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INVERSION OF FLOW MEASUREMENTS FOR STRESS AND
RHEOLOGICAL PARAMETERS IN A VALLEY GLACIER*

By Cuarves F. Ravmonnt
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AssTRACT. Methods are developed for determining the distributions of stress and effective viscosity in a
glacier, under the assumptions: the ice is quasi-viscous, the flow is time independent, and acceleration forces
are negligible. Measurements of the three-dimensional distribution of velocity are needed for their applica-
tion. The differential equations of mechanical equilibrium, expressed in terms of viscosity, strain-rate
components, mean stress, and their gradients, are viewed as equations to be solved for viscosity and mean
stress subject to boundary conditions at the free upper surface. For certain rectilinear flow patterns, unique
distributions of stress and effective viscosity can always be derived. For more complicated flow this is not
necessarily so. However, it is still possible to choose the best values of rheological parameters in any trial
flow law based on the requirement that the residuals to the equations of equilibrium be minimized in a
mean-square sense. The techniques are applied to measurements of internal deformation made in nine
bore holes on the Athabasca Glacier. At the center line the magnitude of the surface-parallel shear stress
increases with depth more slowly than would be expected from a standard shape factor correction or the
theoretical distribution of Nye. Correspondingly the lateral distribution of lateral shear stress shows the
opposite relationships. In the lower one- to two-thirds of the depth corresponding to a range in effective stress
from about 0.5 to 1.2 bars, the gross rheology of the ice is not distinguishably different from the experi-
mentally determined flow law of Glen (n = 4.2, T = —0.02° ) as generalized by Nye. The results do
not support the conclusion that the effective viscosity is higher than would be expected from Glen’s experi-
ments as indicated by the more limited measurements of Paterson and Savage. Power-law parameters
derived for the different bore holes considered separately show a spread, which suggests some rheological
inhomogeneity. However, no definite conclusions can be drawn, because of direct measurement errors at
the bore holes and less definable uncertainty in the interpolated distribution of velocity between the holes.
The upper one- to two-thirds of the glacier constitutes an anomalous zone in which there is either a strong
effect from a complex distribution of stress arising from longitudinal stress gradients or more complicated
rheology than in a homogeneous power-law material.

RESUME. [nversion des mesures d’écoulement pour la détermination des paramétres rhéologiques et de contrainte dans
un glacier de vallée. On a mis au point des méthodes pour déterminer les distributions des efforts et la viscosité
réclle dans un glacier sous les hypothéses que: la glace est un fluide quasi-visqueux, I’écoulement est indépen-
dant du temps et les forces d’accélération sont négligeables. Pour appliquer ces méthodes, on a besoin de
mesures de la distribution des vitesses dans trois dimensions. Les équations différenticlles de IPéquilibre
mécanique, exprimé en fonction de la viscosité, des composantes de la vitesse de déformation, de la contrainte
moyenne et de leurs variations, sont considérées comme des équations a résoudre pour calculer la viscosité
et la contrainte moyenne aux conditions aux limites de la surface libre supérieure. Pour certains types
d’écoulements rectilignes, on peut toujours en tirer une distribution unique des contraintes et une viscosité
réelle. Pour un écoulement plus compliqué, il n’en est pas forcément de méme, Cependant, il est encore
possible de choisir les meilleures valeurs des paramétres rhéologiques dans une loi expérimentale d’écoulement
basée sur 'exigence que les résidus des équations d’équilibre soient réduits au minimum dans un sens quad-
ratique moyen. Les techniques sont appliquées 4 des mesures de déformation interne faites dans neuf
forages sur le glacier de I'’Athabasca. Sur la ligne centrale, la grandeur de I'effort de cisaillement paralléle a
la surface croit avec la profondeur moins vite qu’on l'attendait a partir d'un facteur de correction de forme
classique ou de la distribution théorique de Nye. Corrélativement, la distribution latérale des efforts de
cisaillement latéraux montre des résultats opposés. Dans le tiers ou les deux tiers inférieurs de la profondeur,
correspondant & des efforts réels de lordre d’environ 0,5 a 1,2 bars, I'écoulement d’ensemble de la glace
n'est pas significativement différent de la loi expérimentale de Glen (n = 4,2, T = —o0,02° C) généralisée
par Nye. Les résultats n’aboutissent pas 4 la conclusion que la viscosité réelle est plus forte qu’on ne I'atten-
drait & partir des expériences de Glen comme cela avait été suggéré par Paterson et Savage. Les paramétres
de la loi puissance tels qu'ils résultent des différents forages considérés isolément montrent une dispersion
qui fait penser 4 quelque inhomogénéité rhéologique. Cependant, on ne peut pas en tirer de conclusions
définitives en raison des erreurs sur les mesures directes dans les forages et de I'incertitude encore plus
difficile a estimer dans Iinterpolation de la distribution des vitesses entre les forages. Le tiers, ou les deux
tiers, supérieurs du glacier constituent une zone anormale dans laquelle il se produit soit un effet important
d’une distribution complexe des efforts issus des gradients longitudinaux des contraintes, soit une rhéologie
plus compliquée que dans un matériel homogéne 2 loi-puissance.
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ZUSAMMENFASSUNG.  Bestimmung von Spannungs- und Fliessparametern aus Bewegungsmessungen in  einem
Talgletscher. Unter den Voraussetzungen, dass das Eis quasi-viskos, das Fliessen zeitunabhéngig und die
Beschleunigungskrifte vernachlissigbar sind, wurden Methoden zur Bestimmung der Verteilungen von
Spannung und effektiver Viskositit in einem Gletscher entwickelt. Fiir ihre Anwendung sind Messungen
der dreidimensionalen Geschwindigkeitsverteilung erforderlich. Die Differentialgleichungen des mechani-
schen Gleichgewichts, dargestellt in Ausdriicken der Viskositit, der Komponenten der Dehnungsgesch-
windigkeit, der mittleren Spannung und ihrer Gradienten werden als Gleichungen angeschen, die unter
Beriicksichtigung der Grenzbedingungen an der freien Oberfliche fiir die Viskositit und die mittlere
Spannung zu lésen sind. Fiir gewisse geradlinige Fliessmuster kénnen immer eindeutige Verteilungen der
Spannung und der effektiven Viskositit hergeleitet werden. Fiir kompliziertere Fliessformen ist dies nicht
unbedingt so. Dennoch ist es noch moglich, die giinstigsten Werte der rheologischen Parameter fiir einen
beliebigen Ansatz des Fliessgesetzes so zu wihlen, dass die Restfehler gegeniiber den Gleichungen des
Gleichgewichts in ihrer Quadratsumme zum Minimum werden. Die Methode wird auf Messungen der
inneren Deformation angewandt, die in neun Bohrlochern auf dem Athabasca Glacier ausgefithrt worden
waren. Auf der Mittellinie nimmt die oberflichenparallele Scherspannung mit der Tiefe langsamer zu, als
es auf Grund eines normalen formabhingigen Korrektionsfaktors oder aus der theoretischen Verteilung
nach Nye zu erwarten wire. Entsprechend zeigt die seitliche Verteilung der seitlichen Scherspannung das
entgegengesetzte Verhalten. In den unteren ein bis zwei Dritteln der Tiefe, was einem wirksamen Spannungs-
bereich von etwa 0,5 bis 1,2 bar entspricht, ist die Gesamtrheologie des Eises von dem experimentell
bestimmten Glen’schen Fliessgesetz (n = 4.2, T = —0,02° C) in der von Nye generalisierten Form nicht
unterscheidbar. Die Ergebnisse stittzen nicht die von Paterson und Savage vorgeschlagene Folgerung,
dass die effektive Viskositat hoher ist, als es nach Glen’s Versuchen zu erwarten wire. Betrachtet man die
Parameter des Kraftgesetzes, die fiir die verschiedenen Bohrlécher hergeleitet wurden, einzeln, so zeigen
sie eine Streuung, die eine gewisse rheologische Inhomogenitit vermuten ldsst. Trotzdem konnen wegen
direkter Messfehler am Bohrloch und einer schwer festlegbaren Unsicherheit in der zwischen den Léchern
interpolierten Geschwindigkeitsverteilung keine endgiiltigen Folgerungen gezogen werden. Die oberen ein
bis zwei Drittel des Gletschers bilden eine anormale Zone, in der entweder erhebliche Wirkung einer
komplexen Spannungsverteilung infolge longitudinaler Spannungsgradienten oder eine kompliziertere
Rheologie als im homogenen Material, das fiir das Kraftgesetz vorausgesetzt wird, herrscht.

INTRODUGTION

In recent years a number of experimenters (Glen, 1955; Steinemann, 1958; Butkovich
and Landauer, 1958; Voytkovskiy, 1960; Mellor and Testa, 1969) have investigated quanti-
tatively the creep response of polycrystalline ice to applied load. These experiments have
shown that the relationship between rate of strain and applied stress can be described by a
power-type law

&= HAgh

where o is the applied stress and ¢ the resulting strain-rate. However, the various experiments
do not give consistent values for the parameters 4 and n. For example, reported values of n
range from close to 1 to over 4. Some of these differences may possibly be explained by
failure of the power law to describe ice rheology over a large stress range. For example, n may
increase with increasing stress, in which case the description as a power law is not strictly
applicable but is approximately valid for only a limited range of stress (Steinemann, 1958;
Butkovich and Landauer, 1960; Mellor and Testa, 1969). On the other hand, some of these
differences may arise because the samples used in the various experiments were not structurally
the same, and because a well-defined steady-state deformation was not always achieved.
Because of these difficulties, it is not at all certain that one of the experimentally determined
flow laws or some average of them will reasonably represent the properties of natural glacier
ice, which can be structurally quite different from the experimental samples, and which has
been subjected to stress over considerably longer intervals of time.

Measurements of ice deformation in temperate and nearly temperate glaciers (Gerrard
and others, 1952; Sharp, 1953; Mathews, 1959; Meier, 1960; Savage and Paterson, 1963;
Kamb and Shreve, 1966; Shreve and Sharp, 1970) have shown that, in fact, glacier ice
deforms in rough agreement with the power law (n = 4.2) deduced by Glen (1955) from
quasi-viscous analysis of his experiments done at —0.02° C. However, apparent differences
exist. Some field observations give values of # higher than expected on this basis (e.g. Kamb
and Shreve, 1966); others give lower values of n (e.g. Shreve and Sharp, 1970). Similarly
some observations suggest that temperate glacier ice has a higher apparent viscosity than
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expected from the laboratory experiments (e.g. Paterson and Savage, 1963); others suggest
the opposite (e.g. Shreve and Sharp, 1970).

These analyses of bore-hole deformation data have been based on the assumption that the
surface-parallel shear stress varies linearly with depth from zero at the surface to some value
at the base, which is usually taken equal to the average basal shear stress as computed from
the hydraulic radius of the channel. This assumption is valid only in special circumstances
(Nye, 1965); measurements of velocity across a complete cross-section of Athabasca Glacier
indicate that this assumption breaks down there (Raymond, 1971[b], p. 72). Thus, apparent
differences between results of different field experiments and experimentally determined flow
laws may represent failure of the assumptions about the distribution of stress instead of actual
rheological effects. In order to avoid the standard assumptions about stress, one is confronted
with an interesting inverse problem. The purpose of this paper is to consider how the stress
field and rheological parameters may be determined in a flowing medium from measurements
of the three-dimensional distribution of velocity and only general assumptions about the
rheology of the material. The techniques are applied to measurements of deformation made

in the Athabasca Glacier (Raymond, 1971[a], [b]).

RHEOLOGICAL ASSUMPTIONS

It is assumed that the relationship between the applied stress 7;; and the resulting rate of
strain é;; can be described by

7’ = en(E;,; ;) éy (1)

where p = —}7y; is the mean compressive stress, 745’ = 745} pdy are the deviatoric stress
components, and 7 is an effective viscosity which may be a function of the non-zero invariants
of the strain-rate tensor E, = }éjé;; and E; = det |é;|. (Here and in subsequent equations,
subscripts 7 and j range from 1 to 3 and a repeated subscript in a term indicates summation
over this range.) In addition, » may depend on other parameters such as temperature,
texture, chemical composition, etc. The possibility of plastic behavior with a non-zero yield
stress is excluded by the additional explicit requirement that the deviatoric stress be zero
whenever the strain-rate is zero. -

The material described by Equation (1) is an isotropic, incompressible, viscous fluid in
which the viscosity depends on the rate of deformation (or equivalently the state of stress) but
does not depend on the mean stress. If 5 is entirely independent of the rate of strain, then the
material behaves like a simple Newtonian fluid. If % is a function only of the second invariant
of strain-rate £,, then the material is identical to that considered by Nye (1957) for theoretical
analysis of glacier flow. If  is a function of both invariants E, and £, then the material
behavior is more complicated than has yet been applied to glaciers, but it can still be treated
easily by some of the methods described below.

There are a number of reasons why Equation (1) may be in reality too simple. The
response of a crystalline solid depends on the history of loading and not just the present stress.
Equation (1) would apply only if the stress has been constant sufficiently long for a steady
state to be achieved. Itis possible that creep response may depend on the mean stress, although
experimental evidence (Rigsby, 1958; Hacfeli and others, 1968) show that this dependence is
weak. Measurements of ¢-axis fabrics in glacier ice (Kamb, 1959; Rigsby, 1g60) have shown
that crystals are usually not randomly oriented. Because of the strong plastic anisotropy of ice
single crystals (Nakaya, 1958; Higashi, 1969), it is reasonable to expect that glacier ice may be
somewhat anisotropic. Even if these difficulties did not exist, it is still possible that the
behavior of glacier ice could be more complicated than is describable by Equation (1). Glen
(1958) has discussed this in detail. However, until more experimental information is available,
it does not seem necessary to consider more general material behavior. The purpose of the
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following analysis is to discuss to what extent the applicability of Equation (1) can be tested,
and if it is applicable, how the specific functional dependence of 5 on E, and £; can be deter-
mined.

METHODS OF ANALYSIS

Conditions for equilibrium of a material describable by Equation (1) which is undergoing
slow steady deformation and is acted upon by gravity are:

0 ) ap
. (2néy) g TPEI =0 (2)

where p is the density of the material and g; are the components of the gravitational accelera-
tion. Choose coordinates (x, y, z) such that the y = o plane approximates the glacier surface.
Let the z-axis be horizontal, the y-axis point downward, and the x-axis be directed down-
glacier. Define at each point on the glacier surface a local coordinate system (x', ), 2) for
which 3’ is normal to the local surface and points downward and x" has azimuth identical to
the azimuth of the x-axis. Let y5(x, z) represent the glacier surface. Then the equations of
equilibrium become:

. o . @ . Oy op*
2z 5, 2y ?j:"‘%”’z B AVt =9 (32)
- .0 R op*
2égy EZ*F'-’Eyy _a-;+23yz a—z-i-nV’U— » sl (3b)
. op*
267z 3;-1'231;2 a__y! 265z a_z+ﬂvzlt’_ o +fz =0, (3¢)

where u, v and w are the x, y and z components of velocity, where
pd

p*(x, 9, 2) = p(x, 3, z)f pgy &y —pa
»e
is the difference between the mean compressive stress p and the sum of the weight of the
overlying ice and atmospheric pressure pa, and where

2

¥
s op s ip
Jo= ng+§ Pé’y—‘f xSy dy, Jfy=o, and  f; = [ ng—J 225 dy
Js ¥s
are the components of an effective body force composed of the respective components of g
and gradients in the overburden pressure. At the surface y = ys(x, 2):

THr — Q'qe-g;'y' = 0, (4a’)
Tyezr = 2Néyzr = 0O, (4-b)
Tyyrtpa = 2y —p* = o. (4¢)

Normally, one attempts to solve the equations of equilibrium for the distribution of
velocity given the behavior of the material and appropriate boundary conditions. Here the
purpose is to consider the inverse problem in which one attempts to determine the distribution
of » given the distribution of velocity as determined by field measurements. From this point
of view Equations (3) are viewed as three first-order partial differential equations in two
unknown functions 5 and p. If the region in which the velocity is known intersects the surface
9s(x, z), then Equations (4) provide boundary conditions. Presumably Equations (3) and (4)
could be solved to define 5 and p throughout this volume. This will not always be possible.
Obviously a necessary condition on the velocity field is that é;.y. and éy.,. be zero on ys, so
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that Equations (4a) and (4b) can be satisfied. Since there are three differential equations to
be satisfied and only two unknown functions to be determined, it also seems likely that a
solution will not exist for an otherwise arbitrary distribution of velocity, but additional
conditions would have to be satisfied in order to guarantee the existence of a solution. Non-
existence of a solution would indicate that the material behaves in a fashion which cannot be
described by Equation (1). Further it is not apparent that Equations (4) are adequate
boundary conditions. If the solution is to exist at all, ¢,.,. and ¢,.,. must equal zero on yg(x, z)
in which case Equations (4a) and (4b) would seem not to give any constraint on 5 or p. This
suggests that even if a solution exists it may not be unique, no matter what accuracy and
resolution is achieved in the measurement of the velocity distribution. To gain some insight
into these mathematical questions, it is useful to consider some special cases.

Rectilinear flow. Consider the case where the top surface is planar, so that ys(x, z) = o
and (x,)’, z) are aligned with the (x,7, z) coordinates, where the flow is rectilinear
(v = w = o), and where the density does not depend on x or z. The only non-zero com-
ponents of strain-rate are ézy = }u/dy and é,, — }du/dz. If Equation (1) applies, # must be
independent of x because of incompressibility and ¢u/8y must be zero on y = o by Equation
(4a). Assume that the ice rheology is x independent, so on/dx = o. Equations (3b), (3¢) and
(4¢) require that p* be zero, and when this is the case they are satisfied.

Equation (3a) becomes

dudn Ouo
B a—j}-f-'a—z £+UVZH+ng = 0. (5)

Equation (5) is a first-order partial differential equation with a single dependent variable 7.
In general, there is a single characteristic curve passing through each point with direction

given by

dy  Ou [ou 6

dz By/ iz’ )
Thus the characteristic curves are parallel to the gradient of . On a contour diagram of u
the curves would run normal to the contours. At points where both du/dy and ou/ez are zero,
the direction of the characteristic curves is undetermined, and there can be more than one
curve passing through such a point. Figure 1 shows a hypothetical distribution of « and the
associated characteristic curves in a valley glacier with cylindrical channel and planar upper
surface.

Specifying the dependent variable along a characteristic will in general not enable one to
determine the solution elsewhere. Since the surface of a glacier undergoing rectilinear flow
is a characteristic, it would seem that Equations (3) and (4) are not sufficient to determine a
solution. However, it is also true that specifying the value of the dependent variable at one
point on a characteristic determines it at all other points on that characteristic. For the

e

A(n,n,,t)

Fig. 1. Hypothetical distribution of velocity contours (solid) and characteristic curves (dashed) for rectilinear flow in a valley
glacier,
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hypothetical distribution of velocity shown in Figure 1, every point in the cross-section is
joined by a characteristic curve to a single point on the surface at which velocity is maximum.
This suggests that a solution for » could be obtained, if a suitable condition at the intersection
point could be formulated.

To investigate these possibilities, Equation (5) can be expressed with respect to a new
coordinate system (t, n) defined by a one-to-one transformation

n=n(y,z),
£ = H( p52) } (7)

This coordinate system is chosen so that curves of constant n are parallel to the characteristics
and curves of constant ¢ are parallel to the u-contours. By using the fact that fu/on = o
and defining 7« = nh; du/ét, Equation (5) becomes

o075 hg 8/1
hp P—’sga 7:‘2' T = —Pga (8)
ot\? oL\ dn\2 [on\?
where h? = (g) +(Er) and hn? = (%i) Jr(a—:) (9)

are the scale moduli of the coordinate transformation defined by Equations (7). The quantity
hy Sufet = [(0ufdy)2+(Pu[ez)?]t = 2[ézy*+Ex?]t = 245 gives the gradient of u and is twice
the shear strain-rate (denoted ¢;) acting across a surface parallel to the velocity contour;
r¢ = amés represents the corresponding shear stress.

A suitable condition on 4 at the intersection point is that it be zero. This is compatible
with the requirement that the shear stress be zero whenever the shear strain-rate is zero.
With this condition, Equation (8) can be solved along any chosen characteristic curve defined
by a particular value of # to determine uniquely 75(t, n). It is convenient to choose t = 0
at the intersection point. It is easily verified that a solution to Equation (8) with 74 =0
fort =ois

‘ t',n) dt’
7s(t, n) = —gahn(t, n) J h—t(%fﬂ)_h)a;m' (ro)
0
Thereafter 7(t, ) = 7s(t, n)[he Su[2t]~" = 75(t, n)[2és is easily calculated.

There is a very simple physical explanation for the above conclusions. Since du/cn = o,
the x component of the traction acting on cylindrical surfaces parallel to the characteristics
and the x-axis is zero. Consequently, the gross equilibrium of a pie-shaped segment of material
(shaded area in Fig. 1) bounded by two characteristics (coordinate lines n, and n,) and a
velocity contour (coordinate line ¢) must be accomplished by the action of a shear stress across
the velocity contour. If the distance along the velocity contour (/) between 1, and n, is
L(t, ny, ny), if A(t, ny, n,) is the included area, and if p(t, n,, n,) is the average density over
that area, then the average shear stress is

(rey = —gap(ts nyy n3) A(t ny, ) [L(E, 0y, 12). (11)
By taking n, — n-| }An and n, = n—}An and by taking note that

t

plt, myy na) AL ny, my) = J‘ 2 E nfzt{;;(f];)nh ) di’+0[(An)?]

¢}

and L(t, ny, my) = %ﬁ‘f' O[(An)?]

n
it is casily verified that Equations (10) and (11) are equivalent in the limit An — o. Equation
(11) not only gives one an intuitive understanding of the content of Equation (8), and its
solution given by Equation (10), but also suggests a graphical way of solving for 7¢ without
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explicitly writing out «( y, z) in analytical form and defining the coordinate transformation of
Equation (7). Further, it is clear that the above solution for 7 and % is unique.

If one considers other possible rectilinear flow fields which satisfy the boundary condition
Equation (4a), views the contour diagram of  as a topographic surface, and applies the above
geometrical arguments, it is easily verified that unique solutions to =4 for Equation (5) exist
as long as there are no basins (minima) either below the surface y = o or “dammed up”’
against it. (For example, this can still be so if there is more than one maximum lying on the
surface or even if there is a maximum below the surface.) If this were not so, there would be
two possibilities. The basin could be entirely surrounded by ridge crests, passes, and the
surface » = o. If the material behavior were compatible with Equation (1), then the region
would be surrounded by shear-stress-free surfaces and could not be held in place. On the
other hand, the downslope into the basin could extend all of the way to the channel boundary.
Nevertheless, mechanical equilibrium would require a negative 5 which is not physically
reasonable. One can easily contrive patterns of contours, albeit somewhat esoteric, which for
these reasons are incompatible with material behavior describable by Equation (@)=

Strain-rale field independent of x. Now consider the slightly more complicated case where the
top surface is cylindrical with generators parallel to the x-axis (2ys/éx = 0), where v and w
are independent of x, but not necessarily zero, and where 2u/dx is independent of position.
In this case the strain-rate field is independent of x. In addition assume that the density is
independent of x and z and that the material is rheologically homogeneous in the longitudinal
direction, so that d5/éx — o. Under these conditions, Equation (4c¢) together with Equations
(3b) and (3c) require that ¢p*/dx — o.

Equation (3a) again reduces to Equation (5). Under the same restrictions on the distribu-
tion of u in the cross-section discussed above, Equation (5) can be solved as before to determine
7s and 7 uniquely. The same physical interpretation of the procedure holds in this case, since
there are no longitudinal stress gradients and the surfaces across which the shear stress is zero
are cylindrical surfaces with generators parallel to the x-axis.

Equations (3b) and (4¢) give

P
. 0 ., o
P20, ) = 2yt [ |26 S ate ZL094] (12)
»i(2) ) h

Since both 7 and p* have now been determined, the z-equilibrium equation (3¢) must be
satisfied automatically in order to have a complete solution. Intuitively, one would expect
that in general this would not be the care, and that a solution would not exist for an arbitrary
distribution of velocity even with the above restrictions. This is easily established by example.

General three-dimensional distribution of velocity. 1t is clear from the above discussion that for
complex distributions of velocity, solutions for 5 and p* will exist only for certain compatible
ones. Conditions on the velocity field which suffice to guarantee the existence of a solution
to Equations (3) and (4) are not easily expressible in the general case. In addition, there is a
question of uniqueness. This could be answered affirmatively for the simpler distributions of
velocity, but in the general case it appears more difficult.

In spite of these unanswered mathematical questions, it is possible to proceed in a meaning-
ful way. Instead of seeking a precise solution to Equations (3) and (4), one seeks the best
solution consistent with a more specific parameterized model of the flow law corresponding to
Equation (1). This sort of approach also more realistically takes into account the uncertainty
which must exist in any practical measurements of the distribution of velocity. Since the
velocity can be measured at only a finite number of points and each velocity measurement
entails some error, it is clear that some indeterminacy is introduced. This would be so even if
the actual velocity distribution were to define a unique solution for 5 and p* from Equations
(3) and (4). Thus, it makes sense to reduce the number of unknowns from an infinite number
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(n and p* at each point) to a small number of free parameters in a model hopefully capable of
approximating the real distributions.
Suppose the distributions of 5 and p* are represented parametrically as follows:

"7:*"?("’)’: g5 B, Byy by veu Im), (13a)
.P* =p*(x=_y> 3 l‘M+n Ty l’ﬂ)' (Isb)

For example an appropriate form for 7 might be
n = Bes, (14)

where ¢ = y/E,. This is equivalent to a power-type flow law é = B's" with « = 1—1/n
and B = }B’-1/n and where 72 = }7y'ry’. This model for % involves two parameters
(e.g. l; = « and [, — B) and also the implicit assumption of rheological homogeneity. If the
rheological properties were homogeneous, one might expect that an adequate parameteriza-
tion in terms of E, and E, probably involves only a few parameters. On the other hand, in a
complex flow field the dependence of 7 on x, y and z may be very complicated and require a
large number of parameters for adequate representation say as a polynomial in x, y and z.
This makes it advantageous to include £, and E; in Equation (13a); x, y and z appear
explicitly to make it possible to represent inhomogeneity in the material. For example, in
Equation (14), B and « may depend on x, y and z as a result of non-isothermal conditions,
spatial variations in texture, or other effects.

Since the distribution of strain-rate and thus £, and E, are presumed to be known from
measurements, once the form of Equation (19a) has been chosen, any particular assignment
of numerical values to [, ... [, establishes a distribution of 5. Similarly the distribution of p*
is established when the form of Equation (13b) is chosen and values of Iy, ... ln are assigned.
Thus it is possible to test whether Equations (3) and (4) are satisfied. In general, with specific
choices of [, ... I in Equations (13), Equations (3) will not be satisfied at a given point in the
interior of the body. There will be residuals 7z, ry and r, to Equations (3a), (3b) and (3¢).
Fictitious forces —r would be needed in order to achieve equilibrium with the specific choice
of parameters. Similarly Equations (4) will not be satisfied at a given point on the surface.
There will be residuals sy, 55 and s,. Fictitious surface tractions —s would be needed. For
example, to test a flow law of form of Equation (14) with « and B independent of position,
the residuals to Equations (3) can be written

ap*
n = —3aBE, -+ BE, i ———
i

(x,)’: Z, lJ: LN lﬂ) +ﬁ (15)

where p; = 265 8E,[dx;, and x; = V2. Similarly the residuals to Equations (4) can be
expressed in terms of o, B and the additional free parameters associated with the pressure.
A measure of the point-wise dis-equilibrium associated with a particular choice of para-

meters is
Tty Ua) :fj.fr-r dV+fjs-s dA. (16a)
v §

From this point of view the best choice of parameters is that which minimizes /72 and thus
minimizes the residual forces in the mean-square sense. The conditions
oF?
ol
give n equations for the n parameters [, ..., .
In the application of this technique to field data, it is advantageous to consider Equation

(16a) in a discrete form, so that the equilibrium equations can be considered at selected points
where the strain-rates and their gradients are best determined by the measurements. Thus,
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N

2
F2(l., ..o lg) :Zr-r—}—z s's (16b)

n= m=1

is minimized. The sums are over V distinct points in the interior and M distinct points on the
surface. In this discrete form, the minimization of 2 is identical to the usual least-squares
problem. Equations (3) and (4) give 3(N-+M) conditional equations to determine the
unknown parameters. When more than » of the conditional cquations are independent, the
n conditions 2F"2/ély = o give n independent normal equations which determine the para-
meters i s b

If # and p* are linear functions of the /i, then the conditional and normal equations are
linear and define a unique solution. If on the other hand they are non-lincar functions, the
conditional and normal equations are also non-linear, which complicates the solution. The
non-linear normal equations can be solved by successive approximation which substitutes a
sequence of linear problems for the non-linear one. One considers incremental changes from
given values of the /. Then

N

M
F2(l+8L, ..., ln+-8l,) = Z (r+46r)- (r-or) —f-Z (s+6s) (s 8s)

=1

can be expressed in a form linearized with respect to the 8/ by a Taylor expansion truncated
at first order. The 8{y are chosen to minimize /'2 and an improved solution [} 8l is obtained.
The process is repeated to calculate new increments and a further improved solution until
convergence to the desired accuracy is achieved. When the conditional and normal equations
are non-linear, one is not assured of a unique solution for the /. It is advisable to test this by
solving for the /; using several starting trial solutions to see if the converged result is always
the same. In addition /2 should be calculated in each successive step in order to make sure
that the solution corresponds to a minimum and not some other stationary point.

"The root-mean-residual force is a measure of the fit of the model to the observational data.
When measurement errors are taken into account, it provides a basis for a decision concerning
the applicability of a specific model and comparison of different possible models.

STRESS AND VISCOSITY IN ATHABASCA GLACIER

It is possible to apply some of the methods described in the previous section to measure-
ments of the distribution of velocity measured over one year (1966-67) in a transverse section
of Athabasca Glacier (Raymond, 1971[b]). The arrangement of the surface markers and
bore holes by which velocity was measured is shown in Figure 2. The holes were in three
adjacent transverse sections denoted by C, A and B. The spacing of the holes is about 150 m
or onc half the center-line depth. The (x,y, z) coordinate system is shown in Figure 2.
The x-axis has azimuth N37°E and plunge 3.9°. Longitudinal surface slopes at the different
holes are listed in Table I. These values represent averages over a length about equal to the
center-line depth (300 m).

Figure 3 shows examples of the component of tilt in the x—y plane as measured after one
year in the initially vertical holes. Negative tilt corresponds to tilting in the down-glacier
direction. With this sign convention the rate of tilting has the same sign as ¢u/dy which is the
main contribution to the tilting rate. The scatter in the data is compatible with possible
experimental errors associated with the boring and measurement procedures (Raymond,
unpublished). Therefore, the scatter is probably experimental noise and does not represent
real features of the flow field. The tilt data were smoothed (shown as solid curves in Figure 3)
by a method described by Raymond (1971[b]). The smooth depth profile of tilting in the

https://doi.org/10.3189/50022143000022681 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000022681

28 JOURNAL OF GLACIOLOGY

% (paralle! to
surface in direction
of flow)

A ftriangulation stations
on bed rock
® initial location of bore
holes with name and
depth (meters)
initial location of
surface markers

z {horizontal)

X location on 7/22/59
of stoke C-9 of
Paterson and Savage

+ 5 debris-covered ice
and moraine

#7 side of volley

b
0 feet

o 500

ST T W i e O

a 100 200
melers

Contour interval: 20 feet (6.1 m)
Elevations are given in feet

Fig. 2. Topographic map of field area showing locations of surface markers and bore holes. Bedrock stations are numbered after

Reid (1961). Topography and elevations are given as shown on the topographic map (1: 4 800) compiled in 1962 by the
Canadian Government (T opographical Survey, Department of Mines and Technical Surveys, and the Water Resources
Branch, Department of Northern Affairs and National Resources) from aerial photography and field surveys carried out on
a1 July 1962. Elevation of the ice surface on 8 September 1960 was about 10 ft (3m) lower than as shown. Surface
slopes measured from the map and computed from 1966 survey dala are in agreement.

TaABLE . SURFACE SLOPE AT BORE-HOLE SITES

Hole 1A B 1c 2A 2B 3A 3B 4A 5A
Slope 3.9° 3.5° 3.6° 4.1° 3.9° 28° 3.0° 3.6° 2.8°

x—y plane is shown for each bore hole in Figure 4. Successful measurements were made over
essentially the complete glacier depth in all holes except holes 1c and 44, in which cases the
hole could not be completely recovered after one year or could not be initially penetrated to
the bottom.

The progressive increase in tilting magnitude accompanied by a monotonic increase in
curvature convex to the depth axis which would be expected in a zone of non-zero longitudinal
strain-rate (Nye, 1957) is seen only in hole 3a. The other tilt profiles show definite deviations
from this “ideal” shape. In some holes, positive rate of tilting exists at the surface (e.g. 1B,
2B, 38), the rate of tilting does not change with depth for a significant distance below the
surface (e.g. 1B, 38), and locally the tilt profiles can be concave toward the depth axis (e.g.
1A, 2a). The nearly depth-independent rate of tilting in the lowermost 40 m of hole 2a is
particularly striking. At the other extreme holes 3B and 5a show extremely high depth
gradients in tilting rate near the bottom. These features also exist in the profiles of ou/dy
which are essentially the same as the tilting-rate profiles except for small corrections arising
from contributions to the tilting rate from gradients of velocity other than du/dy. Positive
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Fig. 3. Annual tilting in the longitudinal direction as measured in holes 3A and 1B,
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Fig. 4. Smoothed profiles of longitudinal tilting.
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tilting at the surface, corresponding to u increasing with depth, has been observed and ex-
plained in terms of a non-zero rotation rate by Paterson and Savage (1963). The other
features and also the distinctly different profiles for the different holes imply that either the
state of stress in the glacier is quite complicated or the ice is to some extent rheologically
inhomogeneous. For example, the bottom of hole 2a is located in a zone of relatively high
basal velocity (Raymond, 1971[b], p. 71). This suggests that the anomalous trend of tilting
near the bottom of this hole represents a locally relaxed shear stress caused by a narrow zone
in which resistance to sliding is abnormally low.

STRAIN-RATE (a™")

-004 -002 0 +002 +004
50
— 100
E
2 150
L
&
L 200
O
250
300

Fig. 5. Depth distribution of strain-rate components measured in hole 1B.

The method by which the displacement of surface markers and the bore-hole tilt measure-
ments were treated to determine the depth distribution of u, v and w, and the x, y and z
gradients of « and w and the accuracy of these quantities is discussed in detail by Raymond
(1971[a]). The y gradient of v was determined from incompressibility (fv/dy = —ou/ox—
—ow/[0z). The x and z gradients of » were taken to be independent of y, which is compatible
with the depth distributions of » calculated in adjacent bore holes. The values for 9o/dx and
8|2z at each bore hole were chosen so that éz.y. = 1(0u' |3y’ +0v'[ex") and éy... = ¥(0w' [+
+@0'[2z") were both zero at the surface, which is a necessary condition for the ice behavior
to be compatible with Equation (1). Figure 5 shows an example of the depth distribution of
the components of strain-rate in the x, y, z coordinate system as given by the computed velocity
gradients. In addition, the effective strain-rate ¢ = +/E, is also shown. The distribution of
u, v, w, and du/0x over the area of sections A and B is given by Raymond (1971[b], p. 69-70).

The following analysis is directed toward examining whether the ice rheology can be
described adequately by a single power law, Equation (14), which applies to the complete
volume covered by the measurements. This is a common assumption made in the theoretical
analysis of the flow of temperate glaciers (e.g. Nye, 1957). One might expect it to apply to
Athabasca Glacier, which is very close to the melting point and nearly isothermal except in
the 20 m just below the surface in the ablation zone (Paterson, 1971 ). On the other hand, this
assumption could possibly break down as a result of spatial variations in the ice structure.
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In the analysis, ice density is assumed to be independent of position and equal to 0.go
Mg m~3. Since this portion of Athabasca Glacier is well into the ablation area, the ice density
should be relatively homogeneous in contrast with what would be expected in the accumula-
tion area.

Calculation of stress assuming x-independent strain-rate Jield. Since the slope of the glacier
surface in the x direction varies from place to place (Figure 2, Table I), it is impossible to
chose a cartesian coordinate system such that 0ys/0x = o. In addition, du/dx is not constant
throughout the volume, and 8v/2x and 2w/2x, although small, are not zero where the measure-
ments were made. Thus the method of analysis developed in Equations (5) through (12) does
not precisely apply. Nevertheless it is still worth while to solve for the stress as if these diffi-
culties were absent; at least this should yield a more reliable determination of stress than the
standard assumption made in past analyses of bore-hole data that

Tzy = —/pga). (17)
In Equation (17), fis the “shape factor” equal to A/PH where A is the cross-sectional area
of the section, P is the length of the ice-rock boundary, and H is the center-line depth. The
value of f for these sections of the Athabasca Glacier is 0.58.
The distribution of « determined in sections A and B is shown in Iigure 6. Curves con-
structed normal to the contours of constant u are also shown. A first approximation to the
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b. SECTION B

Fig. 6. Contours of constant longitudinal velocity and characteristic curves Jor sections A and B. Units: m a—',
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solution can be seen by noting that the velocity contours are approximately semicircular and
the characteristics are radial at least in Section 4. Thus, ¢ and n can be chosen to correspond
to r and 6 of circular-cylindrical coordinates:

r= (),
0 = tan—! zy.
In this case h; = 1 and A, = 1/r and the solution to Equation (8) is easily shown to be

7 = pggr/2, which is a result previously established by Nye (1952) for flow in semicircular
channels with constant basal velocity. Further,

Tay = —TCOs @ = —Jpoyy. (18a)
This is similar to the distribution of 75, assumed in the standard analysis except the factor is
169, smaller.
In the event that the surface does not lie on the y = o plane or does not parallel the x-axis,

Equation (18a) can be generalized. This can be expressed by taking (%, 7, £) coordinates
such that # is parallel to z, but ¥ parallels the surface. Then,

iy = —pgal F—7s(%; 2)). (18b)
With this distribution of stress, viscosity can be calculated from
55 = €xy OS5 285+ §(éyy —€xz) sin 285 }(19)
1 = Tzy/2¢55, -

where 8, is the difference in plunge of the ¥ and x axes. In Equation (18b) 777 — o0 as
 —= Js. Since the lateral slope of the surface is small at all of the bore-hole sites, the difference
between this and the natural boundary condition, Equation (4a), is negligible and no signifi-
cant error is introduced by employing the simpler transformation of Equations (19).

In accordance with the analysis of Shreve and Sharp (1970, p. 83) log [y/(bar a)] as
given by Equation (19) has been plotted against log [¢/(a~)] along the length of each bore
hole. This has been done with stress estimated at each bore hole using the slope at 1A near
the center line (8; = 0.0), the slope averaged over the width of the array (8; = —0.5%),
and the local surface slope at each bore hole (8; from —1.1° to -f0.1%). If Equation (18b)
with the chosen value 8, is an adequate representation of stress, and if the ice is rheologically
homogeneous and Equation (1) holds with 5 independent of E;, then the curves for all of the
bore holes should coincide and would define the dependence of n on ¢é. If the power-law
dependence Equation (14) applies, the curves should be straight lines with slope equal to —a.

Figure 7 shows the results for each bore hole with §; = 0.0. Shallow depths correspond to
the upper left parts of curves (large 5, small ¢). Points corresponding to depths of 100 m and
200 m are marked with solid and open circles respectively. The curves for the other choices
of 8, are similar to those shown in Figure 7. A plot based on the laterally-averaged surface
slope (87 = —0.5°) corresponds to a shear-stress magnitude lower by a factor of 0.87 which
results in an apparently lower viscosity by approximately the same factor and an equal
downward shift of all of the curves by 0.06. In a plot based on the local surface slopes some
of the curves are shifted downward by as much as 0.14 (e.g. 3a and 54, 8; = —1.1°) while
others are essentially unshifted (e.g. 1a). Thus, in this case there is considerably greater dis-
agreement between the curves for the deeper parts of the different bore holes than exists in
Figure 7. This suggests that the stress deep in the glacier is best computed from a single
surface slope rather than local slopes. Since Equation (18b) more closely approximates the
boundary condition Equation (4¢) when 8, corresponds to the local surface slopes, this
alternative may give a better representation of stress near the surface. Also near the surface
the difference between é;; and ¢,y becomes significant; ézy does not go to zero at the surface
when the local surface does not parallel the x-axis. For negative 8z, as exists at holes 1B, 34,
3B, 4a and 5A, ézy reaches zero below the surface and is positive at the surface, because of the
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compressive longitudinal strain-rate. This contributes to the strong upturn of the vear-
surface parts of the curves in Figure 7. The upturn is distinctly reduced for the curves com-
puted from local slopes, but not completely eliminated except in the case of 3a. Holes 18,
2B and 3B still go off scale (log [n/(bar a)] > 1.80]) at respective depths of go m, 32 m and

1 [ | I [ [
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------------------------ TUNNEL CONTRACTION __|

— — — ATHABASCA GLACIER

—————— BLUE GLACIER =

=
o
L |2
o
e
= e
S %
%
¢ O ~
© \ ~
== ~
08+
06—

-8 -16 14
LOG (€/a™")

Fig. 7. Relationship between v given by Equation (19) and é from Athabasca Glacier bore holes (solid curves) compared with
results from laboratory and other field experiments: Glen’s experiments at —o0.02° C analyzed using Andrade’s law
(n = 4.2) and minimum creep rate (n = 3.2) (Glen, 1955), tunnel contraction (Nye, 1953, p. 485), Athabasca Glacier
(Paterson and Savage, 1963), represented as a straight line with n assumed lo be 4.2 (Shreve and Sharp, 1970, p. 83),

Blue Glacier (Shreve and Sharp, 1970, p. 83).

Although there are complex features in Figure 7, the approximately linear curves shown
by the deeper range of each bore hole and the linear trend defined by the combined data
from all of the holes are suggestive of a power law.

For comparison, power laws derived by some previous laboratory and field experiments
are shown in Figure 7. The trend defined by the present observation as analysed by Equations
(18) and (19) agrees quite well with the results of Paterson and Savage (1963, p. 4541), but
it is displaced perceptably toward lower viscosity. This difference would be entirely absent
if the standard shape factor of 0.58 rather than 0.50 has been vsed in Equation (16b). Based
on Equations (18b) and (19) with é; = o, the conclusion of Paterson and Savage (1963,

2
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p. 4542) that the viscosity in the Athabasca Glacier is greater than would be expected from
Glen’s flow law measured at —o0.02° C is confirmed, although the disparity is not so large as
they supposed. Power-law parameters deduced from fitting a straight line by eye to the general
trend are o = 0.77 (n = 4.3) and B = 0.98 bar a'~=, Ifit is assumed that the proper surface
slope for the estimation of stress is the laterally averaged slope (3.4°), then the disparity
between the present data and Glen’s law is further reduced. The flow parameters given by
this surface slope are the same except that B is reduced by a factor of 0.87.

Flow-law parameters can also be calculated for the different bore holes considered
separately for those cases which yield a nearly linear curve over a significant depth range.
If this depth range is arbitrarily taken to be 50 m this includes all holes except 1¢, 2B and 4aA.
The spread in 7 given by the separate curves at é = 0.052a7" (log [¢/a~'] = —1.3) is about
+5%. Atlower ¢ the spread in the curves increases, which corresponds to a difference in slope
(i.e. a or n) for the various linear segments. Holes 14, 18, 24, 3A, 3B and 54 give respective
slopes corresponding to «(n) equal to 0.82 (5.6), 0.67 (3.0), 0.56 (2.3), 0.86 (7.1), 0.98 (50),
0.69 (3.2). Assuming that Equation (18b) is valid, it is possible to roughly estimate a standard
error for « or n as determined in a single bore hole. This depends on the length of the depth
range over which the curve in Figure 7 is linear (Table 1) and the standard errors in ézy and
é2y/2y which are 0.003 a~' and 0.0002 a~* m~! (Raymond, unpublished). Such an estimate
is not entirely straight forward because the errors in ézy and ¢ at a given depth are not indepen-
dent, and the errors in either of these two quantities at different depths are not independent,
because of the smoothing operation which was applied to the data. Taking these factors into
account the uncertainty in n is about 259%, when the depth range which shows a linear curve
is near 50 m (e.g. hole 1a) or about 15%, when the depth range is near 100 m (e.g. holes 3a
and 3m). Although the errors associated with the measurement in strain-rate are quite large,
they cannot account for the different slopes of the curves. However, this estimate of errors
does not take into account possible failure of Equation (18b).

The steep upturned portions of the curves in Figure 7 correspond to depths down to j to §
of the maximum depth and climb to very high values of viscosity close to the surface. In
terms of an expected power-law behavior this represents an apparent anomaly. It arises
because near the surface ¢ is controlled mainly by éy, and é,, and tends to be relatively
independent of depth (e.g. Fig. 5), but on the other hand 7 as given by Equation (19) is
proportional to (»—Js)/ézys which increases markedly toward the surface. The latter effect
arises because ¢, remains nearly zero for a considerable depth below the surface (e.g. Fig. 5).
This is an expression of a nearly depth-independent rate of tilting observed near the surface
in most of the holes and especially those in section B (Fig. 4).

It is possible that this is caused by the large relative error in ézy near the surface where ézy
approaches zero. The error could be systematic as a result of the representation of the data
by smoothing curves. Because of the overall concave nature of the tilt profiles and edge
effects associated with the absence of data above the surface, any smoothing procedure would
tend to bias the near-surface part of the profiles to be concave also, and thus to be more depth-
independent than in reality. This has been tested by plotting the annual tilting for each
bore hole (e.g. dashed curves in Figure 3) calculated from the distribution of cu/dy which
would be expected if the power law deduced from the deeper depth range of the hole applied
to the complete depth range. For this calculation it was assumed that all of the other velocity
gradients were the same as determined from the measurements. In the case of hole 18 (Fig. g)
the trend of the measured tilting is quite different than expected on this basis. This is also
definitely the case for g8 and seems to be so for 28. On the other hand the dashed curve for 3a
is reasonably compatible with the measured tilting (Fig. 3). This conclusion is also reached
with respect to the other holes in section A. Thus, in section B the effect does not represent a
bias introduced by the smoothing operation. The steep near-surface portion of these curves in
Figure 7 is a real feature which needs explanation. On the other hand the data for holes in
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section A arc ambiguous on this point. If such an effect really does exist in these holes, it is
certainly much weaker than in the holes of section B. The one hole in section C shows no
evidence of such an effect.

Since Figure 7 shows considerably greater viscosity in section B than in section A at
equivalent depth near the surface, a contribution to the longitudinal stress gradient é,, on/ox
would exist. In fact, this contribution would be substantially larger than pg,, which suggests
that the distribution of 5 given by Equation (19) is not realistic near the surface. One is again
led to suspect the validity of Equation (18b). A distribution of |74,| increasing more slowly
below the surface than given by Equation (18b) would reduce or eliminate the anomaly.

The obvious next step is to calculate stress by the analysis based on Equations (5) to (12)
but using the correct shapes of the contours of constant u rather than approximating them by
semi-circles. Figures 8a and 8b show the solutions for , derived graphically from Equation
(11) based on the surface slope at hole 1a. As before a solution based on the laterally averaged
surface slope is obtained by multiplying by 0.87.

The accuracy of the solution, assuming that the conditions for the validity of Equation
(11) actually exist, is difficult to assess. Even if the pattern of velocity shown in Figure 6 were
precise, certain errors arise in the solution of Equation (11). The trajectories of characteristics
are somewhat ambiguous because of the finite spacing of the contours. In both sections there
is no direct control on the shape of contours and thus the path of characteristics near the
center line because this region is between bore holes. Further the center line cannot be
precisely located. A maximum error of about +0.05 bar arises from these sources. The error
in 75 which arises from the uncertainty in the measurement of velocity across the surface and
with depth in the bore holes (0.20 m a~" at surface, 0.46 m a~1 at bottom) and the additional
uncertainty associated with drawing the contours between the bore holes is very difficult to
quantify.

Equation (11) was also solved by including the contribution pgy 8ys/2x to the body force
of Equation (3a) in the subsequent Equations (5), (10) and (11). This amounts to having a
laterally varying body force which depends on the local surface slope. Such a variable body
force is easily incorporated into the solution. If the surface slope varies linearly between the
center line of flow and a point of interest one is led to the interesting conclusion that the
proper surface slope for the calculation of stress at that point is the slope which exists at about
i of the way between it and the center line. This is a consequence of the nearly triangular
shape of the regions over which body force is integrated. If the curves of Figure 7 are adjusted
according to this concept rather than the local slope, the adjustments are significantly smaller
(except in the case of hole 54) and there is considerably less disagreement between the curves
for different bore holes. This to some extent explains why the results from different bore holes
are more consistent when they are analysed using the same surface slope. However, there is an
additional consideration. On a straight glacier a lateral variation of longitudinal surface slope
must also be accompanied by a longitudinal variation, since on the average the longitudinal
slope is about the same near the margins as at the center. Therefore, laterally varying
longitudinal stress gradients probably exist, and these may compensate any effects arising
from lateral surface slope variation as derived from Equation (11). This may be a more
fundamental reason for the comparatively good agreement between the curves as plotted in
Figure 7. It suggests further that the solution for 4 based on a single slope as shown in Figures
8a and 8b may be more valid than one based on a laterally varying body force.

In Figures 8a and 8b the contours of constant 75 deviate significantly from the semi-
circular shapes they would have if the velocity contours were precisely semicircular as assumed
in the derivation of Equation (18a). Furthermore, Figure 8c shows that the distribution is
considerably different than calculated by Nye (1965, p. 680). A parabolic channel with half-
width twice the depth (width ratio 2) is a good approximation to the Athabasca Glacier cross-
section. Nye’s calculations were based on the assumptions of a homogencous power-law
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Fig. 8. Distribution of s given by Equation (12) for sections A and B, and as computed by Nye (1965) for a parabolic cross-
section of width ratie 2. Unils: bar.
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rheology (n = 3), rectilinear flow, and sliding velocity independent of position. This latter
assumption is certainly not applicable in Athabasca Glacier as is visible in Figure 6. As a
consequence, considerable differences between Nye's theoretically derived distributions of
velocity and stress are to be expected. Some aspects of this have been discussed previously
(Raymond, 1971[b]).

The distributions of 7, versus depth at the center line and 7, versus z across the surface
as derived from Figures 8a and 8b are shown in Figures g and 10. The overall depth depen-
dence of 74, is compatible with a shape factor of 0.50; however, near the surface |74,| increases
with depth more slowly in accordance with a factor of about 0.3 to 0.4. Correspondingly the
variation of |74;| across the surface near the center corresponds to a factor of about 0.6 to 0.7.
In terms of the small-scale variation of stress near the center line at the surface and an overall
view of the complete section, shear-stress magnitude computed from Equation (11) increases
less rapidly with depth at the center line and increases more rapidly with lateral position along
the surface than computed by Nye (1965) as shown in Figures g and 10. (For this comparison,
stress has been calculated from Nye’s non-dimensional stress using a surface slope of 3.9% and a
depth of 300 m.)

) | l
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=S . .
POWER LAW, ™ & \(/
T | section B @ e Wy
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)
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SECTION B
300+ D
| l
0.2 04

ITXyI (bar)

Fig. 9. Depth distribution of |Txy| at center line.

Figures 9 and 10 also show the corresponding distributions of |rzy| and |75;| computed
directly from the observed strain-rate and a homogeneous power law with « = 0.72, B = 1.03
bar a'~=. (These parameters are given by the least-squares analysis discussed in the next
section and are in good agreement with Glen’s law.) From Figure g it is apparent that |7.y|
so calculated increases below the surface even more slowly than given by Equation (11). This
shows that the near-surface anomaly discussed with respect to Figure 7, is somewhat reduced
but not completely accounted for by the stress distribution given by Equation (11). The
comparison shown in Figure 10 indicates that a similar anomaly would be associated with
calculation of viscosity across the surface by 5§ = 74;/2¢2; when 7, is given by Equation (11).
It is noteworthy that for stress given by the homogeneous power law, 9714y/0y and o71.;/0z
sum to considerably less than the acting body force in the x direction (about 0.7 pg, in section
A and 0.4 to 0.5 pgs in section B). This indicates that a substantial longitudinal stress gradient
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would be required for mechanical equilibrium, if the homogeneous power law behavior were

applicable.
For the purpose of estimating flow-law parameters,  can be calculated from

N = Ts/2€s. (20)

Figure 11 shows log [n/(bar a)] plotted against log [¢/(a=*)]. The curves for the various bore
holes are similar to those shown in Figure 7. However, except for 1A and 5a the curves are
displaced downward relative to their positions in Figure 7. Because of this the general trend
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Fig. ro. Lateral distribution of | 72| across the surface.

defined by the curves of Figure 11 gives somewhat lower viscosity in comparison to Figure 7.
If the laterally averaged surface slope is used in the analysis, so that all of the curves are
displaced downward by an additional distance 0.06, the trend is no longer distinguishable
from Glen’s flow law (n = 4.2, T = —o0.02° C) except there is some suggestion that it is not so
steep, which corresponds to lower n. If the analysis is based on a laterally varying body force
computed from the local surface slope, one arrives at a similar conclusion, the individual
curves still scatter about the line representing Glen’s law. However, 54 is displaced downward
to a greater extent than other holes, which results in a steeper trend corresponding to n
somewhat higher than in the Glen flow law.
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The slopes of the approximately linear segments for the individual curves in Figure 11
have a similar range (x equal 0.51 to 0.97) as exists in Figure 7. A surprising difference is that
in the deeper ranges the curves for the different bore holes shown in Figure 11 do not agree
with one another as well as in the simpler less rigorous analysis of Figure 7. By redrawing the
contours of constant velocity within the error bounds of velocity measured at the bore holes
and reasonable interpolation between holes, it is possible to achieve local changes in stress of
up to 0.2 bar. This suggests the different curves could be brought into closer agreement by

r—71 [ 1 T T T T ]
———— GLEN (n=4.2)
- GLEN (n=32)
cereenenenes. TUNNEL CONTRACTION |
— — — ATHABASCA GLACIER
—————— BLUE GLACIER

LOG [n/(bar a}]

08

~
~
~
~

~

0.6 fios i \\\{\ \
-
I R B B B N D

Ji8 =7 Ty T2 o)
LOG (€/a™)

Fig. 11. Relationship between v given by Equation (20) and € from Athabasca Glacier bore holes compared as in Figure 7
with resulls from laboratory and other field experiments. The solid straight line represents the power law derived by the
least-squares minimization of residual forces (e — 0.72, B = 1.03 bar a'*).

choosing a different pattern of contours which is compatible with the measurements. Because
of the great amount of computation involved, only a few trials were attempted and no such
pattern was found. Nevertheless this remains a distinct possibility particularly near the bottom
where bedrock features could cause significant local variations in flow. In any case, the details
of the contour shapes are not so well established that any definite conclusions can be drawn
concerning the disagreement between the individual curves.

On the other hand, the general trend established by all of the curves cannot be significantly
changed simply because gross equilibrium requires that a local change in 7, is accompanied
by a compensating change in 75 elsewhere. The general pattern of velocity in the glacier is

https://doi.org/10.3189/50022143000022681 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000022681

40 JOURNAL OF GLACIOLOGY

sufficiently well established so that the general downward displacement of the curves in
Figure 11 in comparison to those in Figure 7 is probably a real effect.

The curves do not show steep upturned portions for near-surface data as strongly as exists
in Figure 7. This effect has been eliminated almost entirely for holes 54 and 44 and greatly
reduced in the section B holes, but there is still a residual effect for those bore holes near the
center. This is reasonable since small absolute errors in either the measured strain-rate
components or the computed stress manifest themselves as large relative errors in 7 as com-
puted by Equation (20) only near the surface at the center line where é and 74 go to zero.
Since the viscosity at the surface given by Equation (20) is essentially 7,,/2¢,,, the residual
upturn of the curves and its systematic dependence on the bore hole position relative to the
center line represents the anomaly anticipated in Figure 10. The largest relative error in é,,
at the surface for any of the holes is about 30%,. Perhaps the upturn could be explained on this
basis, but the systematic nature of the effect suggests that it does not represent an error in the
measurement of strain-rate. Also the error in the solution for stress from Equation (11) caused
by uncertainty in the position of the center line, the contour shapes, and the characteristic
trajectories cannot account for this effect, because any adjustment in these factors only leads
to a local redistribution of stress. It is reasonable to suppose that some of the remaining
conflict between the apparent rheology inferred from the measurements and the homo-
geneous power law behavior which one might hope for, can still be attributed to errors in
estimating stress which arise because of the three-dimensional character of the flow field.

Before proceding, a few comments are in order concerning the possibility of solving the
y-equilibrium equation for p* as in Equation (12) and also testing whether the z-equilibrium
equation (gc) is also thereby satisfied. Clearly the distribution of 5 given by Equation (3a)
through solution of Equation (11) is subject to considerable uncertainty. Also, because of the
indirect manner in which v is determined at depth and the complex distribution of w
(Raymond, 1971[a]), V% and VZw are very imprecisely known. For these reasons, such a
test would not be very indicative even if the flow were such that the analysis applied rigorously.

Minimization of residual forces. In order to establish the conditional and normal equations
for choosing the best values of B and « and testing the applicability of a homogeneous power
law in terms of residual forces, it is necessary to evaluate the coefficients pu; and «; in Equation
(15). As already mentioned, k, = V& and k, = V2w are very poorly determined by the
measurements. For this reason Equations (3b) and (g¢) have not been included in the analysis.
Equations (4a) and (4b) are automatically satisfied because of the way fv/dx and dv/0z were
chosen and thus contribute no information to the analysis. This leaves only the x-equilibrium
equation and Equation (4c).

Without Equation (3b) there is no basis for determining p* at depth. However, $* and
op*/cx can be determined at the surface from Equation (4¢). If B and « have values which
correspond to Glen’s law, then Equation (4¢) shows that dp*/ox at the surface is less than
10%, of pgr (= 0.592 X 1072 bar/m) ; dp*|dx is positive except at 54 and 1¢. The small values
of dp*[0x are a consequence of the very low longitudinal gradients of the surface strain-rate
components (less than o.2x1074a~'m™! in the area of the bore-hole array). The small
differences between 6p*/éx computed at the different bore holes are not much larger than
could be expected from measurement errors. For these reasons a model for p* more compli-
cated than a linear variation in x does not secem justifiable so that gp*/dx enters as a space-
independent body force. For convenience dp*/ox has been taken to be o, thus eliminating
Equation (4¢) and the 9p*/0x contribution to Equation (3a) from the analysis. This simplifica-
tion does not affect the value of « (or n) given by the analysis. Because of the generally
positive value of dp*/dx, the resulting value of B will be too large by about 5 to 10%,, which
can easily be taken into account subsequently. (Since é;; is small at the surface (Raymond,
1971[b], p. 64), p* = 2néyy & —2mézy = — 7Tz, il also is possible to state that the total
longitudinal stress gradient at the surface, neglecting the contribution from the gradient in
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overburden which exists when the surface and the x-axis are not parallel, is less than 209, of
pgz. This is of the same order as the longitudinal variation of surface slope, as would be
expected from the analysis by Budd (1971, equation (59)).
In order to form a discrete set of conditional equations,
 9E,  9E, _ 9E,
Ry = 2 I:g:z:c H"‘ﬁry? €xz F_:]
and r; = V2u were calculated at 5 m depth intervals at each of the bore holes. The x and z
gradients of E, at a given depth were calculated using simple differences in the computed
value of E, at the bore-hole locations at that depth. These gradients could be estimated over
the full depth range of all of the bore holes except 0£,/0x at 4a and 54, where there were no
longitudinal pairs of holes. At 4a and 5a 2£,/dx was taken to be o.

d2u/9x* and 2u|0z2 were computed at each depth from a polynomial interpolating function
fit to the values of # measured at that depth in each of the bore holes. (See Raymond, 1971[a]
for a complete discussion of the interpolating procedure.) All of these quantities are subject to
uncertainty because of possible interpolating errors. This is especially so for ¢2u/ox* which is
controlled by direct measurement only at the surface, where there was an extensive surface
strain grid, and in the uppermost 200 m of hole 1A, which had adjacent bore holes both up-
and down-glacier (Fig. 2). Below 200 m 82u/8x? was extrapolated, and the difference between
0*u[dx* at the surface and at depth was taken to be independent of x and z. Interpolation errors
in 0%u/02* may be particularly significant at holes 3B, 2B and 54 and at hole 24 below 100 m,
because these locations were on the lateral margins of the array (Fig. 2). Calculation of ¢E,/dy
and 02u/¢y? was by simple differences between values spaced at 5 m depth intervals.

At this point it is important to recognize that the data are not adequate to take the
longitudinal stress gradients into account completely. The contributions from 8p*/dx and
0u/0x* are uncertain over the deeper portions of all bore holes. Only the contribution from
éxz On0x is reasonably determinable over the complete depth ranges.

The residuals to the x-equilibrium equation can be minimized in the least-squares sense
over any set of points chosen from the points spaced at 5 m intervals along the bore holes
where p; and «, were calculated.

When the residuals at only the points on a single bore hole are minimized, the analyses
for the different bore holes give a range of parameters as was the case in the earlier analyses.
Excluding holes 1¢ and 44, in which ¢ does not vary significantly over their respective depths,
these analyses give « from 0.53 to 1.07 and B from 0.50 to 2.2 bar a—'>. The root-mean-
square (r.m.s.) residual force for these analyses is typically between 0.3 and 0.4 in units of
pgz. Il these analyses are restricted to the depth ranges for which the curves of Figure 7 are
linear, the analyses give « from 0.61 to 0.83 and B from 0.50 to 1.87 bar al-=. In these cases
the r.m.s. residual force ranges from 0.07 to 0.33 pg;. The large spread in B is mainly a
consequence of extrapolating to ¢ = 1 a~! with different slopes «. However, the spread in
the graphical representations as visualized in a plot such as Figures 7 or 11 is greater than
shown by the curves in either Figures 7 or 11. When the analyses are restricted to the lower
portions of the bore holes the spread in « is less than is measured from the slopes of curves in
either Figures 7 or 11.

When the analysis is done for the complete depth range of all of the holes taken together,
the result is « = 0.72 (n = 3.6) and B = 1.03 bar a’~2. The relationship between 7 and ¢
corresponding to these parameters is plotted in Figure 11. It agrees well with the trend
defined by the various curves based on stress as calculated from Equation (11). It gives
viscosities which are only slightly higher than expected from Glen’s law (n = 4.2). The r.ms.
residual force in units of pg; is 0.40. The standard errors given by the least-squares analysis
are 0.02 for o and 0.06 bar a’= for B. However, these cannot be interpreted as standard error
for « and B because the least-squares analysis was carried out using flow quantities derived
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from the smoothed tilt profiles. The actual standard errors may be larger. In view of the large
spread in the parameters deduced from the analysis of single bore holes, the deviation of this
flow law from Glen’s law is probably not significant. Further if B is reduced by 10% (log
[7/(bar a)] by about 0.05) in accordance with the values of 9p*/0x measured at the surface,
the deviation from Glen’s flow law becomes entirely negligible.

The r.m.s. residual force of 0.40 pg; would seem to indicate that a power law applied
homogeneously to the whole ice volume is a poor representation. However, residual forces as
large as 15 to 209, of pgy could occur as a result of errors in the measurement of velocity at
the bore-hole sites and their direct effect on the calculated strain-rate components and their
gradients. The less definable error in the strain-rates and their gradients caused by possible
incorrect interpolation between the bore holes could add significantly to the residuals.
Further, the omission of gp*/@x in the analysis and the likelihood that this quantity exhibits
some variation in the volume of the bore-hole array may contribute to the residuals. Conse-
quently the large residuals do not provide definite evidence that the least-squares-derived
flow law is not a good one.

One interesting featurc of the distribution of residual forces is that all of the bore holes
show positive residual forces near the surface. The values at the surface range from 0.23 to
0.74 pgz with hole 1c showing the smallest residual and the residual of section A averaging
somewhat less than in section B. This is a manifestation of the near-surface anomalies discussed
with respect to Figures 7 to 11. The more complete three-dimensional analysis has failed to
eliminate this anomaly. The neglected contribution to equilibrium of 8p*/dx is quantitatively
too small to account for the effect. However, some features of the distribution of longitudinal
strain-rate would tend to produce the systematic differences which exist between the different
sections. Figure 12 shows the distribution of 8u/dx on the surface along a line passing through
1c, 1A and 18. Although the fluctuations in du/éx are of the same order of magnitude as the
measurement errors, ¢u/dx seems to be relatively tensile down-glacier at 1¢, exhibit no gradient
at 1A, and be relatively compressive down-glacier at 18. Thus, the sense of 9p*/0x (and also
d742 [0x) seems to be in the proper direction to produce the observed effects. In view of the
large residual forces which exist at all depths it scems reasonable to attribute the near-surface
effects to longitudinal stress gradients even though they do not seem to give a quantitative
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Fig. r2. Longitudinal variation of |8u/éx|.
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explanation. Possible alternative rheological explanation must be somewhat hypothetical.
Because of the discernible differences between the three sections, such explanations would
seem to require some longitudinal inhomogeneity in the ice.

Summary and conclusions. The distribution of stress in Athabasca Glacier differs substantially
from stress at the center line computed by a standard shape factor or the distribution computed
by Nye (1965). The major cause of these differences is a basal velocity which varies laterally
across the section in contrast to zero basal velocity assumed by Nye. There is also evidence
that non-zero longitudinal stress gradients exist and contribute to this difference.

The techniques of this paper for estimating rheological parameters take account of these
differences fo varying degrees. Imprecision and lack of resolution in the determination of the
velocity field cause some uncertainty in the results. When the flow field is analyzed under the
assumption of x-independence, a significant question causing additional uncertainty is the
proper choice of surface slope when this slope varies laterally and longitudinally. This question
can be avoided using a complete three-dimensional analysis, but this has not been entirely
possible in this case, because of insufficient control on the longitudinal variation of velocity.
"The techniques give effective viscosity which is smaller than would be obtained by estimating
shear stress using a standard shape factor or the theoretical distribution of Nye. Taking account
of the above sources of errors, the overall ice behavior is not significantly different from the
flow law of Glen (1955) based on Andradean analysis of his experimental creep curves.

Glen’s experimental data analysed for Andradean creep extend down to uniaxial stress of
about 1.5 bar which corresponds to an effective stress = of 0.9 bar and an effective strain-rate
¢of 0.06 a~! or log (¢/a~1) of —1.2. Thus, the comparisons shown in Figures 7 and 10 corres-
pond to the lower stress range of Glen’s experiments and an extrapolation to even lower stress.
The deformation in Athabasca Glacier support the validity of such an extrapolation down to
about 0.5 bar. However, the lower limit of stress for which such an extrapolated curve remains
valid cannot be determined because of the anomalous near-surface behavior of the deforma-
tions. Irrespective of this question, the measurements in Athabasca Glacier demonstrate the
importance of correcting creep experiments at low stress to account for transient effects. The
measurements are clearly incompatible with the relationship between minimum creep and
stress reported by Glen (Figures 7 and 10). This is in agreement with conclusions recently
reached by Thomas (1971) from measurements of deformation on ice shelves and comparison
with experiments reported by Tabor and Walker (1970).

Unless there is a fortuitous cancellation of opposing factors the agreement between Glen’s
flow law and the deformations in the Athabasca Glacier implies that there is no major effect
of a special ice structure. However, variations in ice structure may be the source of some of the
apparent variation in ice behavior seen in Figures 7 and 11 and implied by the large residuals
to the x-equation of equilibrium evaluated with a homogeneous power law. This possibility
has been cited in the past to explain differences between various observations (e.g. Nye, 1953,
P- 497; Kamb and Shreve, 1966 ; Shreve and Sharp, 1970, p. 84). Unfortunately, the accuracy
and density of velocity measurements in Athabasca Glacier are still not sufficient to determine
the detailed features of the stress distribution and to draw any definite conclusions as to the
reality of the apparent discrepancies. It is hoped that the techniques described in this paper
have the potential for a quantitative approach to these questions.
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