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ABSTRACT. Methods are developed for determining the distributions of stress and effec tive viscosity in a 
glacier, under the assumptions : the ice is quas i-viscous, the flow is time independent, and acceleration forces 
are negligible. M easurements of the three-dimensional distribution of velocity are needed for their applica­
tion. The differential equations of mechanical equilibrium, expressed in terms of viscosity, strain-rate 
components, mean stress, a nd their gradients, are viewed as equations to be solved for viscosity and mean 
stress subjec t to boundary conditions at the free upper surface. For certa in rectilinear Row pa tterns, unique 
distributions of stress a nd effective viscosity can always be derived. For more complicated Row this is not 
necessarily so. However, it is still poss ible to choose the best values of rheological parameters in any trial 
Row law based on the requirement that the residuals to the equations of equilibrium be minimized in a 
mean-square sense. The techniques are applied to m easurem en ts of interna l deformation m ade in nine 
bore holes on the Athabasca Glacier. At the center line the magnitude of the surface-parallel shear stress 
increases with depth more slowly tha n would be expec ted from a sta ndard shape factor correction or the 
theoretical distribution of Nye. Correspondingly the lateral distribution of lateral shear stress shows the 
opposite relationships. In the lower one- to two-thirds of the depth corresponding to a range in effective stress 
from a bout 0.5 to 1.2 bars, the gross rheology of the ice is not distinguishably different from the experi­
mentally d etermined flow law of Glen (n = 4.2, T = - 0.02° C ) as generalized by Nye. The results do 
not support the conclusion that the effective viscosity is higher than would be expec ted from Glen's experi­
ments as indicated b y the more limited measurements of Pa terson and Savage. Power-law pa rameters 
derived for the different bore holes considered separa tel y show a spread , which sugges ts some rheological 
inhomogeneity. However, no definite conclusions can be drawn, because of direc t measuremen t errors at 
the bore holes and less definable uncerta inty in the interpolated distribution of veloc ity between the holes. 
The upper one- to two-thirds of the glacier constitutes a n anomalous zone in which there is either a strong 
effect from a complex distribution of stress arising from longitudina l stress gradients or more complicated 
rheology than in a homogeneous power-law material. 

REsuME. Inversion des mesures d' ecoulement pour la determination des parametres rMologiques et de contrainte dallS 
lIIZ glacier de valUe. On a mis au point des methodes pour determiner les distributions des efforts et la viscosite 
reelle dans un glac ier sous les hypotheses que: la glace est un fluide quasi-visqueux, l'ecoulement es t indepen­
c1ant c1u temps et les forces d 'accelera tion sont negligeables. Pour a ppliquer ces methodes, on a besoin d e 
mesures de la distribution des vitesses d a ns trois dimensions. Les equations differentielles de I'equilibre 
mecanique, exprime en fonction de la vi cosite, d es composantes de la vitesse d e deformation, de la contra inte 
moyenne et d e leurs variations, son t considerees comme d es equations a resoudre pour calculer la viscosite 
et la contrainte moyenne aux conditions aux limites de la surface libre superieure. Pour certains types 
d 'ecoulements rectilignes, on peut toujours en tirer une distribution unique des contra intes et une viscosite 
reelle. Pour un ecoulement plus complique, il n 'en es t pas forcement de meme. Cependant, il es t encore 
possible de choisir les meilleures valeurs des parametres rheologiques da ns une loi experimen tale d'ecoulement 
basee sur l'exigence que les residus d es equations d 'equilibre soient reduits au minimum dans un sens quad­
ratique moyen. Les techniques sont appliquees a c1es mesures c1e deformation interne faites cl a ns neuf 
forages sur le glacier d e l'Atha basca. Sur la ligne centrale, la grandeur d e I'effort d e cisa illement parallele a 
la surface croi t avec la profondeur moins vite qu 'on I'a ttendait a pa rtir d 'un fac teur de correction d e forme 
classique ou de la distribution theorique de Nye. Correlativement, la di stribution laterale d es efforts de 
cisa illement latera ux montre d es resultats opposes. Da ns le tiers ou Ies d eux tiers inferieurs d e la profondeur, 
correspondant a d es effor ts reels de l'ordre d 'environ 0,5 a 1,2 bars, l'ecoulement d 'ensemble de la glace 
n'est pas significativement different d e la loi cxperimenta le de Glen (n = 4,2, T = - 0,02° C) generalisee 
par Nyc. Les resultats n'aboutissent pas a la conclusion que la viscos ite reelle est plus forte qu'on ne I'atten­
drait a partir des experiences de Glen comme cela ava it e te suggere par Paterson et Savage. Les para metres 
de la loi puissance tels qu'ils resultent des differents forages cons ideres isolement montrent une dispersion 
qui fa it penser a quelque inhomogeneite rheologique. Cependant, on ne peut pas en tirer d e conclusions 
definitives en ra ison des erreurs sur les mesures directes dans les forages et de I' incertitude encore plus 
difficile a estimer d ans I' interpolation de la distribution des vitesses entre les forages. Le tiers, ou les deux 
tiers, superieurs du glacier constituent une zone anormale d ans laquelle il se produit soit un effet importan t 
d 'une distribution complexe d es efforts issus d es gradients longitudinaux des contraintes, soit une rheologie 
plus compliquee que d ans un materiel homogene a loi-puissance. 
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Z USAMMENFASSUNG. Bestimmung von Spannungs- lInd Fliessparametern aus B ewegungsmessungen in einem 
Talgletscher. U nter den Voraussetzungen, dass das Eis quasi-viskos, das Fliessen zeitunabhangig und die 
Beschleunigungskrafte vernachlassigbar sind, wurden Methoden zur Bestimmung der Vertei lungen von 
Spannung und effektiver Viskositat in einem Gletschcr entwickelt. Fur ihrc Anwcndung sind Mcssungcn 
der drcidimensionalen Geschwindigkeitsverteilung erforderlich. Die Differentialgleichungen des mechani­
schen Gleichgewichts, dargestellt in Ausdrucken der Viskositat, der K omponenten d er Dehnungsgesch­
windigkeit, d er mittleren Spannung und ihrer Gradienten werden als Gleichungen angesehen, die unter 
Berucksichtigung der Grenzbedingungen an der freien OberAache fur die Viskositat und die mittlere 
Spannung zu losen sind . Fur gewisse geradlinige Fliessmuster konnen immer eindeutige Verteilungen der 
Spannung u nd der effektiven Viskositat hergeleitet werden. Fur kompliziertere F liessform en ist dies nicht 
unbedingt so. Dennoch ist es noch moglich, die gunstigsten Werte der rheologischen Parameter fur einen 
beliebigen Ansatz des F liessgesetzes so zu wahlen, dass die R estfehler gegenuber d en G leic hungen des 
G leichgewichts in ihrer Quadratsumme zum Minimum werden. Die Methode wird auf Messungen der 
inneren Deformation a ngewandt, die in neun Bohrlochern auf dem Athabasca Glacier ausgefuhrt word en 
waren. Auf der Mittellinie nimmt die oberAac henparallele Scherspannung mit d er Tiefe langsamer zu, als 
es auf Grund eines normalen formabhangigen Korrektionsfaktors oder aus der theoretischen Verteilung 
nach Nye zu erwarten ware. Entsprechend zeigt die seitliche Verteilung der sei tli chen Scherspannung das 
entgegengesetzte Verhalten. In den unteren ein bis zwei Dritteln der Tiefe, was einem wirksamen Spannungs­
bereich von etwa 0,5 bis 1,2 bar entspricht, ist die Gesamtrheologie des E ises von dem experimentell 
bestimmten G len'schen Fliessgesetz (n = 4,2, T = - 0,02° C) in der von Nye generalisierten Form nicht 
un terscheidbar. Die Ergebnisse stutzen nicht die von Paterson und Savage vorgeschlagene Folgerung, 
d ass die effekt ive Viskositat hoher ist, a ls es nach Glen's Versuchen zu erwarten ware. Betrachtet man die 
Pa rameter des Kra ftgesetzes, die fur die versch iedenen Bohrlocher hergeleitet wurden, einzeln, so zeigen 
sie eine Streuung, die eine gewisse rheologische Inhomogenitat vermuten lasst. Trotzdem konnen wegen 
direkter M essfehler am Bohrloch und einer schwer fes tlegbaren Unsicherheit in der zwischen den Lochern 
interpolierten Geschwindigkeitsverteilung keine endgultigen Folgerungen gezogen werden. Die oberen ein 
bis zwei Drittel des Gletschers bilden eine anormale Zone, in der entweder erhebliche Wirkung einer 
komplexen Spannungsverteilung infolge longitudinaler Spannungsgradienten od er eine kompliziertere 
Rheologie als im homogenen Material, d as fur das Kraftgesetz vorausgesetzt wird, herrscht. 

INTRODUCTION 

In recent years a number of experimenters (Glen, 1955; Steinemann, 1958; Butkovich 
and Landauer, 1958 ; Voytkovskiy, 1960 ; Melior and Testa, 1969) have investigated quanti­
tatively the creep response of polycrystalline ice to applied load . These experiments have 
shown that the relationship between rate of strain and applied stress can be described by a 
power-type law 

If = Aan 

where a is the applied stress and If the resulting strain-rate. However, the various experiments 
do not give consistent values for the parameters A and 12. For example, reported values of 11 

range from close to I to over 4. Some of these differences may possibly be explained by 
failure of the power law to describe ice rheology over a large stress range. For example, 11 may 
increase with increasing stress, in which case the description as a power law is not strictly 
applicable but is approximately valid for only a limited range of stress (Steinemann, 1958; 
Butkovich and Landauer, 1960; Mellor and T esta, 1969) . On the other hand, some of these 
differences may arise because the samples used in the variou experiments were not tructurally 
the same, and because a well-defined steady-state deformation was not always achieved. 
Because of these difficulties, it is not at a ll certain that one of the experimentally determined 
flow laws or some average of them will reasonably represent the properties of natural glacier 
ice, which can be structurally quite different from the experimental samples, and which has 
been subjected to stress over considerably longer intervals of time. 

Measurements of ice deformation in temperate and nearly temperate glaciers (Gerrard 
and others, 1952; Sharp, 1953; Mathews, 1959; Meier, 1960; Savage and Paterson, 1963; 
Kamb and Shreve, [966 ; Shreve and Sharp, 1970) have shown that, in fact, glacier ice 
deforms in rough agreement with the power law (n = 4.2) deduced by Glen ( [ 955) from 
quasi-viscous analysis of his experiments done at - 0.02 ° C. However, apparent differences 
exist. Some field observations give values of n higher than expected on this basis (e.g. Kam b 
a nd Shreve, 1966); others give lower values of 11 (e.g. Shreve and Sharp, 1970). Similarly 
some observations suggest that temperate glacier ice has a higher apparent viscosity than 
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expected from the laboratory experiments (e.g. Paters on and Savage, 1963); others suggest 
the opposite (e.g. Shreve and Sharp, 1970). 

These analyses of bore-hole deformation data have been based on the assumption that the 
surface-parallel shear stress varies linearly with depth from zero at the surface to some value 
at the base, which is usually taken equal to the average basal shear stress as computed from 
the hydraulic radius of the channel. This assumption is valid only in special circumstances 
(Nye, 1965); measurements of velocity across a complete cross-section of Athabasca Glacier 
indicate that this assumption breaks down there (Raymond, 1971[bJ , p. 72). Thus, apparent 
differences between results of different field experiments and experimentally determined flow 
laws may represent failure of the assumptions about the distribution of stress instead of actual 
rheological effects. In order to avoid the standard assumptions about stress, one is confronted 
with an interesting inverse problem. The purpose of this paper is to consider how the stress 
field and rheological parameters may be determined in a flowing medium from measurements 
of the three-dimensional distribution of velocity and only general assumptions about the 
rheology of the material. The techniques are applied to measurements of deformation made 
in the Athabasca Glacier (Raymond, 1971[a] , [bJ ). 

RHEOLOGICAL ASSUMPTIONS 

It is assumed that the relationship between the applied stress "Tif and the resulting rate of 
strain Cif can be described by , 

(I) 

where p = - }"Tii is the mean compressive stress, "Tii' = "Tii + PSij are the deviatoric stress 
components, and 7J is an effective viscosity which may be a function of the non-zero invariants 
of the strain-rate tensor E2 = tCifCij and E ) = det ICifl. (H ere and in subsequent equations, 
subscripts i and j range from I to 3 and a repeated subscript in a term indicates summation 
over this range.) In addition, 7J may depend on other parameters such as temperature, 
texture, chemical composition, e tc. The possibility of plastic behavior with a non-zero yield 
stress is excluded by the additional explicit requirement that the deviatoric stress be zero 
whenever the strain-rate is zero. 

The material described by Equation ( I) is an isotropic, incompressible, viscous fluid in 
which the viscosity depends on the rate of deformation (or equivalently the state of stress) but 
does not depend on the mean stress. If 7J is entirely independent of the rate of strain, then the 
material behaves like a simple Newtonian fluid. If 7J is a function only of the second invariant 
of train-rate El> then the material is identical to that considered by :\lye ( 1957) for theoretical 
a nalysis of glacier flow. If 7J is a function of both invariants E2 and E ) then the material 
behavior is more complicated than has yet been applied to glaciers, but it can still be treated 
easily by some of the methods described below. 

There are a number of rea ons why Equation ( I) may be in reality too simple. The 
response of a crystalline solid depends on the history of loading and not just the present stress. 
Equation ( I) would apply only if the stress has been constant sufficiently long for a steady 
state to be achieved. It is possible that creep response may depend on the mean stress, although 
experimental evidence (Rigsby, 1958; Haefeli and others, 1968) show that this dependence is 
weak. M easurements of c-axis fabrics in glacier ice (Kamb, 1959; Rigsby, 1960) have shown 
that crystals are usually not randomly oriented. Because of the strong plastic anisotropy of ice 
single crys tals (Nakaya, 1958 ; Higashi, 1969), it is reasonable to expect that glacier ice may be 
somewhat anisotropic. Even if these difficulti es did not exist, it is still possible that the 
behavior of glacier ice could be more complicated than is describable by Equation ( I) . G len 
(J 958) has discussed this in de tail. However, until more experimental information is available, 
it does not seem necessary to consider more general material behavior. The purpose of the 
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following analysis is to discuss to what extent the applicability of Equation ( I) can be tested, 
and if it is applicable, how the specific functional dependence of"l on E2 and E3 can be deter­
mined. 

METHODS OF ANALYSIS 

Conditions for equilibrium ofa material describable by Equation ( I) which is undergoing 
slow steady deformation and is acted upon by gravity are: 

o op 
-;:;- (21)CiJ ) - -;:;-+ pgi = 0 (2) 
u XJ UXi 

where p is the density of the material and gi are the components of the gravitational accelera­
tion. Choose coordinates (x, .y, z) such that the y = 0 plane approximates the glacier surface. 
L et the z-axis be horizontal, the y-axis point downward, and the x-axis be directed down­
glacier. D efin e at each point on the glacier surface a local coordinate system (x' ,y', z' ) for 
which ], is normal to the local surface and points downward and x' has azimuth identical to 
the azimuth of the x-axis. Let Ys(x, z) represent the glacier surface. Then the equations of 
equilibrium become: 

. 071 . o7J . 071 oP* 
2exx ox + 2eXY oy + 2exz oz + "l\! 2u - a:;-+f x = 0 , 

. ( 1) + . ( 1) o"l n op* 
2Cxy -::;- 2Cy y -::;-+ 2Cyz - +1) v 2V - - = 0 

uX ay OZ oy' 

. 071 . o"l . o"l op* 
2exz ox + 2eyz oy + 2ezz oz + YJ\! 2U,'-Tz +fz = 0 , 

where u, v and w are the x, y and z components of velocity, where 
y 

p*(x,y, z) = p(x,y, z) - J pgy dy-Pa 
y. 

is the difference!' between the m ean compressive stress p and the sum of the weight of the 
overlying ice and atmospheric pressure Pa, and where 

y 

fy = 0 , and z = oYs -J op (1 d f oz pgy oz",y ~ 
y. y. 

are the components of an effective body force composed of the respective components of g 
and gradients in the overburden pressure. At the surfacey = Ys (x, z) : 

Tx' y' = 2"lCx'Y' = 0 , 

Ty'z' = 2"lCy'z' = 0 , 

TY 'Y' + Pa = '2"lCy'y'-P* = o. 
Normally, one attempts to solve the equations of equilibrium for the distribution of 

velocity given the behavior of the material and appropriate boundary conditions. Here the 
purpose is to consider the inverse problem in which one attempts to determine the distribution 
of"l given the distribution of velocity as determined by field measurements. From this point 
of view Equations (3) are viewed as three first-order partial differential equations in two 
unknown functions "l and p. If the region in which the velocity is known intersects the surface 
Ys(x, z) , then Equations (4) provide boundary conditions. Presumably Equations (3) and (4) 
could be solved to define 71 and p throughout this volume. This will not always be possible. 
Obviously a necessary condition on the velocity fi eld is that CX ' Y' and cY 'z' be zero on ys, so 
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that Equations (4a) and (4b) can be satisfied. Since there are three differential equations to 
be satisfied and only two unknown functions to be determined , it also seems likely that a 
solution will not exist for an otherwise arbitrary distribution of velocity, but additional 
conditions would have to be satisfied in order to guarantee the existence of a solution. Non­
existence of a solution would indicate that the material behaves in a fashion which cannot be 
described by Equation ( I) . Further it is not apparent that Equations (4) are adequate 
boundary conditions. If the solution is to exist at all, ex ' y ' and ey ,Z' must equal zero onys (x, z ) 
in which case Equations (4a) and (4b) would seem not to give any constraint on 7J or p. This 
suggests that even if a solution exists it may not be unique, no matter what accuracy and 
resolution is achieved in the m easurement of the velocity distribution. To gain some insight 
into these mathematical questions, it is useful to consider some special cases. 

R ectilinear flo w. Consider the case where the top surface is planar, so that y s(x, z) = 0 

and (x', y' , z ) are aligned with the (x,y, z) coordinates, where the flow is rectilinear 
(v = w = 0), and where the density does not depend on x or z. The only non-zero com­
ponents of strain-rate are eXY = F)u/ay and exz = t au/o z. If Eq uation ( I) applies, u must be 
independent of x because of incompressibility and au/ay must be zero on y = 0 by Equation 
(4a). Assume that the ice rheology is x independent, so 87J /8x = o. Equations (3b), (3c) and 
(4c) require that p* be zero, and when this is the case they are satisfied. 

Equation (3a) becomes 

(5) 

Equation (5) is a first-order partial differential equa tion with a single dependent variable 7J. 
In general, there is a single characteristic curve passing through each point with direction 
given by 

dy = auj aU 
d z ay oz ' (6) 

Thus the characteristic curves are parallel to the gradient of u. On a contour diagram of u 
the curves would run normal to the contours. At points where both au/ay and au/az are zero, 
the direction of the characteristic curves is undetermined , and there can be more than one 
curve passing through such a point. Figure 1 shows a hypothetical distribution of u and the 
associated characteristic curves in a valley glacier with cylindrical channel and planar upper 
surface. 

Specifying the dependent variable along a characteristic will in general not enable one to 
determine the solution elsewhere. Since the surface of a glacier undergoing rectilinear flow 
is a characteristic, it would seem that Equations (3) and (4) are not sufficient to determine a 
solution. However, it is also true that specifying the value of the dependent variable at one 
point on a characteristic determines it at a ll other points on that characteristic. For the 

Fig. I. Hypothetical distribution of velocity contours (solid) and characteristic curves (dashed) for rectilinear flo w ill a valley 
glacier . 
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hypothetical distribution of velocity shown in Figure I , every point in the cross-section is 
j oined by a characteristic curve to a single point on the surface at which velocity is maximum. 
This suggests that a solution for YJ could be obta ined , if a suitable condi tion at the intersec tion 
p oint could be formulated . 

T o investigate these possibilities, Equa tion (5) can be expressed with respect to a new 
coordinate system (t, n) defined by a one-to-one transformation 

n = n(y, z), 
t = t(y , z). 

This coordinate system is chosen so that curves of constant n a re parallel to the characteristics 
and curves of consta nt t a re parallel to the u-con tours. By using the fac t that OU/Oll = 0 

and defining TS = YJh t ouj at, Equation (5) becomes 

OTS ht ohn 
ht - - - - TS = - pgx (8) 

at hn at 

where ( 
Ot) 2 ( Ot) 2 

ht 2 = ay + oz and 2 _ ( 01l) 2 ( on) 2 
hn - ay + oz (9) 

a re the scale moduli of the coordina te transforma tion defined by Equa tions (7). The qua nti ty 
ht oujot = [(OU/oy)2+(oujoZ) 2Jl = 2[lixy2+ lixZ2]! - 2lis gives the gradien t of u and is twice 
the shear strain-rate (denoted lis) acting across a surface parallel to the velocity contour ; 
TS = 2YJlis represents the corresponding shear stress. 

A sui table condition on TS at the intersection poin t is that i t be zero. T his is compatible 
with the requirement that the shear stress be zero whenever the shear strain-ra te is zero . 
Wi th this condi tion, Equa tion (8) can be solved along any chosen cha racteristic curve defined 
by a particular value of Il to determine uniquely TS( t, n). I t is convenien t to choose t = 0 

a t the intersection point. It is easily verified that a solu tion to Equa tion (8) with TS = 0 

for t = 0 is 
I 

J
' p(t', n) d!' 

Ts(t, n) = - gxhn(t, n) h ( ' ) h ( ' ). tt , n n t , n 
( 10) 

o 

Thereafter YJ (t, 11) = TS(t, n)[ht ou/ot]- r = TS(t, 1l)/2 lis is easily calculated . 
There is a very simple physical expla nation for the a bove conclusions. Since oujoll = 0 , 

the x componen t of the traction acting on cylindrical surfaces parallel to the characteris tics 
and the x-axis is zero. Consequently, the gross equilibrium of a pie-shaped segment of materia l 
(shaded area in Fig. 1 ) bounded by two cha racteristics (coordinate lines nI and n2 ) and a 
velocity contour (coordina te line t ) must be accomplished by the action of a shear stress across 
the velocity con tour. If the distance along the velocity con tour (t ) between n l and n2 is 
L(t, nI' n2) , if A(t, nil 1l2 ) is the included area, a nd if p(t, nIl 72 2 ) is the average density over 
that area, then the average shear stress is 

<TS) = - gx p(t, 12 1 , 122 ) A(t, Ill' 1l2) /L(t, 12" n2) ' ( 11 ) 

By taking 11. J = n+ t~n and 11.2 = 11. - t~n and by taking note that 

a nd 

I 

f p(t' , n) L(t', 11" 122) 
p(t, nil n2) A(t, 72 1 , 722 ) = h ( ' ) dt'+ O[ (~n)2] 

t t , n 
o 

~n 
L (t, nI, 122) = -h + O[(~n) 2] 

n 

it is easily verified that Equations (10) and ( I I ) a re equivalent in the limit ~n ---+ o. Equation 
(11 ) not only gives one an intuitive understanding of the con ten t of Equation (8), and its 
solution given by Equation (10), but also suggests a graphica l way of solving for TS without 
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explicitly writing out u(y, z) in analytical form and defining the coordinate transformation of 
Equation (7) . Further, it is clear that the above solution for T and"f} is unique. 

If one considers other possible rectilinear flow fields which satisfy the boundary condition 
Equation (4a), views the contour diagram of u as a topographic surface, and applies the above 
geometrical arguments, it is easily verified that unique solutions to T S for Equation (5) exist 
as long as there are no basins (minima) either below the surface y = 0 or " dammed up" 
against it. (For example, this can still be so if there is more than one maximum lying on the 
surface or even if there is a maximum below the surface.) If this were not so, there would be 
two possibilities. The basin could be entirely surrounded by ridge cres ts, passes, and the 
surface y = o. If the material behavior were compatible with Equation ( I), then the region 
would be surrounded by shear-stress-free surfaces and could not be held in place. On the 
other hand, the downslope into the basin could extend all of the way to the channel boundary. 
Nevertheless, mechanical equilibrium would require a negative "f} which is not physically 
reasonable. One can easily contrive patterns of contours, a lbeit somewhat esoteric, which for 
these reasons are incompatible with material behavior de cribable by Equation ( I) . 

Strain-rate field independent of x. Now consider the sligh tly more complicated case where the 
top surface is cylindrical with generators parallel to the x-axis (oYs/ox = 0), where v and w 
are independent of x, but not necessarily zero, and where ou/ox is independent of position. 
In this case the strain-rate field is independent of x. In addition assume that the density is 
independen t of x and z and that the material is rheologically homogeneous in the longitudinal 
direction, so that O"f} /ox = o. Under these conditions, Equation (4C) together with Equations 
(3 b) and (3c) require that oP* / ox = o. 

Equation (3a) again reduces to Equation (5). Under the same restrictions on the distribu­
tion of u in the cross-section discussed above, Equation (5) can be solved as before to determine 
T S and T] uniquely. The same physical interpretation of the procedure holds in this case, since 
there are no longitudinal stress gradients and the surfaces across which the shear stress is zero 
a re cylindrical surfaces with generators parallel to the x-axis. 

Equations (3b) and (4c) give 
y 

p*(y, z) = 2T]ey,y,l ys+ J [2eyy ~;+ 2eyZ ~:+ "f}V2V] dy. 

)',(z) 

Since both "f} and p* have now been determined , the z-equilibrium equation (3c) must be 
satisfied automatically in order to have a complete solution. In tuitively, one wou ld expec l 
that in general this wou ld not be the ca:e, and that a solu tion would not exist for an arbitrary 
distribution of velocity even with the above restri ctions. This is easily established by example. 

General three-dimensional distribution of velocity. I t is clear from the above discu sion tha t for 
complex distributions of velocity, solu tions for "f} and p* will exist only for certain compatible 
ones. Conditions on the velocity field which suffice to guarantee the existence of a solution 
to Equations (3) and (4) are not easily expressible in the general case. In addition, there is a 
question of uniqueness. This could be answered affirmatively for the simpler distributions of 
velocity, but in the general case it appears more difficult. 

In spite of these unanswered mathematical ques tions, it is possible to proceed in a meaning­
ful way. Instead of seeking a precise solution to Equations (3) and (4), one seeks the best 
solution consistent with a more specific parameterized model of the flow law corresponding to 
Equation ( I). This sort of approach a lso more realistically takes into account the uncertainty 
which must exist in any practical measurements of the distribution of velocity. Since the 
velocity can be measured at only a finite number of points and each velocity measurement 
entails some error, it is clear that some indeterminacy is introduced. This would be so even if 
the actual velocity distribution were to define a unique solution for T] and p* from Equations 
(3) and (4). Thus, it makes sense to reduce the number of unknowns from an infinite number 
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('I'] and p* at each point) to a small number of free parameters in a model hopefully capable of 
approximating the real distributions. 

Suppose the distributions of 'I'] and p* are represented parametrically as follows: 

'I'] = 'I'] (x,y, z; Ez, E3 ; il> .. . , im), 

p* = p*(x,y, z; im+1> . .. , l,,) . 

For example an appropriate form for 'I'] might be 

7) = BE- a., 

where E = vi Ez. This is equivalent to a power-type flow law E = B' T" with ex = 1 - I/n 
and B = tB'-I f" and where TZ = lTi/Ti/. This model for 'I'] involves two parameters 
(e.g. II = ex and lz = B ) and also the implicit assumption of rheological homogeneity. If the 
rheological properties were homogeneous, one might expect that an adequate parameteriza­
tion in terms of E z and E3 probably involves only a few parameters. On the other hand, in a 
complex flow field the dependence of 7) on x,y and z may be very complicated and require a 
large number of parameters for adequate representation say as a polynomial in x, y and z. 
This makes it advantageous to include E2 and E J in Equation ( I 3a) ; x, y and z appear 
explicitly to make it possible to represent inhomogeneity in the material. For example, in 
Equation (14), B and ex may depend on x,y and z as a result of non-isothermal conditions, 
spatial variations in texture, or other effects. 

Since the distribution of strain-rate and thus Ez and EJ are presumed to be known from 
measurements, once the form of Equation (I 3a) has been chosen, any particular assignment 
of numerical values to i, . .. im establishes a distribution of '1']. Similarly the distribution of p* 
is established when the form of Equation (13b) is chosen and values of lm+J . . . l" are assigned. 
Thus it is possible to test whether Equations (3) and (4) are satisfied. In general, with specific 
choices of II ... In in Equations (13) , Equations (3) will not be satisfied at a given point in the 
interior of the body. There will be residuals Tx , Ty and Tz to Equations (3a), (3b) and (3c). 
Fictitious forces - r would be needed in order to achieve equilibrium with the specific choice 
of parameters. Similarly Equations (4) will not be satisfied at a given point on the surface. 
There will be residuals Sx , Sy and Sz. Fictitious surface tractions - s would be needed. For 
example, to test a flow law of form of Equation (14) with ex and B independent of position, 
the residuals to Equations (3) can be written 

op* 
rt = - iexBEz-ia.- IJl-i+BEz-ia.Ki - -;;;- (x,y, z , iJ' ... , in)+fi (15 ) 

UXi • 

where Jl-i = 2fi} oEz/ox}, and Ki = VZUi. Similarly the residuals to Equations (4) can be 
expressed in terms of ex, B and the additional free parameters associated with the pressure. 

A measure of the point-wise dis-equilibrium associated with a particular choice of para­
meters is 

FZ(lI, .. . , i,,) = J J J r·r dV+ J J s·s dA. ( 16a) 

v s 
From this point of view the best choice of parameters is that which minimizes Fz and thus 
minimizes the residual forces in the mean-square sense. The conditions 

k = I, ... , n 

give 12 equations for the 12 parameters l» ... , l". 
In the application of this technique to field data, it is advantageous to consider Equation 

(16a) in a discrete form, so that the equilibrium equations can be considered at selected points 
where the strain-rates and their gradients are best determined by the measurements. Thus, 

https://doi.org/10.3189/S0022143000022681 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000022681


INVERSION OF FLOW MEASUREMENTS 

IV M 

F'2 (l" .. . , In ) = 2 r·r+ 2 s·s ( I6b) 

n = l m = 1 

is minimized. The sums are over N distinct points in the interior and M distinct points on the 
surface. In this discrete form, the minimization of F'z is identical to the usual least-squares 
problem. Equations (3) and (4) give 3(N + M ) conditional equations to determine the n 
unknown parameters. When more than Il of the conditional equations are independent, the 
Il conditions oF'2/oh = 0 give n independent normal equations which determine the para­
meters ll ' ... , In. 

U 7J and p* are linear functions of the lk, then the conditional and normal equations are 
linear and define a unique solution. U on the other hand they are non-linear functions, the 
conditional and normal equations are also non-linear, which complicates the solution. The 
non-linear normal equations can be solved by successive approximation which substitutes a 
sequence of linear problems for the non-linear one. One considers incremental changes from 
given values of the lk. Then 

IV M 

F' 2(l1 + 8ll , .. . , In + 8In) = .2 (r + 8r ) · (r + 8r ) + .2 (s + 8s) · (s + 8s) 
IJ = J m = J 

can be expressed in a form linearized with respect to the 8lk by a Taylor expansion truncated 
at first order. The 8lk are chosen to minimizeF'2 and an improved solu tion lk + 8lk is obtained. 
The process is repeated to calculate new incremen ts and a further improved solution until 
convergence to the desired accuracy is achieved. When the condi tional and normal equations 
are non-linear, one is not assured of a unique solution for the h. It is advisable to test this by 
solving for the lk using several starting trial solu tions to see if the converged result is always 
the same. In addition F'z should be calculated in each successive step in order to make sure 
that the solution corresponds to a minimum and not some other stationary point. 

The root-mean-residual force is a measure of the fit of the model to the observational data. 
When measurement errors are taken into account, it provides a basis for a decision concerning 
the applicability of a specific m odel and comparison of different possible models. 

STRESS AND VISCOSITY IN ATHABASCA GLACIER 

It is possible to apply some of the methods described in the previous section to measure­
ments of the distribution of velocity measured over one year (1966- 67) in a transverse section 
of Athabasca Glacier (R aymond, 197 1[b] ). The arrangement of the surface markers and 
bore holes by which velocity was measured is shown in Figure 2. The holes were in three 
adjacent transverse sections denoted by C, A and B. The spacing of the holes is about 150 m 
or one half the center-line depth. The (x, y , z) coordinate system is shown in Figure 2. 

The x-axis has azimuth N 37°E and plunge 3.9°. Longitudinal surface slopes at the different 
holes are listed in Table 1. These values represent averages over a length about equal to the 
center-line depth (300 m ). 

Figure 3 shows examples of the component of tilt in the x-y plane as measured after one 
year in the initially vertical holes. Negative tilt corresponds to tilting in the down-glacier 
direction. With this sign convention the rate of tilting has the same sign as ou/oy which is the 
main contribution to the tilting rate. The scatter in the data is compatible with possible 
experimen tal errors associated with the boring and measurement procedures (Raymond, 
unpublished ) . Therefore, the scatter is probably experimental noise and does not represent 
real features of the flow field. The tilt data were smoothed (shown as solid curves in Figure 3) 
by a method described by Raymond (197 I[b] ) . The smooth depth profile of tilting in the 
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Fig. 2 , Topographic map of field area showing locations of swface markers and bore holes. B edrock stations are numbered after 
R eid ( /96/) . Topography and elevations are given as shown on the topographic map ( / : 1- 800) compiled in /962 by the 
Canadian Government ( Topographical Survey, D epartment of Mines and T echnical Surveys, and the Water R esources 
Branch, Department of Northern Affairs and National R esources) from aerial photography and field surveys carried out on 
3 [ J uly [962. Elevation of the ice surface on 8 September I9 66 was about JOft (3 m) lower than as shaWl! . Surface 
slopes measuredfrom the mal) and comJmtedfrom 1966 survey da ta are in agreement. 

TABLE I. S UR FACE SLOPE AT BORE-H OLE SITES 

H ole l A I B I C 2 A 

Slope 3.90 3.50 3.60 4.10 
2 B 

3.90 

3A 

2.80 

5A 

2.80 

x-y plane is shown for each bore hole in Figure 4. Successful m easurements were made over 
essentially the complete glacier depth in all holes except holes l C and 4A, in which cases the 
hole could not be completely recovered after one year or could not be initially penetrated to 
the bottom . 

The progressive increase in tilting magnitude accompanied by a monotonic increase in 
curvature convex to the depth axis which would be expected in a zone of non-zero longitudinal 
strain-rate (Nye, 195 7) is seen only in hole 3A. The other tilt profil es show defini te deviations 
from this "ideal" shape. In some holes, positive rate of til ting exists a t the surface (e.g. I B , 

2B, 3B), the rate of tilting does not change with depth for a significant distance below the 
surface (e.g. I B, 3B), and locally the tilt profiles can be concave toward the depth axis (e.g. 
l A, 2A) . The nearly depth-independent r a te of tilting in the lowermost 40 m of hole 2 A is 
particularly striking. At the other extreme holes 3B and 5A show extremely high depth 
gradients in til ting rate near the bottom. These features also exist in the profiles of ou/oy 
which are essen tially the same as the tilting-rate profiles excep t for small corrections arising 
from contributions to the tilting ra te from gradients of velocity other than ou/oy. Positive 
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Fig. 3. Annual tilting in the longitudinal direction as measured in holes 3A and lB. 
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Fig. 4. Smoothed profiles of longitudinal/ilting. 
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tilting at the surface, corresponding to u increasing with depth, ha5 been observed and ex­
plained in terms of a non-zero rotation rate by Paterson and Savage ( I 963). The other 
features and also the distinctly different profiles for the different holes imply that either the 
state of stress in the glacier is quite complicated or the ice is to some extent rheologically 
inhomogeneous. For example, the bottom of hole 2A is located in a zone of relatively high 
basal velocity (Raymond, I97I[b], p. 7I ) . This suggests that the anomalous trend of ti lting 
near the bottom of this hole represents a locally relaxed shear stress caused by a narrow zone 
in which resistance to sliding is abnormally low. 

STRAIN- RATE (a -' ) 

50 

100 
E 

>. 150 

I 
l-n... 200 w 
0 

250 

Fig . 5 . D epth distribution of strain-rate components measured in hole IB . 

The method by which the displacement of surface markers and the bore-hole ti lt measure­
ments were treated to determine the depth distribution of u, v and w, and the x, y and z 
gradients of u and w and the accuracy of these quantities is discussed in detail by RaYlJlond 
( 1971[a] ) . They gradient of v was determined from incompressibility (ov/oy = -ou/ox­
-ow/oz) . The x and z gradients of v were taken to be independent ofy, which is compatible 
with the depth distributions of v calculated in adjacent bore holes. The values for ov/ox and 
ovjoz at each bore hole were chosen so thatex'y ' = Hou' joy' + ov' jox' ) and Cy.z. = How' joy' + 
+ov'/oz') were both zero at the surface, which is a necessary condition for the ice behavior 
to be compatible with Equation ( I) . Figure 5 shows an example of the depth distribution of 
the components of strain-rate in the x,y, Z coordinate system as given by the computed velocity 
gradients. In addition, the effective strain-rate E = vEz is also shown. The distribution of 
u, v, w, and ouj ox over the area of sections A and B is given by Raymond ( I 97 I [b], p. 69- 70). 

The following analysis is directed toward examining whether the ice rheology can be 
described adequately by a single power law, Equation ( I4), which applies to the complete 
volume covered by the measurements . This is a common assumption made in the theoretical 
analysis of the flow of temperate glaciers (e.g. Nye, I957) . One might expect it to apply to 
Athabasca Glacier, which is very close to the melting point and nearly isothermal except in 
the 20 mjust below the surface in the ablation zone (Paterson, 1971). On the other hand, this 
assumption could possibly break down as a result of spatial variations in the ice structure. 
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In the analysis, ice density is assumed to be independent of position and equal to o.go 
Mg m - 3• Since this portion of Athabasca Glacier is well into the ablation area, the ice density 
should be relatively homogeneous in contrast with what would be expected in the accumula­
tion area. 

Calculation of stress assuming x-independent strain-rate field. Since the slope of the glacier 
surface in the x direction varies from place to place (Figure 2, Table I ), it is impossible to 
chose a cartesian coordinate system such that 0Ys/ox = o. In addition, ou/ox is not constant 
throughout the volume, and ov/ox and ow/ox, although small, are not zero where the measure­
ments were made. Thus the method of analysis developed in Equations (5) through (12) does 
not precisely apply. Nevertheless it is still worth while to solve for the stress as if these diffi­
culties were absent; at least this should yield a more reliable determination of stress than the 
standard assumption made in past analyses of bore-hole data that 

Txy = -fpgxy. (17) 
In Equation ( I7 ), fis the "shape factor" equal to A /PH where A is the cross-sectional area 
of the section, P is the length of the ice- rock boundary, and H is the center-line depth. The 
value off for these sections of the Athabasca Glacier is 0.58. 

The distribution of u determined in sections A and B is shown in Figure 6. Curves con­
structed normal to the contours of constant u are a lso shown. A first approximation to the 

o. SECTION A 

40 

/ 
/ 

I 
/ 

/ 

b. SECTION B 

,..-
_/ 

/ 
/ 

/ 
/ 

/ 
" / 

Fig. 6. Contours 0/ constant longitudinal velocity and characteristic curves/or sections A and B. Units: m a- I. 
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solution can be seen by noting that the velocity contours are approximately semicircular and 
the characteristics are radial at least in Section A. Thus, t and 12 can be chosen to correspond 
to rand B of circular-cylindrical coordinates: 

r = (YZ + zz)t, 
B = tan- l zb. 

In this case ht = I and hn = I /r and the solution to Equation (8) is easily shown to be 
T = pgxr/'2, which is a result previously established by Nye (195'2) for flow in semicircular 
channels with constant basal velocity. Further, 

Txy = - T cos B = - i pgxY. (18a) 

This is similar to the distribution of Txy assumed in the standard analysis except the factor is 
16 % smaller. 

In the event that the surface does not lie on the y = 0 plane or does not parallel the x-axi , 
Equation (18a) can be generalized. This can be expressed by taking (x,j, z) coordinates 
uch that z is parallel to z, but x parallels the surface. Then, 

Txy = - ! pgX[j - j3(X, z )]. (18b) 

With this distribution of stress, viscosity can be calculated from 

ei;y = exy cos '2ox + Heyy - exx) sin '2S x 
T} = T zyl'2ei;y, 

where Sx is the difference in plunge of the x and x axes. In Equation ( I 8b) T Zy -;. 0 as 
j --+ js . Since the lateral slope of the surface is small at all of the bore-hole sites, the difference 
between this and the natural boundary condition, Equation (4a), is negligible and no signifi­
cant error is introduced by employing the simpler transformation of Equations (19) . 

In accordance with the analysis of Shreve and Sharp (1970, p. 83) log [T} /( bar a)] as 
given by Equation (19) has been plotted against log [i/(a - I)] along the length of each bore 
hole. This has been done with stress estimated at each bore hole using the slope at 1 A near 
the cen ter line (oa; = 0.0), the slope averaged over the width of the array (Sa; = - 0.5°), 
and the local surface slope at each bore hole (Sa; from _ 1.1 ° to + 0.1 °) . If Equation (18b) 
with the chosen value Sa; is an adequate representation of stress, and if the ice is rheologically 
hom ogeneous and Equation ( I) holds wi th T} independent of E 3 , then the curves for all of the 
bore holes should coincide and would define the dependence of T} on E. If the power-law 
dependence Equation (14) applies, the curves should be straight lines with slope equal to - IX. 

Figure 7 shows the results for each bore hole with Sa; = 0.0. Shallow depths correspond to 
the upper left parts of curves (large T), small E). Points corresponding to depths of 100 m a;J.d 
'200 m are marked with solid and open circles respectively. The curves for the other choices 
of Ox are simila r to those shown in Figure 7. A plot based on the la tera lly-averaged surface 
slope (Ox = - 0.5°) corresponds to a shear-stress magnitude lower by a factor of 0.87 which 
results in an apparently lower viscosity by approximately the same factor and an equal 
down ward shift of all of the curves by 0.06. In a plot based on the local surface lopes som e 
of the curves are shifted downward by as much as o. 14 (e.g. 3A and 5A, Sa; = - I . 1°) while 
others are essentially unshifted (e.g. lA). Thus, in this case there is considerably greater dis­
agreement between the curves for the deeper parts of the different bore holes than exists in 
Figure 7. This suggests that the stress deep in the glacier is best computed from a single 
surface slope rather than local slopes. Since Equation (18b) more closely approximates the 
boundary condition Equation (4C) when Sa; corresponds to the local surface slopes, this 
alternative may give a better representation of stress near the surface. Also near the surface 
the difference between exfj and i xy becomes significant ; eXY does not go to zero at the surface 
when the local surface does not parallel the x-axis. For negative Sa;, as exists at holes IB, 3A, 
3B, 4A and 5A, exy reaches zero below the surface and is positive at the surface, because of the 
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compressive longitudinal strain-rate. This contributes to the strong upturn of the IJear­
surface parts of the curves in Figure 7. T he upturn is distinctly reduced for the curves com­
puted from local slopes, but not completely eliminated except in the case of 3A. H oles I B, 
2B and 3B still go off scale (log [ry /(bar a )] > 1.80] ) a t respective depths of go m, 32 m a nd 
75 m . 

Cl 

'-o 
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........ 
C 

L.....J 

1.6 

1 .4 ~ 
~ 

0.8 

0 .6 

- --- - GLEN 

3A ........................ TUNNEL CONTRACTION 

- - - ATHA8ASCA GLAC IER 
28 

------ BLUE GLACIER 

5A 

-1.0 

LOG (El a-') 
Fig. 7. R elationship between TJ given by Equation (19) and ifrom Athabasca Glacier bore holes (solid curves) compared with 

results from laboratory and other field experiments: Glen's experiments at - 0.02° C analyzed using A ndrade's law 
(n = ,; .2) and minimum creep rate (n = 3.2) (Glen, 1955), tunnel contraction (Nye, 1953, p . ,;85), A thabasca Glacier 
(Paterson and Savage, 1963), represented as a straight line with n as fUmed to be ,;.2 (Shreve and Sharp, 1970, p . 83), 
Blue Glacier (Shreve and Sharp, 1970, p. 83). 

Although there are complex features in Figure 7, the approxima tely linear curves shown 
by the deeper range of each bore hole and the linear trend defined by the combined data 
from all of the holes are suggestive of a power law. 

For comparison , power laws derived by some previous laboratory and field experiments 
are shown in Figure 7. The trend defined by the present observation as analysed by Equations 
(18) and ( Ig) agrees quite well wi th the results of Paterson and Savage (1963, p. 4541 ), bu t 
it is displaced perceptably toward lower viscosity. This diffel'ence would be entirely absen t 
if the standard shape factor of 0.58 rather than 0.50 has been l'sed in Equation (16b). Based 
on Equa tions (18b) and (19) with i5 x = 0, the concl.usion of Pa terson a nd Savage (1963, 

2 
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p. 4542) that the viscosity in the Athabasca Glacier is greater than would be expected from 
Glen's flow law measured at - 0.02 ° C is confirmed, although the disparity is not so large as 
they supposed. Power-law parameters deduced from fitting a straight line by eye to the general 
trend are Cl: = 0.77 (n = 4.3) and B = 0.g8 bar aI - a. Ifit is assumed that the proper surface 
slope for the estimation of stress is the laterally averaged slope (3.4°) , then the disparity 
between the present data and Glen 's law is further reduced. The flow parameters given by 
this surface slope are the same except that B is reduced by a factor of 0.87. 

Flow-law parameters can also be calculated for the different bOl-e holes considered 
separately for those cases which yield a nearly linear curve over a significant depth range. 
If this depth range is arbitrarily taken to be 50 m this includes all holes except l C, 2B and 4A. 
The spread in 7J given by the separate curves at E = 0.05 a - I (log [E/a - I] = - 1.3) is about 
± 5 %. At lower E the spread in the curves increases, which corresponds to a difference in slope 
(i.e. a or n) for the various linear segments. Holes I A, lB, 2A, 3A, 3B and 5A give respective 
slopes corresponding to a(n) equal to 0.82 (5.6) , 0.67 (3.0),0.56 (2.3),0.86 (7.1 ) , 0.g8 (50), 
0.6g (3.2) . Assuming that Equation (18b) is valid, it is possible to roughly estimate a standard 
error for a or n as determined in a single bore hole. This depends on the length of the depth 
range over which the curve in Figure 7 is linear (Table I ) and the standard errors in CXy and 
OCXy/oy which are 0.003 a- I and 0.0002 a- I m - I (Raymond, unpublished) . Such an estimate 
is not entirely straight forward because the errors in Cxy and E at a given depth are not indepen­
dent, and the errors in either of these two quantities at different depths are not independent, 
because of the smoothing operation which was applied to the data. Taking these factors into 
account the uncertainty in n is about 25 % when the depth range which shows a linear curve 
is near 50 m (e.g. hole lA) or about 15% when the depth range is near 100 m (e.g. holes 3A 
and 3B) . Although the errors associated with the measurement in strain-rate are quite large, 
they cannot account for the different slopes of the curves. However, this estimate of errors 
does not take into account possible failure of Equation (18b). 

The steep upturned portions of the curves in Figure 7 corresp ond to depths down to t to i­
of the maximum depth and climb to very high values of viscosity close to the surface. In 
terms of an expected power-law behavior this represents an apparent anomaly. It arises 
because near the surface E is controlled mainly by Exx and ExZ and tends to be relatively 
independent of depth (e.g. Fig. 5), but on the other hand 7J as given by Equation ( lg) is 
proportional to (Y - Ys) /CXy , which increases markedly toward the surface. The latter effect 
arises because cxy remains nearly zero for a considerable depth below the surface (e.g. Fig. 5) . 
This is an expression of a nearly depth-independent rate of tilting observed near the su,rface 
in most of the holes and especially those in section B (Fig. 4) . 

It is possible that this is caused by the large relative error in Cxy near the surface where Cxy 

approaches zero. The error could be systematic as a result of the representation of the data 
by smoothing curves. Because of the overall concave nature of the tilt profiles and edge 
effects associated with the absence of data above the surface, any smoothing procedure would 
tend to bias the near-surface part of the profiles to be concave also, and thus to be more depth­
independent than in reality. This has been tested by plotting the annual tilting for each 
bore hole (e.g. dashed curves in Figure 3) calculated from the distribution of ou/oy which 
would be expected if the power law deduced from the deeper depth range of the hole applied 
to the complete depth range. For this calculation it was assumed that all of the other velocity 
gradients were the same as determined from the measurements. In the case of hole IB (Fig. 3) 
the trend of the measured tilting is quite different than expected on this basis. This is also 
definitely the case for 3B and seems to be so for 2B. On the other hand the dashed curve for 3A 
is reasonably compatible with the measured tilting (Fig. 3). This conclusion is also reached 
with respect to the other holes in section A. Thus, in section B the effect does not represent a 
bias introduced by the smoothing operation. The steep near-surface portion of these curves in 
Figure 7 is a real feature which needs explanation. On the other hand the data for holes in 
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section A are a mbiguous on this point. If such a n effect really does exist in these holes, it is 
certainly much weaker than in the holes of section B. T he one hole in section C shows no 
evidence of such an effect. 

Since Figure 7 shows considerably grea ter viscosity in section B than in section A a t 
equivalent depth near the surface, a contribution to the longitudinal stress gradient exx 07J /ox 
would exist. In fact, this contribution would be substantially la rger than pgx, which sugges ts 
tha t the distribution of 7J given by Equation ( 19) is not realistic near the surface. One is again 
led to suspect the validi ty of Equa tion ( I8b). A distribu tion of l 7'xy l increasing m ore slowly 
below the surface than given by Equation ( I 8b) would reduce or eliminate the anom a ly. 

The obvious next step is to calculate stress by the a na lysis based on Equa tions (S) to (12) 
but using the correct shapes of the contours of constant u rather than approximating them by 
semi-circles. Figures 8a and 8b show the solutions for 7'8 d erived graphically from Equation 
( I I ) based on the surface slope at hole l A. As before a solu tion based on the laterally averaged 
surface slope is obtained by multiplying by 0.87. 

The accuracy of the solution, assuming that the conditions for the validity of Equa tion 
( I I) actually exist, is difficul t to assess. Even if the pattern of velocity shown in Figure 6 were 
precise, certain errors arise in the solution of Equation ( I I). The trajectories of characteristics 
a re somewhat ambiguous because of the finite spacing of the contours. In both sections there 
is no direct con trol on the shape of contours a nd thus the pa th of characteristics near the 
center line because this region is between bore holes . Further the cen ter line cannot be 
precisely located . A maximum error of a bout ± o.oS bar arises from these sources. The error 
in 7'8 which a rises from the uncertainty in the m easurem ent of velocity across the surface and 
with depth in the bore holes (0.20 m a - I at surface, 0.46 m a - I a t bottom) and the additional 
uncerta inty associated with drawing the contours between the bore holes is very difficult to 
quantify. 

Equa tion ( I I) was a lso solved by including the contribu tion pgy 0Y8 /2x to the body force 
of Equa tion (3a) in the subsequent Equations (S), ( IO) and ( I I) . This am ounts to having a 
latera lly varying body force which depends on the local surface slope. Such a va riable body 
force is easily incorporated into the solution. If the surface slope varies linearly between the 
center line of flow and a point of interes t one is led to the interesting conclusion tha t the 
proper surface slope for the calculation of stress a t that point is the slope which exists at a bou t 
t of the way between it and the center line. This is a consequence of the nearly triangular 
shape of the regions over which body force is integrated. If the curves of Figure 7 a re adj usted 
according to this concept ra ther than the local slope, the adjustments a re significantly smaller 
(excep t in the case of hole SA) and there is considerably less disagreem ent between the curves 
for different bore holes. This to som e extent explains why the results from different bore holes 
are m ore consistent when they are analysed using the sam e surface slope. H owever, there is an 
additional consideration. On a straight glacier a lateral varia tion oflongitudinal surface slope 
must a lso be accompanied by a longitudinal va riation, since on the average the longitudinal 
slope is about the same near the ma rgins as at the center. Therefore, laterally varying 
longitudinal stress gradients probably exist, and these may compensate any effects a rising 
from la teral surface slope variation as derived from Equation ( I r). This may be a m ore 
fundamental reason for the comparatively good agreement between the curves as plotted in 
Figure 7. It suggests further tha t the solution for 7'8 based on a single slope as shown in Figures 
8a and 8b may be more valid than one based on a la tera lly varying body force. 

In Figures 8a and 8b the contours of constant 7'8 d eviate significantly from the semi­
circula r shapes they would have if the velocity contours were precisely semicircular as assumed 
in the derivation of Equation ( I8a) . Furthermore, Figure 8c shows tha t the distribution is 
considerably different than calculated by Nye ( r 96S, p . 680). A parabolic channel with half­
width twice the depth (width ratio 2) is a good approximation to the A tha basca Glacier cross­
section. Nye's calculations were based on the assumptions of a homogeneous power-law 
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rheology (n = 3), rectilinear flow, and sliding velocity independen t of position. This latter 
assumption is certainly not applicable in Athabasca Glacier as is visible in Figure 6. As a 
consequence, considerable differences between Nye's theoretically derived distributions of 
velocity and stress are to be expected . Some aspects of this have been discussed previously 
(Raymond, 1971 Cb] ). 

The distributions of t xy versus depth at the cen ter line and t xz versus z across the surface 
as derived from Figures 8a and 8b are ~hown in Figures 9 and 10. The overall depth depen­
dence of t x y is compatible with a shape factor of 0. 50; however, near the surface 17xy l increases 
with depth more slowly in accordance with a factor of abou t 0.3 to 0-4- Correspondingly the 
variation of 17xzl across the surface near the center corresponds to a factor of about 0.6 to 0.7. 
In terms of the small-scale variation of stress near the center line at the surface and an overall 
view of the comple te sec tion, shear-stress magnitude computed from Equation ( I I) increases 
less rapidly with depth at the center line and increases more rapidly with lateral position along 
the surface than computed by Nye ( 1965) as shown in Figures 9 and 10. (For this comparison, 
stress has been calculated from Nye's non-dimensional stress using a surface slope of 3.9 0 and a 
depth of 300 m .) 
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f- 200 
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W 
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"-

300 "- ......... 
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Fig. 9. D epth distribution of I Txyl at cen ter line. 

Figures 9 and 10 also show the corresponding distributions of 17 xyl and 17xzl computed 
directly from the observed strain-rate and a homogeneous power law with et = 0.72, B = 1.03 
bar a I-a. (These parameters are given by the least-squares analysis discussed in the next 
section and are in good agreem en t with Glen 's law.) From Figure 9 i t is apparent tha t I Txyl 
so calculated increases below the surface even more slowly than given by Equation ( I I). This 
shows that the near-surface anomaly discussed with respect to Figure 7, is somewha t reduced 
but not completely accounted for by the stress distribution given by Equation (I I). The 
comparison shown in Figure 10 indicates that a similar anomaly would be associated wi th 
calculation of viscosity across the su rface by 7J = 7 XZ/ 2Cxz when 7 xZ is given by Equation ( I I). 
It is noteworthy that for stress given by the homogeneous power law, 07 XY/OY and 07 XZ /OZ 
sum to considerably less than the acting body force in the x direction (abou t 0.7 pgx in section 
A and 0.4 to 0.5 pgx in section B). T his indicates that a substantial longitudinal stress gradient 
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would be required for mechanical equilibrium, if the homogeneous power law behavior were 
applicable. 

For the purpose of estimating flow-law parameters, T) can be calculated from 

1] = Ts/2CS· (20) 

Figure I I shows log [l] /(bar a)] plotted against log [E/(a - 1 ) ]' The curves for the various bore 
holes are similar to those shown in Figure 7. However, except for lA and 5A the curves are 
displaced downward relative to their positions in Figure 7. Because of this the general trend 
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Fig. 10. Lateral distribution of I Txz l across the suiface. 

defined by the curves of Figure I I gives somewhat lower viscosity in comparison to Figure 7. 
If the laterally averaged surface slope is used in the analysis, so that all of the curves are 
displaced downward by an additional distance 0.06, the trend is no longer distinguishable 
from Glen's flow law (n = 4.2 , T = - 0.02 ° C) except there is some suggestion that it is not so 
steep, which corresponds to lower n. If the analysis is based on a laterally varying body force 
computed from the local surface slope, one arrives at a similar conclusion, the individual 
curves still scatter about the line representing Glen's law. However, 5A is displaced downward 
to a greater extent than other holes, which results in a steeper trend corresponding to n 
somewhat higher than in the Glen flow law. 
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The slopes of the approximately linear segments for the individual curves in Figure I I 

have a similar range (QC equal 0.5 I to 0.97) as exists in Figure 7. A surprising difference is that 
in the deeper ranges the curves for the different bore holes shown in Figure I I do not agree 
with one another as well as in the simpler less rigorous analysis of Figure 7. By redrawing the 
contours of constant velocity within the error bounds of velocity measured at the bore holes 
and reasonable interpolation between holes, it is possible to achieve local changes in stress of 
up to 0.2 bar. This suggests the different curves could be brought into closer agreement by 
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with results f rom laboratory and other field experiments. The solid straight lille represellts the power law derived by the 
least-squares millimizatioll Of residual forces (a = 0.72, B = 1.03 bar al-<X). 

choosing a different pattern of contours which is compatible with the measurements. Because 
of the great amount of computation involved, only a few tria ls were attempted and no such 
pattern was found . Nevertheless this remains a distinct possibility particularly near the bottom 
where bedrock features could cause significant local variations in flow. In any case, the details 
of the contour shapes are not so well established that any definite conclusions can be drawn 
concerning the disagreement between the individual curves. 

On the other hand, the general trend established by all of the curves cannot be significantly 
changed simply because gross equilibrium requires that a local change in T S is accompanied 
by a com pensating change in T S elsewhere. The general pattern of velocity in the glacier is 
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sufficiently well established so that the general downward displacement of the curves in 
Figure 1 I in comparison to those in Figure 7 is probably a real effect. 

The curves do not show steep upturned portions for near-surface data as strongly as exists 
in Figure 7. This effect has been eliminated almost entirely for holes 5A and 4A and greatly 
reduced in the section B holes, but there is still a residual effect for those bore holes near the 
center. This is reasonable since small absolute errors in either the measured strain-rate 
components or the computed stress manifest themselves as large relative errors in T) as com­
puted by Equation (20) only near the surface at the center line where es and TS go to zero. 
Since the viscosity at the surface given by Equation (20) is essentially Txz / 2exz, the residual 
upturn of the curves and its systematic dependence on the bore hole position relative to the 
center line represents the anomaly anticipated in Figure 10. The largest relative error in exz 
at the surface for any of the holes is about 30% . Perhaps the upturn could be explained on this 
basis, but the systematic nature of the effect suggests that it does not represent an error in the 
measurement of strain-rate. Also the error in the solution for stress from Equation ( I I) caused 
by uncertainty in the position of the center line, the contour shapes, and the characteristic 
trajectories cannot account for this effect, because any adjustment in these fact.ors only leads 
to a local redistribution of stress. It is reasonable to suppose that some of the remaining 
confl ict between the apparent rheology inferred from the measurements and the homo­
geneous power law behavior which one might hope for, can still be attributed to errors in 
estimating stress which arise because of the three-dimensional character of the flow field. 

Before proceding, a few comments are in order concerning the possibility of solving the 
y-equilibrium equation for P* as in Equation (12) and also testing whether the z-equilibrium 
equation (3c) is also thereby satisfied. Clearly the distribution of T) given by Equation (3a) 
through solution of Equation ( 11 ) is subject to considerable uncertainty. Also, because of the 
indirect manner in which v is determined at depth and the complex distribution of w 
(Raymond, 1971[aJ ), \l 2v and \l 2w are very imprecisely known. For these reasons, such a 
test would not be very indicative even if the flow were such that the analysis applied rigorously. 

Minimization of residual forces. In order to establish the conditional and normal equations 
for choosing the best values of B and ex and testing the applicability of a homogeneous power 
law in terms of residual forces, it is necessary to evaluate the coefficients /1-i and Ki in Equation 
( 15). As already mentioned, Ky = \l2v and Kz = \l2w are very poorly determined by the 
measurements. For this reason Equations (3b) and (3c) have not been included in the analysis. 
Equations (4a) and (4b) are automatically satisfied because of the way av/ox and av/a..: were 
chosen and thus contribute no information to the analysis. This leaves only the x-equilibrium 
equation and Equation (4c). 

Without Equation (3b) there is no basis for determining p* at depth. However, p* and 
op*/ox can be determined at the surface from Equation (4c) . If B and ex have values which 
correspond to Glen's law, then Equation (4c) shows that op* /ox at the surface is less than 
10% of pgx (= 0.S92 X 10- 2 bar/m ) ; op*/ox is positive except at SA and IC. The small values 
of op*/ox are a consequence of the very low longitudinal gradients of the surface strain-rate 
components (less than 0.2 X 10- 4 a - I m - I in the area of the bore-hole array). The small 
differences between op*/ox computed at the different bore holes are not much larger than 
could be expected from measurement errors. For these reasons a model for p* more compli­
cated than a linear variation in x does not seem justifiable so that op*/ox enters as a space­
independent body force. For convenience op*/ox has been taken to be 0, thus eliminating 
Equation (4c) and the op*/ox contribution to Equation (3a) from the analysis. This simplifica­
tion does not affect the value of ex (or n) given by the analysis. Because of the generally 
positive value of op*/ox, the resulting value of B will be too large by about 5 to 10%, which 
can easily be taken into account subsequently. (Since ezz is small at the surface (Raymond, 
1971[b), p. 64), p* = 2T)eyy ~ - 2T)exx = - Txx' , it also is possible to state that the total 
longitudinal stress gradient at the surface, neglecting the contribution from the gradient in 
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overburden which exists when the surface and the x-axis are not parallel, is less than 20 % of 
pgx. This is of the same order as the longitudinal variation of surface slope, as would be 
expected from the analysis by Budd ( 1971 , equation (59» . 

In order to form a discrete set of conditional equations, 

[ 
. oE2 . oE2 . OE2] 

fL x = 2 exx Tx + eTY lY+ eXZ oz 
and Kx = \l2u were calculated at 5 m depth intervals at each of the bore holes. The x and z 
gradients of E2 at a given depth were calculated using simple differences in the computed 
value of E2 at the bore-hole locations at that depth. These gradients could be estimated over 
the full depth range of all of the bore holes except oE2/ox at 4A and 5A, where there were no 
longitudinal pairs of holes. At 4A and 5A oE2/ox was taken to be o. 

o2u j ox2 and o2ul OZ2 were computed at each depth from a polynomial interpolating function 
fit to the values ofu measured at that depth in each of the bore holes. (See Raymond, 1971 [a] 
for a complete discussion of the interpolating procedure. ) All of these quantities are subject to 
uncertainty because of possible interpolating errors. This is especially so for 02U / f3x2 which is 
controlled by direct measurement only at the surface, where there was an extensive surface 
strain grid, and in the uppermost 200 m of hole lA, which had adjacent bore holes both up­
and down-glacier (Fig. 2 ) . Below 200 m o2u jox2 was extrapolated, and the difference between 
02U/OX2 at the surface and at depth was taken to be independent of x and z . Interpolation errors 
in 02U / O::,2 may be particularly significant at holes 3B, 2B and 5A and at hole 2A below 100 m, 
because these locations were on the lateral margins of the array (Fig. 2). Calculation of oE2 / oy 
and 02U/ f3yz was by simple differences between values spaced at 5 m depth intervals. 

At this point it is important to recognize that the data are not adequate to take the 
longitudinal stress gradients into account completely. The contributions from op* /ox and 
02U/OX2 are uncertain over the deeper portions of all bore holes . Only the contribution from 
exx oYJ /ox is reasonably determinable over the complete depth ranges. 

The residuals to the x-equilibrium equation can be minimized in the least-squares sense 
over any set of points chosen from the points spaced at 5 m intervals along the bore holes 
where fLx and Kx were calculated. 

When the residuals at only the points on a single bore hole are minimized, the analyses 
for the different bore holes give a range of parameters as was the case in the earlier analyses. 
Excluding holes le and 4A, in which € does not vary significantly over their respective depths, 
these analyses give IX from 0.53 to 1.07 and B from 0.50 to 2.2 bar a- la: . The root-mean­
square (r.m.s. ) residual force for these analyses is typically between 0.3 and 0.4 in units of 
pgx. If these analyses are restricted to the depth ranges for which the curves of Figure 7 are 
linear, the analyses give IX from 0.61 to 0 .83 and B from 0.50 to 1.87 bar ai - a:. In these cases 
the r.m.s. residual force ranges from 0.07 to 0 . 33 pgx. The large spread in B is mainly a 
consequence of extrapolating to E = 1 a- I with different slopes IX. However, the spread in 
the graphical representations as visualized in a plot such as Figures 7 or 1 I is greater than 
shown by the curves in either Figures 7 or I I. When the analyses are restricted to the lower 
portions of the bore holes the spread in IX is less than is measured from the slopes of curves in 
either Figures 7 or I I . 

When the analysis is done for the complete depth range of all of the holes taken together, 
the result is IX = 0.72 (n = 3.6) and B = 1.03 bar ai - a:. The relationship between YJ and E 
corresponding to these parameters is plotted in Figure I I. It agrees well with the trend 
defined by the various curves based on stress as calculated from Equation (I I). It gives 
viscosities which are only slightly higher than expected from Glen's law (n = 4.2 ) . The r.m.s. 
residual force in units of pgx is o.{o. The standard errors given by the least-squares analysis 
are 0.02 for IX and 0.06 bar aI - a: for B. However, these cannot be interpreted as standard error 
for IX and B because the least-squares analysis was carried out using flow quantities derived 
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from the smoothed tilt profiles . The actual standard errors may be larger. In view of the large 
spread in the parameters deduced from the analysis of single bore holes, the deviation of this 
flow law from Glen 's law is probably not significant. Further if B is reduced by 10 % (log 
[ry /( bar a)] by about 0 .05) in accordance with the values of op*/ox m easured at the surface, 
the deviation from Glen 's flow law becomes en tirely negligible. 

The r.m .s. residual force of 0.40 pgx would seem to indicate that a power law applied 
homogeneously to the whole ice volume is a poor representation. However, residual forces as 
large as 15 to 2 0 % of pgx could occur as a result of errors in the measurement of velocity at 
the bore-hole sites and their direc t effect on the calculated strain-rate components and their 
gradients. The less definable error in the strain-rates and their gradients caused by possible 
incorrect interpolation between the bore holes could add significantly to the residuals. 
Further, the omission of oP* / ox in the analysis and the likelihood that this quantity exhibits 
some variation in the volume of the bore-hole array may contribute to the residuals. Conse­
quently the large r esiduals do not provide definite evidence tha t the least-squares-derived 
flow law is not a good one. 

One interesting fea ture of the distribution of residual forces is that all of the bore holes 
show positive residual forces near the surface. The values a t the surface range from 0. 23 to 
0. 74 pgx with hole l C showing the smallest residual and the residual of section A averaging 
somewha t less than in section B. T his is a m anifestation of the near-surface anomalies discussed 
with respect to Figures 7 to I I . The more complete three-dimensional analysis has failed to 
elimina te this a nomaly. The neglected contribu tion to equilibrium of op*lox is quantita tively 
too small to account for the effect. H owever, some features of the distribution of longitudinal 
strain-ra te would tend to produce the systematic differences which exist be tween the different 
sections. Figure 12 shows the distribution of ou/ox on the surface along a line passing through 
I C, I A and I B . Although the fluctuations in oulox are of the same order of magnitude as the 
measurem ent errors, oulox seems to be relatively tensile down-glacier a t I c, exhibit no gradien t 
a t l A, and be relatively compressive down-glacier at lB. T hus, the sense of op*lox (and also 
OTxx' lox) seems to be in the proper direction to produce the observed effects. In view of the 
large residual for ces which exist at all depths i t seems reasonable to attribu te the near-surface 
effects to longitudinal stress gradien ts even though they do not seem to give a quanti tative 
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explanation. Possible alternative rheological explanation must be somewhat hypothetical. 
Because of the discernible differences between the three sections, such explanations would 
seem to require some longitudinal inhomogeneity in the ice. 

Summary and conclusions. The distribution o[ stress in Athabasca Glacier differs substantially 
from stress at the center line computed by a standard shape factor or the distribution computed 
by Nye (1965). The major cause of these differences i a basal velocity which varies laterally 
across the section in contrast to zero basal velocity assumed by Nye. There is a lso evidence 
that non-zero longitudinal tress gradients exist and contribute to this difference. 

The techniques of this paper [or estimating rheological parameters take account of these 
differences to varying degrees. Imprecision and lack of resolution in the determination of the 
velocity field cause some uncertainty in the results. When the flow field is analyzed under the 
assumption of x-independence, a significant question causing additiona l uncertainty is the 
proper choice of surface slope when this slope va ries laterally and longitudinally. This question 
can be avoided using a complete three-dimensional analysis, but this has not been entirely 
possible in this case, because of insufficient control on the longitudinal variation of velocity. 
The techniques give effective viscosity which is smaller than would be obtained by estimating 
shear stress using a standard shape factor or the theoretical distribution ofNye. Taking account 
of the above sources of errors, the overall ice behavior is not significantly different from the 
flow law of Glen (1955) based on Andradean analysis of his experimen tal creep curves. 

Glen's experimental data analysed for Andradean creep extend down to uniaxial stress of 
about 1.5 bar which corresponds to an effective stress T of 0.9 bar and an effec tive strain-rate 
€ ofo.06 a - I or log (€/a- I) of - 1.2. Thus, the comparisons shown in Figures 7 and 10 corres­
pond to the lower stress range of Glen 's experiments and an extrapolation to even lower stress. 
The deformation in Athabasca Glacier support the validity of such an extrapolation down to 
abou t 0.5 bar. However, the lower limit of stress for which such an extrapolated curve remains 
valid cannot be determined because of the a nomalous near-surface behavior of the deforma­
tions. Irrespective of this question, the measurements in Athabasca Glacier demonstrate the 
importance of correcting creep experiments at low stress to account for transient effec ts. The 
m easurements are clearly incompatible with the relationship between minimum creep and 
stress reported by Glen (Figures 7 and 10). This is in agreement with conclusions recently 
reached by Thomas (1971 ) from measurements of deformation on ice shelves and comparison 
with experiments reported by Tabor and Walker (1970) . 

Unless there is a fortuitous cancel lation of opposing factors the agreement between Glen 's 
flow law and the deform a tions in the Athabasca Glacier implies tha t there is no maj or effect 
of a special ice structure. However, variations in ice structure may be the source o[ some of the 
apparent variation in ice behavior seen in Figures 7 and I I and implied by lhe large residuals 
to the x-equation of equilibrium evaluated with a homogeneous power law. This possibility 
has been cited in the past to explain differences between various observations (e.g. ye, 1953, 
p. 497 ; Kamb and Shreve, 1966 ; Shreve and Sharp, 1970, p. 84). Unfortuna tely, the accuracy 
and density of velocity m easurements in Athabasca Glacier are still not sufficient to determine 
the detailed features of the stress distribution and to draw any defini te conclusions as to the 
reality of the apparent discrepancies. It is hoped that the techniques described in this paper 
have the potential [or a quantitative approach to these questions. 
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