fig. 1d).
Highland banana, root and tuber crops are important staples for
smallholders in Africa (Tittonell and Giller, 2013) which should
not be neglected in food security assessments. This remains challen-
ging because the crop models available for root and tuber crops lack
proper field testing (Raymundo et al., 2014).

Tropical perennials such as coffee and cocoa are important
cash crops that also have received remarkably little attention
when compared with recent advances in experimentation and
modelling of the major cereals (Rozendaal et al., 2020).
Predicted impacts of climate change on future suitability regions
for production of coffee (Ovalle-Rivera et al., 2015) and cocoa
(Schroth et al., 2016) were initially based on agroecological char-
acterization of current production areas and superimposing these
on maps of projected future climates. Such approaches are highly
relevant in the absence of robust crop models, and in the case of
both crops indicated major geographic shifts, and reductions in
land suitability due to climate change. Indeed, major reductions
in yields of Arabica coffee have already been observed in East
Africa due to rising minimum temperatures resulting from cli-
mate heating (Craparo et al., 2015). Development of a coffee
crop model allows the interacting effects of drought, rising tem-
peratures and CO2 fertilization to be taken into account (Rahn
et al., 2018), which should give greater confidence in projections
of climate change impacts. Recent experiments in Brazil indicate
that yield-enhancing effects of CO2 fertilization may dampen and
compensate for the negative impacts of rising temperatures and
drought on coffee yield (DaMatta et al., 2019). Current research
in Wageningen University is focusing on improving an existing
cocoa simulation model (Zuidema et al., 2005) for use in climate
change research.

The threats of climate change on future yields and production
areas of coffee and cocoa are very real and of commercial interest
to producers, traders and processors of these commodities. Such
companies also have considerable experience and observations
on which research can build, and which seem to defy our current
physiological understanding of these crops. Research under con-
trolled conditions suggests that the flowers of Arabica coffee are
sterile at temperatures above 33°C (Drinnan and Menzel, 1995),
yet it is currently grown with irrigation in Bahia, Brazil, producing
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excellent yields in areas where maximum temperatures exceed 35°C
during flowering, with peaks observed up to 39°C (Piet van Asten,
personal communication, 2020). Similarly, cocoa produces very
high yields (ca. 2 kg/tree/year)1 with irrigation in Andhra Pradesh,
southern India, where temperatures often exceed 46°C and some-
times even reach 50°C (Nicholas Cryer, personal communication,
2020). These are conditions where, based on current physiological
understanding of coffee and cocoa, we would predict the crops
should not be grown. Such observations in farmers’ fields provide
a perfect basis for collaboration between public institutions and
the private sector to extend our knowledge of the climate responses
of these crops. Such cooperation, if properly established to ensure
open sharing of data and results, will be key to understanding
options for adaptation to climate change.

Concepts of production ecology are useful to identify the rela-
tive contribution of growth-defining, -limiting and -reducing fac-
tors to actual yields (van Ittersum and Rabbinge, 1997).
Growth-defining factors are essential to simulate the potential
yield and their effects on crop production are captured well in
crop models. The importance of defining factors was also
reflected in the iCropM2020 as indicated by the number of
records for ‘radiation’ (n = 84), ‘temperature’ (n = 284), ‘variety’
(n = 446) and ‘sowing’ (n = 172, Table 1). Growth-limiting factors
are required to simulate attainable yields and crop models can
simulate the effects of water and nitrogen limitation on crop pro-
duction fairly well. Limiting factors received by far the most atten-
tion in the contributions to the iCropM2020, with terms
associated with ‘water’ and ‘nutrients’ recorded 1226 and 406
times in the book of abstracts, respectively (Table 1).
Growth-defining and -limiting factors (especially water) are the
focus of most climate change impact assessments (Fig. 1a). By
contrast, most crop models are unable to handle growth-reducing
factors, the pests, diseases and weeds that are responsible for the
gap between attainable and actual yields (Donatelli et al., 2017).
This was also noticeable in the iCropM2020 with relatively few
records for terms such as ‘pests’ (n = 77), ‘diseases’ (n = 63) and
‘weeds’ (n = 90, Table 1). Regarding the traits investigated, by
far the most focus goes to crop yield (n = 1787) followed by
aboveground-biomass (n = 398), leaf dynamics (n = 383) and
crop phenology (n = 328, Fig. 1e). Partitioning coefficients
received almost no attention (n = 33) despite requiring
re-calibration for recent varieties (e.g. ten Den et al., 2020).

The capacity of crop models to simulate improved manage-
ment practices increases with their capacity to simulate the effects
of growth-limiting and -reducing factors on crop growth (cf.
Tittonell and Giller, 2013). Although most crop models are able
to simulate water- and nitrogen-limited yields under different
management practices (e.g. amount, time and efficiency of appli-
cation), little progress has been made in simulating phosphorus
and potassium limitations and the interactions between these fac-
tors. An exception is found for cassava in West Africa, an example
where simulation and experimentation were combined. The
amounts of nitrogen, phosphorus and potassium required to
achieve the potential yield of cassava (32 t DM/ha) were calculated
using the QUEFTS model (Ezui, 2017). These nutrient require-
ments were used to design field experiments that were in turn
used to parametrize, evaluate and improve the performance of

the crop model LINTUL in simulating cassava yields (Adiele
et al., 2021). When balanced nutrient requirements were pro-
vided, yields of 35 t DM/ha were achieved, the largest yields ever
recorded in West Africa to the best of our knowledge. Indeed,
the yield response to potassium was still linear at 300 kg K/ha sug-
gesting that potential yields of cassava have been underestimated
(Adiele et al., 2020). Despite these efforts, interactions between
potassium and water stress remain poorly understood. This is a
clear example of model improvement where simulation was com-
bined with experimentation and vice-versa with an application to
a crop often neglected in food security assessments.

Hierarchical levels and farm(ing) systems research

Agricultural systems involve a large number of components and
interactions among these components. It is thus useful to parti-
tion agricultural systems into nested levels to better understand
their complexity (Ewert et al., 2011). For such an analysis, it is
assumed that each nested level shares the same time and spatial
dimension so that components in a given level are nested into
the components above them. Interactions between the different
system components occur between hierarchical levels (e.g.
between field and farm or farm and region) and between compo-
nents in each level (e.g. multiple fields within a farm). Navigating
through the different hierarchical levels requires updating space
and time dimensions and involves different degrees of complexity.

Another key feature of agricultural systems is the importance
of biophysical and socio-economic dimensions (van Ittersum
et al., 2008). In the case of a farm, the biophysical dimension
plays a role at the field level where water and nutrients are used
for production and may leak to the environment while the socio-
economic dimension controls the decision-making process on
how resources are allocated across the farm (i.e. crop and farm
management). The latter includes strategic, tactical or operational
decisions (de Koeijer et al., 2003), which are subjected to farmers’
objectives and resource constraints due to limited availability of
land, labour and capital. Up-scaling between different nested
levels requires information transfers within each dimension and
between different dimensions (Ewert et al., 2011). For instance,
up-scaling from the field to the regional level requires up-scaling
the biophysical processes dealing with crop growth at the field
level and the socio-economic aspects controlling the decision-
making process at the farm level. Missing the latter is not advis-
able as it implies missing the context where farmers operate.

Crop models are the engines most commonly used to up-scale
biophysical processes in agricultural systems and thus provide the
building blocks for integrated assessments at multiple scales. This
was true in earlier ex-ante policy assessments at the farm and
regional levels in Europe where crop models were embedded
within the multi-layered and multi-dimensional approaches
described above (van Ittersum et al., 2008). The same applies to
earlier efforts on modelling the effects of farmer decision-making
under resource constraints in sub-Saharan Africa (van Wijk et al.,
2009), where a summary crop model was deployed to simulate
attainable yields (Tittonell et al., 2010). More recently, crop mod-
els have been combined with breeding and experimentation to
explore whole-farm benefits of an early sowing system with
slower-developing wheat cultivars in Australia (Hunt et al.,
2019). Rather than simply assuming the full yield benefits of
the adapted crop management could be implemented across the
whole area of wheat production, as it is often done, the authors
took into account the time of sowing required across the huge

1Cocoa in Andhra Pradesh, southern India, is grown intercropped with coconut, so
yields are difficult to express accurately on a kg/ha basis, but probably represent some-
where between 1700 and 2000 kg/ha/year. For comparison, average yields in the major
cocoa producing countries of West Africa are below 500 kg/ha/year.
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farms which cover several thousand hectares. By including these
operational limitations, the overall yield advantage across the
farm could be calculated, taking yield advantage of early-sown
slow-developing cultivars and the larger area of fast-maturing cul-
tivars sown in a timely fashion. These adaptation strategies
increased wheat yields by 0.54 t/ha, equivalent to 7.1 Mt annually,
at national scale and are the result of a close collaboration between
farmers, breeders, field agronomists and crop modellers over
more than a decade of research: ‘An example of ‘systems agron-
omy’ at its best’ (Giller and Ewert, 2019).

The philosophy underlying the use of crop models to under-
stand farm level problems, as illustrated in the three examples
above for contrasting farm(ing) systems, is not present in most cli-
mate change impact assessments presented in the iCropM2020
(Table 1 and Fig. 1c). Can crop models help us understand the
farm level implications of adapting to, and contributing to miti-
gate, the negative impacts climate change? And how can these
models be contextualized in concrete farm(ing) systems
applications?

Core disciplines and emerging technologies

Most crop model applications are within the realm of agronomy
and crop improvement, followed by plant biology and physiology
(Fig. 1f). These were indeed the disciplines within which models
were developed and have proven to be useful research tools (Jones
et al., 2017). Combining crop models with technologies such as
remote sensing, machine learning and opportunities of big data
for model parametrization were also reported during the
iCropM2020 (Fig. 1f). Such applications often require new types
of models or the re-packaging of old models in new programming
languages that facilitate their integration with new types, and large
amounts, of data (e.g. de Wit et al., 2019). Emerging technologies
will contribute to increase the efficiency and accuracy of crop
models in the future to design sustainable agricultural systems
at farm and landscape scales (Basso and Antle, 2020).

New sources and large amounts of data are becoming available
for crop modelling, allowing for the application of crop models at
greater spatial and temporal resolutions. For example, combining
spatial data from remote-sensing imagery with crop models allows
for better estimates of crop yield, water use and N uptake across
large scales (Huang et al., 2019), which can be helpful for

planning logistics and analysing markets of crops across large
farms or regions. Machine learning has already proved helpful
to calibrate crop models for specific genotypes based on large
amounts of phenotyping data (Chapman et al., 2020). At another,
finer scale, detailed models of plant components dealing with, for
example, root morphology in relation to nutrient uptake and of
leaves to gas exchange and photosynthesis can play a major role
in understanding plant plasticity in relation to environmental
changes. The same is true for functional-structural plant models
(Vos et al., 2009) which further allow studying resource competi-
tion between crops or devising management options for opera-
tions that manipulate plant structure such as pruning (Tosto
et al., 2020). Crop modelling is also now being used in CGIAR
research programmes to inform and accelerate breeding pro-
grammes (Ramirez-Villegas et al., 2020) and to analyse socio-
economic factors to improve policy recommendations
(Kruseman et al., 2020).

Policy advice and the credibility of science

Quality assurance of (crop) models is important to minimize the
risks of public disputes about data and model quality, particularly
when studies are designed to provide policy advice or steer public
opinion. Model (and data) quality is key to the credibility of both
the research done and the advice provided and serves as an entry
point for discussion on model saliency and legitimacy. Credibility
refers to the scientific logic of the model and the soundness of the
used knowledge (is the thing done right?), saliency to the societal
and political relevance of the use of the model (is this the right
thing to do?) and legitimacy to the fair representation of the
views, values and concerns of stakeholders in the model used
(is there a right to do this?; van Voorn et al., 2016).

Within Wageningen University and Research, models are used
in all manner of ways, often specifically to provide policy support
under contract from the Dutch government. This has led to the
development of an internal system of model quality control that
assesses potential risks involved when advice is provided (de
Bie, 2019). For each model a risk assessment is made based on
the probability whether a problem might arise and the potential
impact if a problem actually does arise (Fig. 2). Most academic
research is situated at the left side of Fig. 2, focused on exploratory
research which is published in peer-reviewed papers. Research

Fig. 2. Risk assessment framework for quality assurance of models
in Wageningen University and Research (cf. de Bie, 2019). Risk
is calculated as the product of the probability of occurrence of a
problem, and the impact of the occurrence of a problem.
Unknown probability is ranked as high risk. Types of use are
shown as guidance for the potential impact of a problem occurring.
The reader is referred to the main text for a full explanation of this
figure.
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conducted specifically to support decisions on thorny and conten-
tious issues, that require regulation, is situated at the top right-
hand side of the figure, where incorrect policy advice can have
strong impacts on society (Fig. 2). Outputs generated specifically
for policy advice are thus subjected to close scrutiny and detailed
review before being released to policy makers. To qualify for such
policy support purposes, researchers must provide the code and
detailed documentation of the model, perform sensitivity analysis
to study model behaviour, be open about the capabilities of the
model and about what has been tested (or not) and provide guid-
ance on how model outputs can be interpreted. Only then can the
model be used for policy advice, as these steps should ensure the
credibility, saliency and legitimacy of the model.

Even with such safeguards in place, problems still arise from
time to time. In 2020, the Dutch economy ground to a halt
because of a court case that ruled the government was not taking
sufficient steps to control atmospheric nitrogen deposition, which
was causing loss of biodiversity in nature. This led to thousands of
farmers disrupting traffic and protesting in the centre of the cap-
ital city, cessation of building projects throughout the country and
changes in the maximum speed allowed on the motorways. It also
led to detailed scrutiny and critique of the models used to calcu-
late nitrogen deposition (Hordijk et al., 2020). As part of the sci-
entific debate behind this issue it became clear that the models
were robust enough for use at national or regional scale, but too
uncertain at the finer scale needed to assess local interventions
(de Vries, 2020; Hordijk et al., 2020). This stoked considerable
controversy as to how to design the correct policy and interven-
tions to reduce nitrogen deposition.

Climate change rightly deserves a central focus of research and
policy efforts as it is undoubtedly one of the grand challenges
facing humanity. Yet, current climate change impact assessments
with crop models involve large uncertainties arising from different
modelling approaches (Bassu et al., 2014; Asseng et al., 2015),
physiological responses of crops to environmental conditions
(Allen et al., 2020), calibration protocols (Seidel et al., 2018) or
input data (Nissan et al., 2019). Indeed, modelling the effects of
weather extremes on crop growth, and their interaction with
future climate change, is challenging (Rötter et al., 2018), and
crop models are ill-equipped to simulate such events. Moreover,
the climate change projections widely used in climate change
impact assessments suffer from errors in capturing local condi-
tions, have problems downscaling global estimates to finer resolu-
tions and are characterized by deep uncertainty, which renders
them unfit for decision-making at the local level (Nissan et al.,
2019). Of particular concern is that studies of climate change
impacts on crop production often focus on longer time scales
(several decades). At such time-scales, climate projections are
highly uncertain and management options may indeed be mal-
adaptive in the short term. For example, East Africa is predicted
to get wetter in the long term, but drier for the coming decade
for which immediate action is required to reduce the risk of
crop failure (Nissan et al., 2019).

Referring to Fig. 2, although researchers are often working on
exploratory research (i.e. the left side of the figure), there is always
a temptation to suggest what this could mean for policy. This
means results are often picked up in the news and by politicians
and used for other purposes (i.e. the right side of the figure),
although the models and their outcomes have not been subjected
to the scrutiny that would normally be expected for policy sup-
port processes. Nissan et al. (2019) recommended that, before
making claims of the relevance of research for policy, whether

for adaptation or mitigation of climate change, modellers should
engage in participatory research with stakeholders focusing on the
time scales relevant for their decisions, recast long-term decisions
or shorter time frames or stress the system under hypothetical
weather scenarios to identify high sensitivities to small changes
in weather. Such an approach would imply embedding climate
change impact assessments with crop models within the multi-
layered and multi-dimensional approach characteristic of earlier
integrated assessments (van Ittersum et al., 2008), certainly
when the goal is to derive policy implications or to propose adap-
tation and mitigation options for farmers.

Crop models will also have a major role in defining how much
food can be produced on the planet currently and under future
climate change. To do so, however, models need to be improved
for simulating the effects of other growth-limiting and -reducing
factors on crop growth (cf. Table 1) and expanded to cover other
important staples such as root and tuber crops and highland
banana (Fig. 1d). Moreover, food production assessments cannot
rely on global gridded crop models as these are not rigorous in
their account of crop physiological processes and agronomic
management (van Ittersum et al., 2013). For this reason,
bottom-up protocols are employed in the Global Yield Gap
Atlas (www.yieldgap.org) to map yield ceiling and yield gaps at
regional scale. Yet, it still remains important to contextualize
such assessments at regional scale within broader farm and farm-
ing systems aspects. Only then one can grasp the scope to increase
yields and resource-use efficiencies in relation to the management
decisions and farmers’ personal objectives (Silva, 2017).

We hope the examples highlighted above will serve to remind
crop modellers that model simulations need to be embedded
within a well-described context. The latter includes thorough
experimentation in case of model improvement, quality assurance
of the models used given the purpose of the simulations and par-
ticipatory work with stakeholders when exploring options to
adapt to and mitigate future climate change. More than ever,
rigorous and high quality research, which documents its limits
and uncertainties, is needed to inform policy and society at
large and avoid the misuse of scientific evidence by different
stakeholders.

Conclusion

Grand challenges for the 21st century include ensuring food and
nutrition for all while avoiding land use change and biodiversity
loss and adapting to and mitigating the negative impacts of cli-
mate change. Diverging paradigms regarding what to produce
where and how is another important feature of this perfect
storm. Crop models are a core tool to explore plausible futures
for food security and climate change adaptation and to deepen
our understanding on how crops respond to abiotic and biotic
stresses. Despite their proven usefulness, it is also evident that
current crop models need improvement and that a continuous
research cycle of simulations and experimentation is needed.
Future research should prioritize the development of crop models
for crops other than cereals (e.g. root and tuber crops and tropical
perennials) and to expand current capabilities of crop models (i.e.
simulation of potential, water-limited and nitrogen-limited yields)
to simulate limitations of phosphorus and potassium and yield
reductions due to pests and diseases. Moreover, attention should
also be paid to simulate processes at cropping systems level and to
contextualize model applications within broader farm(ing) sys-
tems and food systems aspects.
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To ensure that crop models fulfil their promise to support pol-
icy and decision making, the research cycle of simulation and
experimentation must be broadened. Close collaboration among
different disciplines is required with active participation of the
private sector and policy makers and due attention to ensure
model quality is fit for purpose. Only then will crop modelling
be able to contribute fully to addressing the grand challenges
faced in our food and agricultural systems.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0021859621000150.
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