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Abstract

A probabilistic crop forecast based on ensembles of crop model output (CMO) estimates
offers a myriad of possible realizations and probabilistic forecasts of green water components
(precipitation and evapotranspiration), crop yields and green water footprints (GWFs) on
monthly or seasonal scales. The present paper presents part of the results of an ongoing
study related to the application of ensemble forecasting concepts for agricultural production.
The methodology used to produce the ensemble CMO using the ensemble seasonal weather
forecasts as the crop model input meteorological data without the perturbation of initial soil
or crop conditions is presented and tested for accuracy, as are its results. The selected case
study is for winter wheat growth in Austria and Serbia during the 2006–2014 period modelled
with the SIRIUS crop model. The historical seasonal forecasts for a 6-month period (1 March-
31 August) were collected for the period 2006–2014 and were assimilated from the European
Centre for Medium-range Weather Forecast and the Meteorological Archival and Retrieval
System. The seasonal ensemble forecasting results obtained for winter wheat phenology
dynamics, yield and GWF showed a narrow range of estimates. These results indicate that
the use of seasonal weather forecasting in agriculture and its applications for probabilistic
crop forecasting can optimize field operations (e.g., soil cultivation, plant protection, fertiliz-
ing, irrigation) and takes advantage of the predictions of crop development and yield a few
weeks or months in advance.

Introduction

Both plants and the atmosphere are non-linear dynamic systems. An important feature of such
systems is that even small perturbations of the initial conditions can cause the system to evolve
along significantly different paths (Lorenz 1963). In the case of plants and the atmosphere, the
exact values of the initial conditions are unknown.

Even Charney’s first numerical weather prediction (NWP) (Charney et al. 1950) was a
deterministic one, and the impact of uncertainties in the initial conditions on the NWP out-
puts soon became an important topic of short-range and, particularly, long-range (monthly
and seasonal) weather forecasting. A comprehensive overview of the building of the framework
for the present ensemble weather forecast systems can be found in Lewis (2005). Currently, an
ensemble seasonal weather forecast (SWF) is assimilated either from an ensemble of atmos-
pheric models run with the same initial and boundary conditions or from an ensemble of mul-
tiple runs of one atmospheric model with perturbed initial conditions.

Following the ensemble forecast concept in meteorology, modelling of plant development
can achieve the same non-deterministic dimension through the use of an ensemble of models
with the same initial conditions (related to weather, soil and plants) (Higgins 2015; Higgins
et al. 2016), multiple runs of the same model with perturbed initial conditions (a strategy
that is often applied for model parameterization or sensitivity analyses of input parameters
(Kersebaum 2011; Eitzinger et al. 2013a), or a combination of these strategies. The different
initial conditions strategy can be performed using an ensemble weather forecast as the
input weather data for a crop model with or without perturbed soil and crop characteristics.
Considering that the energy and water balance models are modules of dynamic crop models,
the described procedure results in an ensemble of estimates of the energy and water balance
components, as well as the green water (GW) components (precipitation and evapotranspir-
ation) (Hoekstra et al. 2011).

The ensemble of estimates of the weather conditions and crop model outputs (CMO) can
be transformed into probabilistic forecasts in order to measure the uncertainties in weather
(Tennekes 1988) and crop forecasting (Higgins 2015). The distribution functions arising
from an ensemble (Wilks 2002; Jewson et al. 2004) convey additional information about
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the forecast variable, which is often used for scientific studies and
practical applications (Bröcker & Smith 2008). Different
approaches for supplying SWF information to crop simulation
models can be found in Hansen & Indeje (2004) and Baigorria
et al. (2008).

Agricultural production, as a weather-dependent human activity,
can benefit most from the application of SWF (Meinke & Stone
2005; Sivakumar 2006), especially in combination with agrometeor-
ological models, which provide better tailored information for the
specific applications of SWF, such as for yield forecasting or pest
warnings for farmers (Hansen 2005). Weather-sensitive events
(the start of specific crop growth stages, the presence and intensities
of frosts and droughts, etc.) and farming decisions rely heavily on
the accuracy of short- and long-range weather forecasts. However,
monthly and SWFs in Europe are far from achieving systematic
use for farms and, by extension, practical services (Calanca et al.
2011). A review of SWF application-related papers and services sug-
gests that the end-user community is not well informed about the
features, uncertainties, applicability and means of using SWF pro-
ducts. This may have resulted from: (a) the complex procedures
for obtaining forecast products in numerical form and (b) the cur-
rent state of the methodology for the application and validation of
long-range weather forecasting for agrometeorological purposes.
Some significant steps forward were achieved by the DEMETER
project (Development of a European Multimodel Ensemble
System for Seasonal to Interannual Climate Prediction; Palmer
et al. 2004) and the more recent ENSEMBLES project, which
intended to develop an ensemble prediction system (EPS) for cli-
mate change based on the predominant state-of-the-art high-
resolution global and regional Earth System models (Doblas-Reyes
et al. 2009; Weisheimer et al. 2009).

At the regional level, SWF has received particular attention in
those regions affected by the El Niño-Southern Oscillation
(ENSO) phenomenon (Subbiah & Kishore 2001; Meinke &
Stone 2005) and those especially vulnerable to extreme weather
events and climate change impacts (Huda et al. 2004; Marletto
et al. 2005; Detlefsen 2006; Harrison et al. 2007; Semenov &
Doblas-Reyes 2007; IPCC 2012). Advance warnings of droughts,
flooding, heat waves, early and late frost events, etc., based on
long-range weather forecasts, especially within the timescales of
1–6 months, can make agricultural production more sustainable
(Ogallo et al. 2000; Fraisse et al. 2004; Hansen 2005; Hansen
et al. 2006; Andre et al. 2010; Das et al. 2010; Ferrari 2010).

In Central Europe, significant increases in drought and heat
events are expected under climate change scenarios (Trnka
et al. 2011, 2014; Thaler et al. 2012; Eitzinger et al. 2013b), sup-
porting the increasing potential of applications of SWF in the next
decades. The operational use of SWF can significantly affect: (a)
farm operations (planting, harvesting and soil cultivation timing;
fertilizer/pesticide application; crop selection; and seed pur-
chases); (b) irrigation water demand and crop water productivity;
and (c) improved knowledge related to crop growth rate, storage
needs, transport requirements, insurance, marketing and con-
sumer demand (Davey & Brookshaw 2011).

The present study investigates the capabilities of SWF to pro-
vide possible ranges of values of meteorological elements (tem-
perature and precipitation), CMOs and green water footprint
(GWF). Particular attention is devoted to evapotranspiration as
a GW component and yield as a GW-related CMO. The hypoth-
esis is that seasonal crop model simulations, particularly ensemble
ones, should benefit from SWF since, for many physiological
(growing) processes, the sum of temperatures above a certain

threshold and accumulated precipitation during a season can be
good performance predictors. For agricultural purposes, the
appearance and duration of extreme temperatures or temperatures
above/below thresholds during the period of interest (i.e., the
phenological phase) are important, regardless of the exact date.
Additionally, analysis of an ensemble probability distribution
offers a measure of the uncertainty of the obtained results as
well as the possibility of testing the role of crop models as prob-
ability function filters. The current study tests this hypothesis and
assumption and provides a methodology for the further use of
SWF in agricultural production.

The objectives of the present study are as follows: (1) to per-
form seasonal crop forecasting by using deterministic and ensem-
ble weather forecast as the input weather data for a crop model
without perturbing soil or crop characteristics (as described
above); (2) to assess the ensemble forecast’s ability to provide a
narrow range of feasible CMOs and the associated GWF of the
crops (Mekonnen & Hoekstra 2010; Gobin et al. 2017) based
on the ensemble spread (Toth et al. 2003); (3) to test seasonal
CMO and GWF forecasting by comparing the deterministic and
ensemble estimates with the results obtained using observed wea-
ther data; and (4) to analyse the CMO and GWF ensemble esti-
mates distributions and evaluate them using ignorance scores
(Good 1952; Roulston & Smith 2002).

The intention of the present paper is to present a methodology
for (a) the implementation of one scenario for obtaining ensemble
estimates of CMO and GWF and (b) the analysis of the obtained
results. As a case study, the SIRIUS crop model (Semenov &
Porter 1995; Jamieson et al. 1998) and SWF (deterministic and
ensemble) provided by the European Centre for Medium-range
Weather Forecast (ECMWF) are used to provide a seasonal forecast
of the CMO and GWF for winter wheat in Austria and Serbia.

Materials and Methods

Study area

Two locations were selected (Fig. 1) from the most important agri-
cultural production areas in Austria (Groß-Enzersdorf (GE) – 48°
12′N, 16°33′E, 148 m asl) and Serbia (Novi Sad (NS) – 45°15′N,
19°50′E, 84 m asl); both locations have grown permanent winter
wheat crops for many decades. In addition, both locations are situ-
ated on the flat terrain of the southern and south-western parts of
the Pannonian lowland, although Groß-Enzersdorf’s weather is
strongly influenced by the presence of the Alps mountain range
to the west and southwest. The typical climate of the study areas
is continental or moderate continental, with mean annual tempera-
tures of 11.5 °C in NS and 10.8 °C in GE and mean annual precipi-
tation of 647 mm in NS and 550 mm in GE for the reference
climatological period 1981–2010. The mean annual temperature
during the winter wheat-growing period (October–July) was 10 °
C in NS and 9.1 °C in GE, while the mean annual precipitation
was 534 mm in NS and 426 mm in GE. An important feature of
the continental-type climate in these areas is the high variability
in temperature and precipitation, especially during the spring,
which is often expressed by extreme weather events and hot and
dry conditions during summer (Müller 1993; Lalic et al. 2013).

Data

For the purposes of the present study, the following daily
meteorological data were used: daily maximum (Tmax) and
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minimum (Tmin) air temperatures, daily average relative humidity
(RH), daily sum of global solar radiation (Rg), wind speed (v) and
24-h accumulated precipitation (P). The selected variables
represent the full set of meteorological input data commonly
used in crop modelling. Since the start of active winter wheat
growth in spring at both locations is, on average, during March,
1 March is set as the start date in the seasonal time series. To
avoid any lack of data, the dataset was extended 1 month after
the usual end of the winter wheat-growing period and the selected
time series (2006–2014) include data from 1 March to 31 August.

Observed data
Historical records of the selected meteorological data for the NS
and GE weather stations were obtained from the national weather
service (Hydrometeorological Service of the Republic of Serbia
and Central Institute for Meteorology and Geodynamics of
Austria, or ZAMG). Due to a lack of global solar radiation mea-
surements for both locations, this variable was calculated using
Prescot’s empirical formula (Trnka et al. 2005).

Seasonal weather forecast data
The long-range or seasonal forecasts follow the same approach as
the NWPs in an attempt to provide information about climate
conditions over the next few months or seasons. While weather
forecasting is the prediction of continually changing conditions
in the atmosphere, a seasonal forecast is a summary of statistically
estimated weather events during that season. Numerical weather
prediction is extremely sensitive to slight differences in the initial
conditions, which can lead to the development of different pro-
cesses in the atmosphere and can subsequently reduce the accur-
acy of the forecast after a 10-day period.

Over the past decade, the European Centre for Medium-range
Weather Forecast has developed a system for ensemble seasonal
forecasting based on the same system of hydrodynamic equations
used in medium-range forecasting. In the developed system,

perturbations were used to create the initial conditions for the
ensemble run. It should be emphasized that a seasonal forecast
cannot predict daily variations in meteorological elements at spe-
cific locations months in advance because of the chaotic nature of
the atmosphere but can provide a possible range of these ele-
ments. The seasonal forecast system of ECMWF begins with 10
ensemble members (EMs) in 2006 for 6 months and progresses
to 50 EMs in 2014 for a 7-month forecast.

The present study used ECMWF seasonal forecast products,
starting on 1 March for all available years, and the EMs in the
MARS (Meteorological Archival and Retrieval System). The
24-h average values for several parameters from the start to the
end of the forecast period were used. Two separate locations
were considered: NS (45°15′N, 19°50′E) and GE (48°12′N, 16°
33′E). The resolution of the seasonal ensemble forecast data was
0·5° × 0·5°. From those fields, the geographically averaged values
were extracted from the four nearest numerical points. Because
of the specific terrain and steep hills near Groß-Enzersdorf, the
selection did not match the observational data well. A comparison
of the real topography with the static field of model orography for
a given horizontal resolution helped to select the best option,
which was one of the nearest numerical points to the southeast.

Importantly, the deterministic element of the EPS is the deter-
ministic – control forecast. A control forecast, or a control run
(CR) in terms of EPS, is a forecast model run without any pertur-
bations of the initial conditions to analysis. Providing the initial
conditions for the control analysis consists of collecting observa-
tions and interpolating data from irregularly spaced locations to
the model grid and its objective analysis.

To test the efficacy of SWF in crop and GWF modelling, two
datasets based on the CR and EMs were designed for the entire
period of interest (1 March to 31 August) during the selected
9-year period. The results of the crop model simulations and
GWF calculations using EMs were averaged in order to obtain
ensemble averages (EA) (Anderson et al. 2007). The results

Fig. 1. Map of selected locations in Serbia (Novi Sad) and Austria (Groß-Enzersdorf).

The Journal of Agricultural Science 647

https://doi.org/10.1017/S0021859617000788 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859617000788


obtained using the observed and control run datasets are denoted
as OB and CR, respectively.

Crop model simulations and green water footprint calculations

The dynamic crop growth simulation model SIRIUS was run
using the SWF and observed weather data for NS (Serbia) and
GE (Austria). SIRIUS has previously been calibrated and validated
for the agroecological conditions of the Vojvodina (Serbia) region
(Lalic et al. 2013) and was applied in the present study to produce
ensemble CMOs using SWF. Accumulated evapotranspiration
(AccET) during the growing season, maximum water deficit
(MaxD), anthesis day (AnthD), maturity day (MatD) and grain
yield (Yield) were the simulated outputs for the selected locations
in Serbia and Austria given a chernozem soil and using the OB,
CR and EA datasets.

The selected winter wheat cultivar for the simulation study was
‘Balkan’, for which a crop model was successfully validated in a
previous study (Lalic et al. 2013). In addition to the soil character-
istics of the chernozem soil, data related to the timing and num-
ber of management operations, variable characteristics and
phenological dates were recorded for the selected season.
Because the middle of October is the typical time for sowing win-
ter wheat in both the Serbian and Austrian test regions, 15
October was set as the time of sowing for all runs. A typical man-
agement scenario was used, with no irrigation and only three fer-
tilizer applications: (i) before sowing (10 October) – 50 kg N/ha,
(ii) at the end of the winter (2 February) – 55 kg/ha and (iii) dur-
ing spring (4 April) – 40 kg/ha.

The GWF of a crop is calculated using the following method
established by Mekonnen & Hoekstra (2010):

GWF = 10 ×∑lgp
d=1 AccETgreen

Yield
(1)

where the subscript ‘green’ indicates rainfed conditions and lgp is
the length of the growing period. In Eqn (1), AccET is in mm/day,
and yield is in t/ha.

Verification statistics of the ensemble forecast

Ensemble forecast and control run v. observations
The verification methodology, based on the calculation of the root
mean square error (RMSE) and ensemble spread (SPRD) (Toth
et al. 2003), was used to evaluate the ensemble-based temperature
(Tmax and Tmin) and precipitation (P) forecasts during the period
of interest (1 March–31 August) for the selected locations. The
RMSE of the ensemble average (RMSEEA), which is a measure
of the difference between the forecast and the observation, was
calculated as follows:

RMSE =
�������������������������
1
m

∑m
i=1

∑n
j=1

Aji − AOB
i

( )2
√√√√ (2)

where Aji is the value of variable A for the ith element of the sam-
ple (day in this case) and for jth ensemble member, AOB

i is the
observed value of A on the ith day, m is the sample size (182
days) and n is the ensemble size. Commonly, the ensemble aver-
age 1/n

∑n
j=1 Aj

( )
i of variable A for the ith element of the sample

is denoted with AEA
i . The SPRD, which represents the uncertainty

of the ensemble, is defined as follows:

SPRD =
������������������������������
1
m

∑m
i=1

1
n− 1

∑n
j=1

Aji − Aj
( )2

√√√√ (3)

It is important to note that a small SPRD does not necessarily
imply a high skill of a forecast but can be a good indicator of
high predictability.

This methodology was partially adapted for the correlation of
CMO and GWF EMs for each year, and the corresponding yearly
realizations were calculated using the observed weather data (OB).
Since each EM was equally probable, the RMSE, as a measure of
CMO and GWF forecast accuracy, was calculated for each year,
comparing the values of CMOs and GWFs calculated using the
EMs, Yj, and observed data, YOB, as follows:

RMSEGWF,CMO =
��������������������
1
n

∑n
j=1

Yj − YOB
( )2

√√√√ (4)

The deviation of the ensemble forecast from the mean is an
important attribute of the ensemble-based CMO and GWF calcu-
lations. Therefore, the SPRD for each year was calculated using
the following formula:

SPRDGWF,CMO =
��������������������
1
n

∑n
j=1

YEA − Yj
( )2

√√√√ (5)

Comparisons of Eqns (2) and (3) and Eqns (4) and (5) show that
an ideal SWF will have RMSEs and SPRDs with the same magni-
tude since, in that case, the forecast value is equal to the observed
value for each EM. Accordingly, the simulation obtained using the
ensemble forecast is more realistic when the RMSE and SPRD
values are similar.

To assess the deviation of the CMOs and GWFs obtained
using SWF from the observation-based results, the RMSE and
standard deviation, σ, were calculated using the average values
of CMOs and GWFs across all EMs as well as the values obtained
using the CR dataset for each year over the period of 2006–2014.

From the procedures described by Pielke (1984), the simulation
can be considered more realistic if (a) the RMSEs obtained using
the simulated data (RMSECR and RMSEEA) are less than the stand-
ard deviation of the observed values (σOB) and (b) the standard
deviation, σ values of the CMOs and GWFs calculated using the
forecasted data (σCR and σEA) are similar to that obtained when
using the observed weather data, σOB. The RMSE was calculated
for both the EM and CR datasets for the chosen decade since it
provides a good overview of the datasets, with large errors
weighted more than many smaller errors (Mahfouf 1990).

To test the interannual variability of the SWF-based products
and their ability to match the counterpart values in the observa-
tions, the coefficient of variability, cv, of the selected CMO and
GWF was calculated using the EM and CR datasets over the
2006–2014 period and was compared with the results obtained
using the OB data.

From ensemble forecast to probability distribution
A comprehensive overview of the theory behind the transform-
ation of an ensemble of estimates into a distribution function,
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e.g. a probabilistic forecast, can be found in Bröcker & Smith
(2008) and Siegert et al. (2016). An important feature of a prob-
abilistic forecast is its performance measure or scoring rule
(Gneiting & Raferty 2007). The ignorance score is a commonly
used method that is defined by the following scoring rule
(Roulston & Smith 2002):

S( p(y),Y) = −log2( p(Y)) (6)

where p(Y) is a unitless probability density function of the verifi-
cation value of variable Y.

The ignorance score quantifies the performance of an ensem-
ble forecast, by measuring the logarithm of probability density
(which, in the present paper, is the Gaussian kernel because

only normally distributed variables are considered) of the normal-
ized value (Z-value) of the outcome. Lower ignorance scores indi-
cate more skillful forecasts. The Normal distribution obeys the
68-95-99·7 rule; thus, the ignorance score can be expected to be
<2·04 with probability 0·68, <4·21 with a probability of 0·95,
and >7·81 with a probability of 0·3. Therefore, if the ignorance
is <2·04, the model’s skill can be considered as very good, and
if it is >7·81, the model is not adequate.

In the present study, a score was applied where Y is a value cal-
culated using the OB dataset. From Eqn (6), a decrease in the
ignorance score corresponds to a better simulation. In the present
paper, as a first step in the analysis of the results obtained, only an
ensemble of estimates that have Gaussian (Normal) distributions is
considered (the Shapiro–Wilk test and Q–Q plot were used to

Fig. 2. Tmin, Tmax and P for 1 March–31 August: the average values (bars) and relative deviations (‘+’, CR; ‘×’, EA) obtained using the OB, CR and EA datasets for NS
(up) and GE (down) for 2006–2014.
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determine whether the distribution is normal). To compare the
scores obtained for the different variables and those coming
from different normal distributions, the variables were normalized
and a Z score used. The Z score is introduced by replacing the
variable of interest with Z = (Y−μ)/σ, where μ and σ are the
mean and the standard deviation of the ensemble. Consequently,
the probability density function becomes a standard Gaussian
density ensemble as follows:

p Z( ) = 1����
2p

√ e(−1/2)Z2 (7)

Results

Seasonal forecast of air temperature and precipitation

The results obtained by comparing the average maximum and
minimum temperatures, accumulated precipitation and the rela-
tive deviations (Fig. 2) obtained using OB, CR and EA can be
summarized as follows: (a) The Tmin forecast based on EA slightly
differs from that of the CR in Groß-Enzersdorf. The deviation
from the observations was more pronounced in GE than in NS
for both the CR and EA datasets. (b) The Tmax forecast based
on EA in both locations is underestimated every year. (c) The
accuracy of the P forecast significantly varied between seasons
at both locations, while the results obtained using EA were closer
to the observed results. The accuracy of the P forecast significantly
varied between seasons at both locations, while the results
obtained using EA were closer to the observed results. In NS, in
2006 and 2007, the difference between CR and EA were negligible
(2006: δCR = −2·75%; δEA =−5·18%; 2007: δCR =−0·68%; δEA =
3·95%), while during the rest of the analysed period (5 of the 7
years), the relative deviation of EA was less than that of CR. In
GE, in 2013, the difference between CR and EA was just 8·77%
(in 2009 5·45%), while in 5 of the 8 years, the EA forecast

produced a lower relative deviation with respect to observations.
The differences between the observations and the forecasts were
particularly pronounced in 2010 and 2014 at NS, mainly because
precipitation was greatly underestimated in 2010 and 2014
(Fig. 2). During the period of 1 March to 31 August in 2010,
the recorded precipitation at NS was 655 mm and the average
annual precipitation was 647 mm. Most of this precipitation
(553 mm) occurred from May to August, with monthly precipita-
tion values that exceeded the average monthly values by >50% (in
the August, precipitation was 3·6 times the long-term average). In
the spring and summer of 2014, precipitation well above the cli-
matological mean was observed, and excessive flooding occurred
in Serbia. Even the ECMWF-issued accurate medium-range fore-
casts for that particular event were not reflected in the long-range
forecast, primarily because of the long time series of the climato-
logical values.

Figure 3 presents the ensemble verification statistics for the
temperature and precipitation of the NS and GE locations from
1 March to 31 August. RMSEEA and SPRD were calculated
using Eqns (2) and (3) for each season between 2006 and 2014
and were compared to assess the accuracy of the ensemble fore-
cast. The presented results are summarized as follows: (a) the
Tmin forecast achieved nearly the same accuracy for both loca-
tions, with small variations during the period of interest; (b) the
Tmax forecast was slightly less realistic, and the differences
between the RMSEEA and SPRD values were more pronounced
for Groß-Enzersdorf; (c) the ensemble skill for modelling Tmin

was greater than that for Tmax for both locations; and (d) the P
and Tmax ensemble forecasts were better in GE than in NS. The
significant differences between the precipitation RMSEEA and
SPRD for NS in 2010 and 2014 were related to the excessive
rain and flooding during the vegetation period and the ensemble
forecast’s ability to predict extreme weather events. Additionally,
the ensemble forecast had trouble predicting the precipitation in
GE in 2008, when two rainy episodes with excessive amounts of

Fig. 3. Tmin, Tmax and P for 1 March–31 August: RMSEEA and SPRDEA values for 2006–2014.
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precipitation were recorded: 18–21 May with 86·5 mm and 1–4
June with 65 mm. It is important to note that the rain event fore-
casting was accurate, but the amount of precipitation was remark-
ably underestimated.

Crop model outputs and green water footprint

Ensemble forecast and control run v. observations
SIRIUS was run using the OB, CR and EM datasets as the crop
model weather input data in order to obtain ensemble estimates
of the selected variables. Afterwards, the GWF was calculated
using Eqn (1). The CMOs and GWF obtained for each EM
were averaged to obtain the CMO ensemble averages denoted
with EA. The quality of the CMOs and GWFs obtained using

SWF data were tested via a comparison with the OB-based
CMOs (Figs 4 and 5).

The differences in simulated AnthD and MatD using EA and
CR for both locations are negligible, most probably because the
summation of air temperatures diminishes small underestimates
and overestimates of forecast values. However, slightly better
results are observed in case of AccET (7/9 in NS and 5/9 in
GE), Yield (5/9 on both locations), GWF (6/9 in NS and 7/9 in
GE) and MaxD (7/9 in NS and 8/9 in GE).

During the entire period of interest, it can be noted that certain
overestimations of the forecasted accumulated evapotranspiration
(up to 30%) and crop yields (up to 20%) with respect to OB-based
simulations occurred at both locations. However, the same effect
did not occur with the calculated GWF (up to 10 and 20% in NS

Fig. 4. Yield (t), MatD (DOY), AnthD (DOY) and AccET (mm) (bars) and its relative deviations (‘+’, CR, ‘×’, – EA) calculated using the OB, CR and EA datasets for NS (up)
and GE (down) for 2006–2014.
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and GE, respectively) NS. In the case of a MaxD, significant dif-
ferences between the SWF (EA and CR) and OB-based results
were observed. The mostly underestimated values during 2007–
2009 and 2011–2012 at both locations were the result of the over-
estimation of precipitation and underestimation of Tmax in the
forecast v. the observed data. The excessive rains during the
2010 and 2014 (and part of the 2013) growing seasons were
underestimated in the SWF, leading to an overestimated water
deficit. However, this result proves that crop models can repro-
duce the input weather patterns in the MaxD calculations.

Promising results from the ensemble crop modelling can be
found in the low spread of all of the calculated Yield, AccET,
AnthD, MatD and GWF values (Figs 6 and 7). The difference
between the RMSE and SPRD was, to a considerable extent, in
accordance with the RMSE and SPRD magnitudes and differences
obtained for temperature and precipitation (Fig. 3). For example,
at both locations in the 2006–2007 and 2009–2012 crop-growing
periods, the high RMSEs and large deviations from the SPRD for
the phenology dynamics (AnthD and MatD), particularly in
Groß-Enzersdorf, corresponded to high deviations of the Tmax

forecast from those observed. The high RMSE values for Yield
and ET in 2008 in NS are the result of high RMSE values for
the precipitation of that year. However, this problem in the pre-
cipitation forecast for 2008 did not affect MaxD or GWF signifi-
cantly, except in that the differences between the RMSE and
SPRD for GE were more pronounced. The high RMSE and
SPRD values for precipitation in 2010 and 2014, particularly at
NS, and for 2008 at GE were not visible in the RMSE and
SPRD values obtained for the evapotranspiration and yield
because most of the precipitation producing this deviation
occurred at the end of the winter wheat growing period.
However, the high RMSE for evapotranspiration in 2012 at GE
and for the yield in 2008 at NS cannot be explained by previously
noted deviations in meteorological elements. The probable cause

can be found in the seasonal forecast of the solar radiation inten-
sity, wind speed and air humidity, i.e. the input meteorological
data, for the calculation of the CMOs and GWF, which were
not the subject of the current study.

From ensemble forecast to a probability distribution
An analysis of the probability distribution was made for all CMOs
and GWF ensemble estimates. At both locations, for the study
period, the following variables had normal distributions: MatD,
AnthD, Yield and GWF. At both locations, in 8 of the 9 years,
the OB-based values for MatD and AnthD were between the 95
and 99·7% confidence intervals (between ±2σ and ±3σ from the
ensemble mean). For Yield and GWF, the results were much bet-
ter, bringing the OB-based values to a much narrower interval
between the 68 and 95% confidence intervals (between ±1σ and
±2σ from the ensemble mean). The ignorance score, S( p(Y)),
was calculated for each year. Figure 8 presents the skill of the
SIRIUS-based ensemble of crop model estimates, in the form of
the ignorance scores for the selected CMOs and GWF for both
locations.

For NS, the ignorance scores for maturity (S = 6·4) and anthe-
sis day (S = 6·8) forecasting lay within the mean plus/minus one
standard deviation (σMatD = 4·5 and σAnthD = 5), except for
2011, which undermined the otherwise much better scores
(SMatD = 5·9, SAnthD = 6·4, σMatD = 1·8, σAnthD = 2·5). The consid-
erable differences between the RMSE and SPRD for MatD and
AnthD in 2009–2011 (Fig. 6) could be traced only to the 2011
score. For GE, a better ensemble skill was obtained for phenology
dynamics (SMatD = 5·3, SAnthD = 5), with much lower standard
deviations (σMatD = 2, σAnthD = 3) but with higher variations
over the period of interest (Fig. 9). The yield ignorance score,
SYield, at NS (3·8) was slightly greater than the value seen at GE
(2·6) but also had twice the standard deviation (2·6). The low
probability skills in 2008–2009 for NS and in 2007 for GE were

Fig. 5. MaxD (mm) and GWF (m3/t) (bars) and its relative deviations (‘+’, CR, ‘×’, EA) calculated using the OB, CR and EA datasets for NS (up) and GE (down) for
2006–2014.
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the result of significant deviations between the ensemble estimates
and yields obtained using the observed weather data, which could
also be seen in the high RMSE values (Fig. 6). The GWF ignor-
ance score, SGWF, is of the same magnitude at both locations,
with similar standard deviations. The extremely low skill in
2007 at NS and in 2012 in GE could not be traced in the ensemble
RMSE and SPRD results.

Discussion

Nine years (2006–2014) of ECMWF ensemble SWF data were
used as the input meteorological data for the SIRIUS to produce
an ensemble of estimates of CMOs and the GWF for winter
wheat. A bias correction procedure was not applied to the SWF
data in this phase of the study. There are two suggested post-
processing procedures that can be applied to correct model bias
based on the assumption of the quasi-linear behaviour of the
atmosphere, and in both cases, there will be some inaccuracy in
the estimate of bias and the definition of climate (Anderson
et al. 2007). Research on more fully calibrated products is ongoing
in ECMWF and experimental calibrated products may become
available for certain fields.

SIRIUS is already calibrated and validated for select locations;
therefore, the model outputs obtained using the observed
meteorological data were considered as being closest to the
observed values.

Reviewing both the ensemble estimates and the following
RMSE and SPRD values of the input weather data v. the output
crop models and GWF data show that a straightforward signal,
which can be seen in the input temperature/precipitation ensem-
ble forecast data, is present in the crop model estimates and GWF
but is less clear in years with extreme weather events, such as 2010
and 2014 at NS. For example, particularly high SPRD values and
large differences between the RMSE and SPRD values for the
maximum temperature in 2007 and 2009–2013 and for precipita-
tion in the 2008–2012 period at NS can be identified in all CMOs,
the GWF in 2009 and the phenology dynamics in 2009–2014.
However, in the ‘extreme’ years 2010 and 2014, the SPRD for pre-
cipitation differed from the RMSE by −60 and −66·7%, respect-
ively, while the differences for AccET (2010: −35·4%, 2014:
−12·6%), Yield (2010: −50%, 2014: −34·2%), MaxD (2010:
−32·9%, 2014: −28·6%) and GWF (2010: −23·5%, 2014:
−48·3%) were much less pronounced. This clearly proves the
first hypothesis, i.e., that ensemble crop model simulations can

Fig. 6. RMSE and SPRD for Yield (t), MatD (JDAY), AnthD (JDAY) and AccET (mm) calculated for 2006–2014.

Fig. 7. RMSE and SPRD for the MaxD (JDAY) and GWF (m3/t) calculated for 2006–2014.

The Journal of Agricultural Science 653

https://doi.org/10.1017/S0021859617000788 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859617000788


benefit from SWF data, even when the deviations from observa-
tions are not negligible.

A comparison between the probabilistic (ensemble) and deter-
ministic (CR) CMOs and GWF forecasts, for both NS and GE
indicates that the results obtained using the ensemble forecasts
are, in general, in better agreement with the results based on
observations. The advantage of ensemble prediction-based results

in comparison with deterministic ones is due to the application of
the ensemble forecast strategy (which copes with initial condition
uncertainties by repeatedly running the NWP model using
slightly perturbed initial conditions) while running a crop
model and analysing an ensemble of estimates instead of one
deterministic output. An important feature of the CR-based
CMOs and GWF is also the high standard deviation (Table 1),

Fig. 8. Ignorance score, standard deviation of the ignorance score and the mean ignorance score for Novi Sad.

Fig. 9. Ignorance score, standard deviation of the ignorance score and the mean ignorance score for Groß-Enzersdorf.
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which is often much higher than the standard deviation of the
OB-based results. This higher standard deviation, in comparison
to the OB-based results, is a result of CMOs and GWF uncertain-
ties introduced by weather data coming from a deterministic (CR)
forecast.

The present study results clearly indicate that, during the
entire period of interest, at both locations and for all CMOs
and GWF, the SPRD values were low. This underlines the very
good performance of the model, despite the relatively high
RMSE values and large differences between RMSE and SPRD
because of the systematic error in the simulations that can be
assumed to have been introduced. It is well known that systematic
errors are far easier to remove than random ones. The more loca-
tions in a selected region can be used to identify the possible
sources of error in the local/regional impacts (parameterization
of orography, surface model parameterizations, etc.) or large-scale
impacts (related to the model packages for radiation, the advective
scheme used, etc.). For example, the slightly higher deviations
from the observations sometimes observed at GE are partly
related to the position of the weather station. Although both sta-
tions are located on the margins of the Pannonian lowland, the
GE location is in the vicinity of the Alps mountain range to the
west and is affected by the associated climate gradients, especially

with regard to precipitation and other water balance parameters
(BMLFUW 2003). The influence of orography on NWP is a well-
known problem. Because every model uses the observed orog-
raphy interpolated to the model’s horizontal resolution, some
important characteristics, such as steep hills that can cause con-
vection and heavy rain, are reduced or amplified numerically.
However, it is important to stress one significant feature of the
ensemble forecast with respect to the ensemble spread. Namely,
if an ensemble forecast provides a narrow enough range of values
for the variable of interest, one can assume that its ability to pre-
dict daily temperature variations, precipitation events or even
yield, for example, is significant. However, sometimes large
spreads in the ensemble forecasts leave windows of opportunity
for the assessment of extreme weather events and low-probability
atmospheric processes with significant impacts, particularly in the
transition seasons and under weather conditions associated with,
for example, high summer temperatures and convective processes,
particularly in the spring and summer. While the ensemble
spread compared with the RMSE of the ensemble reflects the
model accuracy, the ignorance score indicates the skill of the
ensemble forecast, i.e., it is a measure of the forecast ‘goodness’.
The first results related to the probabilistic crop forecast were
obtained using only a Gaussian distribution and ignorance

Table 1. CMO: Average values, RMSE, standard deviations, σ and variation coefficient, cv, for OB, CR and EA for 2006–2014

Variables AccET (mm) AnthD (JDAY) MatD (JDAY) GWF (m3/t) MaxD (mm) Yield (t/ha)

Novi Sad

OB 392·56 124 168 558·41 97·67 7·051

CR 422·22 135 180 539·26 89·33 7·863

EA 427·46 133 178 548·93 87·72 7·825

RMSECR 18·64 3·79 4·45 19·55 23·15 0·444

RMSEEA 16·04 3·49 3·77 10·95 10·91 0·310

σOB 9·21 4·09 3·02 12·46 13·40 0·186

σCR 16·37 5·12 3·89 22·50 15·80 0·225

σEA 9·16 4·44 3·17 16·18 5·77 0·086

cv
OB 0·26 0·37 0·20 0·25 1·52 0·29

cv
CR 0·43 0·42 0·24 0·46 1·97 0·32

cv
EA 0·24 0·37 0·20 0·32 0·73 0·12

Groß-Enzersdorf

OB 384·22 139 182 528·74 116·22 7·268

CR 415·89 152 195 526·22 91·78 7·935

EA 417·34 150 194 529·60 104·07 7·899

RMSECR 16·53 4·64 5·09 23·58 22·66 0·326

RMSEEA 16·92 4·10 4·54 15·66 10·91 0·235

σOBS 12·95 3·30 2·85 16·60 9·71 0·104

σCR 13·84 4·25 3·83 16·50 15·00 0·274

σEA 5·93 3·24 2·73 7·76 5·00 0·033

cv
OB 0·37 0·26 0·17 0·35 0·93 0·16

cv
CR 0·37 0·31 0·22 0·35 1·82 0·38

cv
EA 0·16 0·24 0·16 0·16 0·52 0·05

CMO, crop model outputs; AccET, accumulated evapotranspiration; AnthD, anthesis day; MatD, maturity dayGWF – green water footprint; MaxD, maximum water deficit; Yield, grain yield; OB,
observed; CR, control run; EA, ensemble averages; RMSE, root mean square error; σ, standard deviation; cv, coefficient of variability.
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score and indicate quite uniform forecasting skills (results within
the interval of the mean ±σ) for both locations for the phenology
dynamics, yield and GWF. The lowest average ignorance score,
i.e., the highest forecasting skill, is obtained for GWF, and the
value for yield is only slightly higher, which is a very promising
result. However, the accumulated evapotranspiration and soil
water deficit, in general, did not pass the normal distribution
test, and the ignorance score, which uses the assumption of the
normality of the probability distribution, is therefore not relevant
for these variables. It is concluded that one should look for a more
adequate probability distribution model for these variables.

Conclusions

The present paper describes the implementation and output sta-
tistics analysis of ensemble crop and GW forecasting. It also
reports the first implementation of this type of analysis, which
studied winter wheat using SIRIUS. The presented simulation
results and verification statistics, particularly those related to the
GW components (precipitation and evapotranspiration), yield
and GWF, allow the reader to (a) assess the capacity of the ensem-
ble forecast to offer a sufficiently narrow range (when it is possible
and favourable) of the possible realizations of the selected vari-
ables; (b) identify the differences between the ensemble and deter-
ministic weather forecast (CR) applications; (c) assess the
uncertainties in the ensemble estimates, i.e. the probabilistic fore-
cast application for the selected CMOs and GWF; and (d) under-
stand the ability of SWF to reproduce the real inter-annual
variability in the CMOs and GWF on long-term scale.

In the case of winter wheat, the seasonal ensemble forecasting
results obtained for phenology dynamics, yield and GWF offer a
narrow range of estimates. The exceptions are extreme weather
events (such as precipitation in 2014, which resulted in flooding),
when the forecasted weather data commonly underestimate the
observational data and when the crop models cannot reproduce
crop responses (Lalic et al. 2014). For the operational stage, the
results of the presented research can be used by producers and
other decision-makers in planning the timing of farm operations
and spraying (phenology dynamic forecasting), irrigation sched-
uling (MaxD, GWF and AccET, forecasting) and fertilization
(phenology dynamics and yield forecasting).

Further plans related to SWF applications include the use of
more fully calibrated ECMWF products and the use and testing
of some post-processing and calibration methods. The next
steps in crop ensemble forecasting using one deterministic crop
model should entail the use of ensemble weather forecasts as
the input weather data, with fixed soil and crop characteristics,
for models of summer crops, water management and irrigation
planning and phenology dynamics of orchards (i.e., grapes and
fruits) for frost risk warning and frost protection. The next level
in ensemble crop forecasting will be reached through the use of
ensemble weather forecasts with perturbed soil and/or crop
characteristics.
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