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Summary

For neutral, additive quantitative characters, the amount of additive genetic variance within and

among populations is predictable from Wright’s F
ST

, the effective population size and the

mutational variance. The structure of quantitative genetic variance in a subdivided metapopulation

can be predicted from results from coalescent theory, thereby allowing single-locus results to

predict quantitative genetic processes. The expected total amount of additive genetic variance in a

metapopulation of diploid individual is given by 2N
e
σ#

m
(1­F

ST
), where F

ST
is Wright’s among-

population fixation index, N
e
is the eigenvalue effective size of the metapopulation, and σ#

m
is the

mutational variance. The expected additive genetic variance within populations is given by 2N
e

σ#
e
(1®F

ST
), and the variance among demes is given by 4F

ST
N

e
σ#

m
. These results are general with

respect to the types of population structure involved. Furthermore, the dimensionless measure of

the quantitative genetic variance among populations, Q
ST

, is shown to be generally equal to F
ST

for

the neutral additive model. Thus, for all population structures, a value of Q
ST

greater than F
ST

for

neutral loci is evidence for spatially divergent evolution by natural selection.

1. Introduction

Most species are subdivided into local populations.

Often these populations become genetically differen-

tiated through genetic drift, mutation and}or di-

vergent selection, and this differentiation can be

reduced by migration among populations or uniform

selection. Moreover the dynamics of the interaction

between these forces can be strongly affected by the

demographic nature of the metapopulation. Factors

such as distance-biased dispersal, extinction and

colonization, population fission, and asymmetric or

kurtotic migration can potentially give very different

genetic patterns from the simpler models more often

considered.

This note will concentrate on the genetic patterns

expected with genes not subject to selection. Neutral

models have proven of considerable value as null

models which allow tests about the nature of selection

(Lande, 1976, 1992; Lynch & Hill, 1986; Spitze, 1993;

Lynch, 1994; Hey, 1999). In particular, neutral models

of quantitative genetic divergence among populations

are useful as a nullmodel of the selective differentiation

of populations (Spitze, 1993; Lynch et al., 1999).

Lande (1992) derived results about the nature of

neutral additive quantitative genetic variation

expected under the island model and a simple of

extinction and recolonization. For the island model he

made the somewhat surprising discovery that the

amount of additive genetic variance (V
A
) expected

within demes is the same as the total variance expected

in an undivided population with a population size

equal to the total size of the subdivided population

(see also Lynch, 1988). Furthermore, for the island

model and his extinction}colonization model, the

amount of differentiation among populations, as

measured by Wright’s standardized index, F
ST

, was the

same for neutral quantitative genetic characters as for

neutral single-locus results (Lande, 1992; compare

with Whitlock & McCauley, 1990). This result has

been used by many (Spitze, 1993; and see references in

Lynch et al., 1999) as the justification for using

‘neutral ’ marker locus F
ST

as a null expectation for the

amount of differentiation among populations in

quantitative genetic variance (termed Q
ST

by Spitze,

1993; see the definition below). If this Q
ST

is

significantly greater than F
ST

, then this stands as

strong evidence that selection has been responsible for
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differentiation among populations. One of the aims of

this paper is to generalize this result about the

correspondence between F
ST

and Q
ST

beyond the two

models already considered.

More generally, we need to know more about how

quantitative genetic variation is maintained. Genetic

drift will, on average, remove genetic variance from a

population or species ; mutation acts to increase the

genetic variance. If these are the only forces acting on

a species, then an equilibrium between the effects of

drift and mutation can be reached. Lynch & Hill

(1986) have shown that in a single, undivided

population, the amount of V
A

expected at equilibrium

between drift and mutation in a diploid population

should be 2N
e
σ#

m
, where N

e
is the effective population

size and σ#
m

is the mutational variance. To begin to

understand the dynamics controlling genetic variation,

we must understand the effects of more realistic

demographics. This note will derive the amount of

genetic variance expected in a quite general class of

metapopulations, including the effects of all the factors

listed above. We will see that the effective population

size (as derived by Whitlock & Barton, 1997) for

subdivided populations and the neutral F
ST

predicted

by standard theory allows us to predict the amount of

genetic variance within and among populations at an

equilibrium between drift and mutation.

To derive these results we can take advantage

of several useful new results from the study

of the coalescent. Single-locus models about the

probability of identity by descent correspond to

coalescent results ; we will see that the coalescent has

clear and easy interpretations in quantitative genetic

terms.

2. Definitions

We can refer to the additive genetic variance V
A

among all individuals that belong to a particular set i

as V
A, i

. These sets can be defined by location or

genotype or more generally, such as ‘all individuals in

a species ’, ‘all individuals in a deme’, or even ‘all

individuals with a particular genotype at some locus’.

This note will focus on diploid individuals, and it will

be useful to refer to the variance in breeding values

among haplotypes within set i as V
h, i

. If the correlation

of alleles within individuals in set i is given as f
i
, then

V
A, i

¯ 2(1­f
i
)V

h, i
. (1)

The average time since coalescence of two randomly

chosen alleles from set i (i.e. the average amount of

time since their most recent common ancestor) will be

called t
i
. Other terms are defined as:

σ#
m

mutational variance per generation,

γ
j

the fraction of σ#
m

due to locus j,

n number of loci affecting the trait,

d number of demes,

N
i

number of individuals in deme i,

V
T(!)

the amount of V
A

in a randomly mated

population with the same allele frequencies as

the species in question,

N
e

the effective population size of the species,

V
within

the average additive genetic variance within

demes,

V
among

the additive genetic variance among demes.

3. The coalescent and the additive genetic variance

Coalescent theory can be used to address simple

questions of quantitative genetics (Lynch, 1994).

Assuming a character without dominance or epistasis

effects and without linkage disequilibrium, the amount

of additive genetic variance at any given level is the

sum across loci of the V
A

contributed by each locus.

Thus we can investigate the amount of additive

genetic variance contributed by a single locus to fully

understand the dynamics of the trait.

We can proceed by realizing that the total variance

in a population is the expected value of the variance

among a pair of individuals chosen at random from

this population. We can use coalescent theory to

determine the expected variance among the effects of

two alleles. Two alleles from set i have diverged on

average for t
i

generations since their most recent

common ancestor. Assuming that mutational variance

is independent of the current state of the individual,

for each generation after coalescence the amount of

V
A

between a pair of alleles increases by the amount of

mutational variance due to that locus, γ
j
σ#

m
}2. Thus

the expected amount of genetic variance among two

alleles from set i at locus j is given by

V
h, ij

¯ t
i
σ#

m
γ
j
}2. (2)

Summed across loci, the additive genetic variance

among haplotypes expected in set i is therefore given

by

V
h, i

¯ t
i
σ#

m
}2. (3)

Therefore, by (1) above, we get

V
A, i

¯ (1­f
i
) t

i
σ#

m
. (4)

The values for the variances in these equations are

expectations; any particular population could deviate

from these expectations as a result of history or of

linkage disequilibrium induced by drift. This linkage

disequilibrium is on average zero, so correlations

among loci do not appear in these equations.

Two useful and interesting properties of a sub-

divided population are V
T(!)

, the amount of V
A

in a

randomly bred population with the same allele
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frequencies as the subdivided population in question,

and V
within

, the average amount of V
A

within demes.

V
T(!)

can be determined simply by finding the average

coalescence time of pairs of alleles chosen at random

from the species and setting f
i
to zero to account for

the random mating:

V
T(!)

¯ t
species

σ#
m
. (5)

Since the mean coalescence time of two randomly

chosen alleles is 2N
e

(Hartl & Clark, 1997), we can

predict V
T(!)

from a knowledge of the effective size of

subdivided populations (see below).

By similar logic, the amount of V
A

within a deme

can also be determined by the coalescence time of

alleles within demes:

V
within

¯ t
within

σ#
m
. (6)

4. Partitioning of variance for neutral, additive

characters

Wright’s F-statistics can be used to describe the

partitioning of genetic variance within and among

populations, as described by Wright (1969) and Lande

(1992). The F-statistic that we will be most concerned

with for our present purposes is F
ST

, a measure of the

correlation of alleles within populations. F
ST

has been

used in a variety of ways; for this paper I will use it to

mean a parametric description of the expected state of

the population, not as an estimate of that state. F
ST

is

defined in terms of the probabilities of identity in

state, where f
!

is the probability that two alleles

chosen at random from the same deme are identical

and f a is the probability that two alleles chosen at

random from the whole metapopulation are identical.

Then F
ST

¯ ( f
!
®f a)}(1®f a).

Denoting the amount of additive genetic variance

within and among population by subscripts, I follow

Spitze (1993) in defining

Q
ST

¯
V
among

V
among

­2V
within

, (7)

where Q
ST

is the quantitative genetic analogue of F
ST

.

As the variance components for quantitative

characters can be affected by many evolutionary

processes, and in different ways perhaps compared

with neutral single-locus allele frequencies, it is

convenient to refer to this quantity by a different

name. In this section, I show generally that the Q
ST

expected for a neutral additive trait is expected to be

the same as the F
ST

for a neutral locus in the low

mutation limit. Therefore we can use single-locus

results to predict the pattern of neutral differentiation

of quantitative traits. This has been shown before for

several special cases, but this analysis will show that

the result is general.

By the formulae given in Wright (1969), we can see

that, under the additivity assumptions used in this

paper,

V
T(!)

¯V
within

­
V
among

2
. (8)

Thus,

Q
ST

¯
V
T(!)

®V
within

V
T(!)

. (9)

Substituting from (5) and (6) in the previous section,

we find

Q
ST

¯
t
species

®t
within

t
species

. (10)

Slatkin (1991) showed that, in the limit of low

mutation, the coalescent approach gives a value of

F
ST

¯
t
species

®t
within

t
species

. (11)

In neither case has any assumption been made about

the types of population structure considered. There-

fore, for neutral additive quantitative characters and

neutral marker loci, we see that Q
ST

¯F
ST

.

With this information, we can derive the amount

of genetic variance within and among demes. The

amount of genetic variance within demes on average is

(1®Q
ST

)V
T(!)

(see equation 9) and the amount of

genetic variance among demes is given by 2Q
ST

V
T(!)

(from equations 8 and 9). Substituting from above,

the expected neutral additive genetic variance within

and among demes is

V
within

¯ 2N
e
(1®F

ST
)σ#

m
(12)

and

V
among

¯ 4N
e
F
ST

σ#
m
, (13)

respectively. Note that in these two equations the

effective size and the F
ST

are both the same as

determined by the coalescent for a single locus with

mutation rate vanishingly small. Slatkin (1991) has

shown that the value of F
ST

derived in a coalescent

model is equivalent to that derived by identity by

descent (IBD) methods, in the limit of low mutation

(see also Wilkinson-Herbots, 1998). In the next section

we will see that the effective size appropriate to the

coalescent is equivalent in the limit to that already

derived by IBD for generalized subdivided population

models (Whitlock & Barton, 1997).

5. The effective population size of metapopulations

The effective size of a subdivided population has been

examined a number of times (Wright, 1939; Slatkin,

1977; Maruyama & Kimura, 1980; Ewens, 1989; Nei

& Takahata, 1993; Hedrick & Gilpin, 1997; Wang,
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1997a, b, 1998; Whitlock & Barton, 1997; Wang &

Caballero, 1999; Nunney, 1999). Wright (1939) found

that the effective size of a species subdivided by the

island model had an effective size equivalent to

Nd(1®F
ST

). Further analysis by Whitlock & Barton

(1997) has confirmed that this is the effective size of

any subdivided population where each deme is equal

in size, equal in contribution to migration, and equal

in receipt of migrants. Therefore, for example,

populations following the stepping stone models have

an effective size that is also equal to Nd}(1®F
ST

),

although the value of F
ST

will in general differ for the

same total rate of migration.

Whitlock & Barton (1997) also derived a more

general view of the effective size of subdivided

populations, accounting for any population structure

in which the distribution of deme types remained

constant over time. This analysis is showed that a very

important parameter in determining N
e
is the variance

among demes in reproductive success. For example,

for the special case when deme is equal across all

demes, but the contribution of each deme to the

migrant pool varies without temporal autocorrelation,

the effective size of a species is given by

N
e
¯

Nd

(1­V )(1®F
ST

)­2NF
ST

Vd}(d®1)
, (14)

where V is the variance among demes in their total

contribution to the next generation. (More general

equations are given in Whitlock and Barton (1997),

which allow for variable deme size and correlations

across generations in reproductive success.) In this

context, the island model and stepping stone models

are extremes, because in these models the variance

among demes in reproductive success is at its minimum

value, V¯ 0. As a result, most realistic population

structures cause the effective size of species to be lower

than would be predicted by the census size. Certainly

the island model result is not general ; the effective size

of realistic species is much less than Nd}(1®F
ST

).

Wang & Caballero (1999), in an excellent review on

effective size, extended these results to include factors

affecting local effective size.

The effective size given in (14) was determined by an

identity by descent approach, finding the size of an

ideal population which changed in the probability of

common ancestry at the same rate as the real

population in question. This was shown to be

equivalent to the eigenvalue effective size and nearly

equal to the mutation effective size (Whitlock &

Barton 1997; see also Pannell & Charlesworth, 1999).

For our current purposes, we require the effective size

that determines the probability of IBD, which is

directly and exactly related to the mean time of

coalescence (Barton & Wilson 1995) ; this is provided

by the eigenvalue effective size in the Whitlock &

Barton (1997) approach.

Seemingly paradoxically, the eigenvalue effective

size works better for the quantitative genetic problem

with mutation every generation than it does for the

problem of finding whether two alleles are identical in

state. For this latter question, the effective size is

accurate for low values of the mutation rate (and

approximately so for reasonable mutation rates) but

not for rapid mutation (see below).

6. Examples

(i) Island model, stepping stone model

For population structures in which demes are not

changing in size and for which migration is con-

servative (sensu Nagylaki, 1980), each deme

contributes the same number of individuals to the

next generation and there is no variance in re-

productive success among demes. Examples of these

models include the island model and basic stepping

stone models. For these types of models, the effective

population size is given by N
e
¯Nd}(1®F

ST
), as

discussed above. As a result, at equilibrium the

expected amount of variance within demes is

V
within

¯ 2N
e
(1® F

ST
)σ#

m
¯ 2Ndσ#

m
. (15)

Thus the amount of variance within demes in this

restricted class of population structure models is equal

to the amount of variance expected in an undivided

population of the same total size, Nd (as found by

Lande (1992) for the island model). This result is not

general, as more realistic population structures do not

give this equivalence.

The variance among demes for these conservative

population structures is V
among

¯ 4NdF
ST

σ#
m
}(1® F

ST
),

also in accordance with Lande’s results. The same

result will hold for stepping stone models, although of

course the F
ST

will be different for the different models.

(ii) Extinction and colonization

The population structure effects of local extinction

and colonization of demes have been investigated in

detail in a series of models. Slatkin (1977) derived the

effective population size for two versions of this model

(see also Maruyama & Kimura, 1980), generalized

later by Whitlock & Barton (1997). The effective size

of a species with local extinction and colonization at

rate e and island model migration among demes at

rate m is given approximately by

N
e
F

Nd

4N(m­e)F
ST

(16)

(Slatkin, 1977; Whitlock & Barton, 1997; with F
ST

in

this case derived in Whitlock & McCauley, 1990).

With e" 0, this is typically much lower than the

census size, Nd, in contrast to the island model. Thus
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the expected average amount of additive genetic

variance within demes under this model is expected to

be:

V
within

F
2Nd(1®F

ST
)σ#

m

4N(m­e)F
ST

. (17)

As a result, the genetic variance in this metapopulation

is likely to be less than in an undivided population.

The reproductive success of demes is highly variable

as a result of the extinction}colonization process,

which reduces N
e

and therefore reduces the equi-

librium variance. Similarly, the amount of V
A

within

demes is expected to be much less than under an initial

model and much less would be expected in an

undivided species.

Equation (17) gives a value slightly different from

the value predicted by Lande (1992). In the derivation

in that paper, the approximation is made that the

variance among demes is expected to be (in the

current notation)

(1®e)[V
among

­V
within

}N ]­e[V
among

}k­V
c
}K ],

where V
c

is the variance among individuals in the

colonizing pool, k is the number of demes from which

colonists are drawn and K is the number of colonists

per new deme. This approximation drops a term

associated with the loss of variance among demes

because of the sampling caused by extinction. As a

result the variance among demes is reduced by

approximately eV
among

}d each generation relative

to Lande’s model. Adding this small term to the

derivation results in equations that are in agreement

with those above.

7. Partitioning of variance with epistasis

Non-additive genetic variance can, for some

characters, be a substantial component of the total

genetic variance (Crnokrak & Roff 1995; Whitlock et

al., 1995). With the inbreeding associated with

population subdivision, this non-additive variance

can behave differently from that in a single panmictic

population (Whitlock et al., 1993; Goodnight, 1995,

1999). Here let us briefly consider the effects of

additive-by-additive epistasis on the partitioning of

genetic variance among populations.

The additive genetic variance within a population

is expected to be approximately

(1®F
ST

)V
A
­4F

ST
(1®F

ST
)V

AA

where these variance components are those that

would obtain in a panmictic population with the same

alleles and allele frequencies as the metapopulation in

question (Cockerham & Tachida, 1988; Whitlock et

al., 1993). By similar calculations, the total genetic

variance among demes is given by 2F
ST

V
A
­4F

ST
V
AA

(see Goodnight, 1995). Thus the genetic variance

among populations is increased by the presence of

epistatic variance, relative to the case considering

additive genetic variance alone. However, the effect

on Q
ST

is the reverse ; the Q
ST

as calculated by the

traditional common garden experiment uses the total

genetic variance among populations, or

Q
ST

¯
F
ST

V
A
­2F #

ST
V
AA

V
A
­2F

ST
(2®F

ST
)V

AA

%F
ST

. (18)

With only additive-by-additive epistasis, Q
ST

¯
F
ST

}(2®F
ST

). Hence the effect of epistatic variance for

the trait is to increase the variance among demes, but

decrease the expected Q
ST

. Hence epistasis cannot be

an alternative explanation for the result Q
ST

"F
ST

.

However, epistasis can complicate the interpretation

of low Q
ST

as evidence for uniform selection and can

potentially mask some of the effects of divergent

selection.

8. Molecular diversity, mutation rates and their

effects on FST

The eigenvalue effective size as calculated by Whitlock

& Barton (1997) predicts the rate of divergence of

quantitative genetic variation, as seen above. Fur-

thermore, under some circumstances, this effective

size does well at calculating molecular diversity. This

eigenvalue effective size approximates the ‘mutation

effective size ’ which predicts the rate of change of

diversity at the molecular level (Whitlock & Barton

1997; Pannell & Charlesworth, 1999), so long as the

mutation rate is small relative to inverse total

population size. With higher mutation rates, the

number of mutation events in the coalescent paths

between two individuals is expected to be high enough

that the probability of differences is no longer well

predicted by the product of the mutation rate per

generation and the time of divergence. The dis-

crepancies between the eigenvalue and mutation

effective sizes are due to errors in the standard

calculations of the diversity with high mutation rates,

not to a fundamental difference between the drift

processes involved. As a result, population structure

measures calculated from molecular markers with

high mutation rates can be subject to bias, such that

the identity by state measures do not give a good

measure of the identity by descent relationships.

9. Conclusions

This note has three main intentions: to illustrate the

relationship between the coalescent and quantitative

genetic models, to derive the expected genetic variance

at equilibrium between mutation and drift in a

metapopulation, and to generalize the expected

relationship between F
ST

and Q
ST

for neutral traits and

characters. Neutral additive genetic variances follows
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patterns that are easily predicted from single-locus

theory about the identity by descent and coalescence

of homologous alleles. In particular, we have seen that

the expected genetic variance in a subdivided popu-

lation is easily related to the 2N
e
σ#

m
predicted in an

undivided population (Lynch & Hill, 1986) with

recourse to well-known results about F
ST

and a new

derivation of the effective size of subdivided popu-

lations (Whitlock & Barton, 1997). Furthermore, we

have seen that the Q
ST

predicted for neutral additive

characters should be predicted by F
ST

generally, not

just for the island model.

The total genic diversity in a subdivided population

is predictable from the eigenvalue effective size and

the mutational variance. Lynch & Hill (1986) showed

that the total additive genetic variance expected at an

equilibrium between mutation and drift in an un-

divided population would be 2N
e
σ#

m
, and this is also

the expectation in a subdivided population for the

amount of genic diversity, i.e. the V
A

which would be

obtained in a panmicitic population with the same

allele frequencies. This N
e
, although larger than the

census size for the island model and many other

simplified models of population structure, is likely to

be much lower than the census size in realistic

populations when populations are variable in their

reproductive success (Whitlock & Barton, 1997). Thus

the total quantitative genetic diversity maintained in a

metapopulation at equilibrium between mutation and

drift is likely to be less than in an undivided population

of the same size.

Furthermore, we can use the predictions derived

from single-locus models to predict the partitioning of

this genetic variance. Neutral single-locus population

differentiation measures, in the limit of low mutation

rates, are expected to be equal to the neutral additive

quantitative genetic differentiation measures ; that is,

F
ST

¯Q
ST

. We have seen that this result should hold

quite generally, regardless of the model of population

structure. As a result, the use of the difference between

Q
ST

and F
ST

as a test of spatially divergent selection

has more general support. The consensus of these

studies us that quantitative genetic variance among

populations is always equal to or greater than that

expected from neutral models (Lynch et al., 1999).

There are two caveats that deserve mention about

the overconfident application of this technique. First,

F
ST

and Q
ST

must be estimated, and the statistical

properties of these estimates are not well known.

Given that both are ratios of variances, the error in

their estimation is very large. Secondly, as pointed out

by Lynch et al. (1999), variation in the local breeding

system can result in variation in mean phenotype due

to different inbreeding depression. Mean phenotypes

can vary among populations but not due to variance

in breeding values or variable environmental effects.

This is unlikely to be a major problem for most

morphological traits, as inbreeding depression is not

large for most of these traits. A third difficulty

suggested by Lynch et al. (1999), that epistasis can

cause an increase in Q
ST

, appears not to be a problem

in the direction they envisioned.

As suggested by the inbreeding depression point in

the previous paragraph, dominance can potentially

affect the value of Q
ST

even for neutral characters. The

effects of dominance on the among population

variance have not been fully explored to my knowl-

edge, but preliminary results with biallelic loci suggest

that dominance can either increase or decrease Q
ST

even with neutral differentiation. If genetic variance is

due to rare recessive alleles, then Q
ST

will be less than

F
ST

even for neutral traits. With rare dominant alleles,

Q
ST

will be greater than F
ST

. Averaged over a uniform

distribution of allele frequencies, the contribution of

dominance to Q
ST

approaches zero. Overdominance

tends to cause Q
ST

to be greater than F
ST

, again even

with neutral differentiation. The overall pattern

expected by combinations across loci with varying

allele frequencies and dominance relationships is

complex and deserves further study.

The extension of Q
ST

results to metapopulations

allows a possible means of measuring the strength of

divergent selection. It is often to identify the age of

extant demes within metapopulations (Whitlock,

1992) ; in most cases the neutral divergence (as

measured by a age-class specific F
ST

) is greatest in

youngest populations. The Q
ST

among recently

colonized populations should be equal to F
ST

, for

selection will not have had much opportunity to act.

Older populations will diverge more from the equiv-

alence between Q
ST

and F
ST

. The rate at which the

difference between the two measures increases will

reflect the strength of selective differentiation among

populations.

Finally, it is useful to recognize that the predictions

made by these models about the change in variation

among demes can be quite different depending on

whether one is looking at the absolute or relative

scale. For example, with epistatic variance the amount

of variance among demes is expected to increase on an

absolute scale, but Q
ST

is actually predicted to be

lower, relative to the case without the epistatic

variance.

Applying simple results from coalescent theory to

quantitative genetics has great promise in providing

further results. Here we have seen that such quan-

titative genetic questions such as the maintenance of

genetic variance, the partitioning of variance among

populations, and the selective divergence of popu-

lations can be addressed by a coalescent approach,

even with the complications of subdivided popu-

lations. Further work could use the strengths of the

coalescent in providing moments of the distribution of

allele frequencies to infer the variances of these
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parameters and in providing more insight into the

effects of direct and indirect selection. We need

stronger models of the joint effects of selection, drift,

migration and mutation to further our understanding

of real populations. The combination of approaches

from different subdisciplines holds real promise in

achieving this.

I owe Professor Douglas Falconer a great debt for the
intellectual stimulation and education he has given me,
through many coffee mornings and in particular through his
excellent books. Without his book I doubt that most of us
would be doing quantitative genetics ; certainly I would not.
The work reported in this note was supported by the
Natural Sciences and Engineering Research Council,
Canada. Thanks go to Patrick Phillips, Thomas Lenormand
and two anonymous reviewers for suffering through a
previous version of this manuscript and to Brian
Charlesworth for interesting conversations about some of
these topics.
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