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Scaling relations in quasi-static
magnetoconvection with a strong vertical
magnetic field
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The scaling law for the horizontal length scale � relative to the domain height L, originating
from the linear theory of quasi-static magnetoconvection, �/L ∼ Q−1/6, has been verified
through two-dimensional (2-D) direct numerical simulation (DNS), particularly at high
values of the Chandrasekhar number (Q). This relationship remains valid within a
specific flow regime characterized by columnar structures aligned with the magnetic field.
Expanding upon the Q-dependence of the horizontal length scale, we have derived scaling
laws for the Nusselt number (Nu) and the Reynolds number (Re) as functions of the driving
forces (Rayleigh number (Ra) and Q) in quasi-static magnetoconvection influenced by a
strong magnetic field. These scaling relations, Nu ∼ Ra/Q and Re ∼ RaQ−5/6, have been
successfully validated using 2-D DNS data spanning a wide range of five decades in Q,
ranging from 105 to 109. The successful validation of the relations at large Q values,
combined with our theoretical analysis of dissipation rates and the incorporation of the
horizontal length scale’s influence on scaling behaviour, presents a valid approach for
deriving scaling laws under various conditions.

Key words: Bénard convection, magneto convection

1. Introduction

The convective motion of electrically conducting fluids in the presence of an externally
imposed magnetic field plays a crucial role in both natural phenomena and practical
flows. In astrophysical environments, fluid motions are intricately coupled with magnetic
fields, such as in the outer layers of the Sun and other late-type stars. The interaction
between thermal convection and magnetic fields in these scenarios has been extensively
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studied (Proctor & Weiss 1982; Cattaneo, Emonet & Weiss 2003; Schüssler & Vögler
2006). In industrial systems, magnetic damping is commonly employed in metallurgical
applications, while magnetic levitation, pumping and heating of liquid metal are vital
aspects of nuclear engineering (Davidson 2001). Despite its prevalence, understanding the
dynamics of magnetoconvection in extreme parameter regimes, particularly in geophysical
and astrophysical systems, remains a formidable challenge. Therefore, it is crucial to
identify relevant flow regimes and establish corresponding scaling relations to characterize
these complex flows. By discerning the points at which flow transitions occur, we can
carefully extrapolate scaling laws to a reasonable range of input parameters, thereby
providing practical utility in understanding and predicting these phenomena.

The planar Rayleigh–Bénard convection (RBC) is a useful model for investigating the
fundamental dynamics of magnetic fields on convection. The canonical RBC consists of a
fluid layer confined between a pair of plane, parallel boundaries separated by a distance L.
The boundaries are maintained at a constant temperature difference Δ. In the absence of a
magnetic field, the Rayleigh number Ra = gβ�L3/νκ and the Prandtl number Pr = ν/κ

characterize the thermal forcing and the ratio of the diffusivities present in the system,
where β is the coefficient of thermal expansion, g the acceleration due to gravity, with
ν and κ being the momentum and thermal diffusivity, respectively. In the presence of an
external magnetic field of strength B0, the damping effect by virtue of the Lorentz force
must be considered. The strength of the Lorentz force to the viscosity is quantified by
the Chandrasekhar number Q = B2

0L2/(ρνμη), where ρ is the density, μ the magnetic
permeability and η magnetic diffusivity.

Early studies on magnetoconvection, both experimental as well as theoretical
(Thompson 1951; Jirlow 1956; Nakagawa 1957; Chandrasekhar 1961; Busse & Clever
1982), are primarily devoted to the linear stability analysis. In recent decades, much focus
has been on the scaling relations between the dimensionless heat transport as a function
of Ra and Q. The dimensionless convective heat transport is characterized by the Nusselt
number Nu, the ratio of the total heat flux to the conduction heat transfer. In recent decades,
experiments by Cioni, Chaumat & Sommeria (2000), Aurnou & Olson (2001), Burr &
Müller (2001) and King & Aurnou (2013) have suggested different scalings. Aurnou &
Olson (2001) found Nu ∼ (Ra/Q)1/2 in contrast with the findings of Burr & Müller (2001)
who report a scaling law Nu ∼ (Ra/Q)2/3. Both of these studies consider 0 < Q � 104.
Yu, Zhang & Ni (2018) conducted numerical simulations over a similar range of values
of Q, and found the scaling relations between Nu and Ra/Q are in good agreement with
the empirical formulae obtained in the experimental studies of Aurnou & Olson (2001).
Experimental investigations by Cioni et al. (2000) pushed the range of Chandrasekhar
number by two decades up to Q ≈ 106, and comprehensively characterized two major
regimes influenced by the magnetic effects, with an additional transitional regime between
them. The first regime, interpreted by them as a condition of marginal stability for the
thermal boundary layer, the heat transport scaling Nu ∼ Ra/Q holds. For the second major
regime, which is characterized by higher thermal forcing, they report Nu ∼ Ra0.43Q−0.25.
Recently, direct numerical simulations (DNSs) of quasi-static magnetoconvection by Yan
et al. (2019) with magnetic strengths up to Q = 108 have shown the scaling laws of Aurnou
& Olson (2001), Burr & Müller (2001) and Yu et al. (2018) to be limited to low values of
Q. The proposed convective regimes are distinguished by flow characteristics, with the
first regime being reminiscent of the linear convection, characterized by laminar, cellular
structures. The heat transport scaling law for the second regime, characterized by the
existence of quasi-laminar columnar structures, is suggested as Nu ∼ (Ra/Q)γ , where
γ → 1 as Q → ∞. Based on an exponential fit for γ , a value of 0.95 is suggested at
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Q = 1016. However, as the authors mention, it must be noted that the exponential fit has
no physical basis and is shown only to provide a guide for the behaviour at large values
of Q.

Based on the scaling approach introduced by Grossmann & Lohse (2000), Zürner
et al. (2016) decomposed the dissipation rates in magnetoconvection into their bulk and
boundary layer counterparts and identified four distinct regimes distinguished by the
strength of the external magnetic field and the level of turbulence in the flow. Studies by
Zürner et al. (2020) and Akhmedagaev et al. (2020) report a detailed analysis of the spatial
structure of magnetoconvective flows in cylindrical geometry with no-slip walls. Wall
modes similar to those in RBC with rotation are observed near the linear stability limit.
Furthermore, in these studies, the scaling relations for normalized Nusselt and Reynolds
numbers reveal that the global transport properties approach a universal power law at larger
degrees of supercriticality.

Following Grossmann & Lohse (2000), Bhattacharyya (2006) obtained Nu ∼
Nu(Ra, Q) scaling relations for different regimes characterized by weak and strong
magnetic fields. It must be noted here that Bhattacharyya (2006) and Zürner et al. (2016)
assumed the length scale associated with the magnetic induction to be the domain height L.
The presence of a magnetic field opposes fluid motions perpendicular to the field lines
while leaving the parallel component unopposed, thus the classical RBC under the effect
of an externally applied magnetic field becomes highly anisotropic. Due to anisotropy, the
length scale of the flow is significantly altered; the scaling of which remains vital in the
scaling laws associated with the heat and momentum transport and Ohmic dissipation.
The primary objective of our study is to explore the impact of the horizontal length scale
on the scaling relations previously discussed, focusing specifically on the framework of
two-dimensional (2-D) quasi-static assumptions. Although the real-world applications of
magnetoconvection are three-dimensional (3-D), 2-D simulations are substantially cheaper
in terms of computational time and thus can be utilized to understand certain aspects of the
flow, including scalings. Goluskin et al. (2014) and Wang et al. (2020) are some noteworthy
2-D studies that have explored the ability of the convection to drive vertically sheared,
large-scale horizontal flow. Building on these works, recently, quasi-2-D simulations of
magnetoconvection have been used to study the magnetic damping of jet flows which finds
applications in probing the mechanisms relevant to damping of large-scale azimuthally
directed jets on Jupiter (Aggarwal, Aurnou & Horn 2022). Here, our 2-D investigation
extends beyond previous studies by considering even larger values of Q, reaching up to
109. This range of values is particularly relevant for geophysical and astrophysical systems,
such as the Earth’s outer core, where Q is estimated to be of the order of 1016 (Gillet et al.
2010). By identifying scaling relations that converge at values of Q approaching realistic
estimates, we aim to enhance our understanding of the fundamental aspects of convection
in these systems.

2. Physical model and numerical settings

2.1. Governing equations
The dimensionless equations governing the flow of a conducting fluid in Boussinesq
approximation, under the action of a quasi-static, vertically imposed external magnetic
field B = B0êx are

∂u
∂t

+ (u · ∇)u = −∇p + Q

√
Pr
Ra

(J × êx) + θ êx +
√

Pr
Ra

∇2u, (2.1a)
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∂θ

∂t
+ (u · ∇)θ = 1√

RaPr
∇2θ, (2.1b)

J = −∇Φ + u × êx, (2.1c)

∇ · u = 0, (2.1d)

∇ · J = 0, (2.1e)

where u, p and θ represent the velocity, pressure and temperature fields. The vertical unit
vector antiparallel to the direction of gravity is êx, and Φ and J represent the electric
potential and the current density, respectively. At all places in this paper, x and y represent
the vertical and horizontal directions, respectively. The input parameters Ra, Pr and Q are
defined in § 1. The rest of the symbols have their usual meanings. In (2.1), domain height L,
free-fall velocity uff = (βg�L)1/2, free-fall time scale tff = L/uff , imposed temperature
difference Δ, free-fall velocity-based dynamic pressure ρ0u2

ff and the magnitude of the
imposed magnetic field B0, are adopted for non-dimensionalization. All lateral boundaries
are set to periodic. At the top and bottom walls, stress-free boundary conditions for
u, isothermal for θ and an insulating boundary condition on Φ are imposed, ux =
∂uy/∂x = 0 at x = 0, 1; θ = 1(0) at x = 0(1); ∂Φ/∂x = 0 at x = 0, 1. To compute
J , the constraint of charge conservation, given by (2.1e), is invoked to obtain a Poisson
equation for Φ, ∇2Φ = ∇ · (u × êx).

The Reynolds number, Re, referred to in the subsequent sections, is defined as Re =
UL/ν, where U is the characteristic velocity. Depending on if the characteristic velocity is
urms = (〈u2

x〉A + 〈u2
y〉A)1/2, ux,rms = (〈u2

x〉A)1/2 or uy,rms = (〈u2
y〉A)1/2, we further define

Re, Rex and Rey to characterize the total, vertical and horizontal Reynolds numbers,
respectively. Here 〈·〉A and (·) denote the area-average over the whole 2-D domain, and
time-averaging, respectively.

2.2. Numerics
A conservative, second-order centred spatial discretization is employed on a staggered grid
(van der Poel et al. 2015). Time marching is performed with a fractional-step third-order
Runge–Kutta scheme, in combination with the Crank–Nicholson scheme for the implicit
terms. In the following section, the implementation of the subroutines for Φ and the
validation of the code are described in detail.

2.2.1. Code validation
In this work, we have used AFiD (van der Poel et al. 2015; Zhu et al. 2018) as the base
solver, and implemented the subroutines for solving a Poisson equation for the electric
potential Φ, and an explicit Lorentz body force term. Temperature and velocities are
computed on cell faces, with θ and ux located at the same face (to avoid interpolation
errors in calculating the term θ êx). The scalar variables p and Φ are computed at the cell
centres. Using the cell-centred values of Φ, the components of the current density are then
constructed on the cell faces, which are used to finally compute the components of the
Lorentz force.

The solver was validated by comparing the Nusselt number with the values reported in
Yan et al. (2019) at different Rayleigh numbers away from the onset. Table 1 shows the
Nusselt number from 3-D test runs at Q = 106 to reproduce results from the literature.
The resolutions employed for these cases in order, from smallest to largest Ra, are
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Ra Nup Nuν+η Nuκ Nuavg Nu (Yan et al. 2019) Error (%)

1.1 × 107 1.140 1.140 1.140 1.140 1.135 0.44
4 × 108 28.471 28.473 28.505 28.483 28.580 0.34
1 × 109 49.766 49.704 49.769 49.746 49.70 0.09

Table 1. Nusselt number from 3-D test runs at Q = 106 to reproduce results from the literature.

(96 × 180 × 180), (256 × 384 × 384) and (512 × 1024 × 1024), where the first entry
corresponds to the grid number in the vertical (x) direction. Here Nup = 〈dθ/dx〉x=0 is
the plate Nusselt number, Nuν+η = 1 + √

Ra Pr(〈εν〉 + 〈εη〉) and Nuκ = √
Ra Pr 〈εκ〉

represent the Nusselt numbers calculated from the global, time- and area-averaged
viscous (〈εν〉 = √

Pr/Ra 〈|∇u|2〉) and Ohmic dissipation (〈εη〉 = Q
√

Pr/Ra 〈|∇J |2〉) and
thermal dissipation (〈εκ〉 = √

Pr/Ra 〈|∇θ |2〉), respectively.
In addition to that, the dominant length scale at Ra � Rac (very close to the onset) was

also calculated from the energy spectra of the vertical velocity, and validated against the
predictions from the linear theory. In figure 1, the normalized kinetic energy spectra of the
vertical velocity Euu(k) = ∑

[ûx(k)û∗
x(k)] computed at mid-depth are shown. Here ûx and

û∗
x are the Fourier transform of ux and its complex conjugate, respectively. The dominant

integer wavenumber represented by the highest peak of the spectrum, indicates the number
of (near-onset) critical horizontal wavelengths (λc) present in the domain. The aspect ratio
for Q = 103, 105 and 107 cases was set to Γ = 11.0, 5.0 and 2.25, respectively, which
admit ≈ 10λc. For the Q = 106 case, Γ = 3.5, which allows for ≈ 11λc to be resolved. The
number of critical horizontal wavelengths observed in our simulations match reasonably
well with the linear theory predictions for a given aspect ratio.

3. Results and discussion

3.1. Parameter range and flow structure
We have considered five sets of simulations with Q ranging from 105 to 109. For each
set, at a fixed Q, the Rayleigh number is varied up to Ra � 100Rac, Rac being the critical
Rayleigh number at a given Q, which is calculated from the expression of the Rayleigh
number corresponding to the marginal stability of the horizontal wavenumber. For details,
the interested reader is referred to Chandrasekhar (1961). In all of our simulations, we have
used Pr = 1. More details on grid resolution and the parameter ranges explored are listed
in the Appendix.

Figure 2 shows the visualization of the effect of increasing Ra at a fixed Q (Q = 106).
The flow structures at all Ra are stabilized by the Lorentz force, resulting in the convection
directed along the externally imposed magnetic field. For the cases in figure 2(a–c), flow is
dominated by cellular structures which eventually morph into columns as Ra is increased.
The transport of heat in the cellular regime is primarily via conduction. In the columnar
regime, the length scale of the structures stays more or less the same, until a third regime of
magnetoplumes emerges. Upon further increasing the Rayleigh number, the plumes begin
to merge, characterized by stronger buoyancy relative to the Lorentz force. We will not
be dealing with the scaling laws in this merging-plume regime. With increasing Ra, the
thermal boundary layer thickness also decreases. This has important consequences on the
heat transfer scaling within the columnar regime, which we will discuss later. The flow
in cellular, columnar and plume regimes is strictly steady. Unsteadiness kicks in when
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Figure 1. Normalized kinetic energy spectra of the vertical velocity at (a) Q = 103, Ra = 1.530 × 104 �
Rac = 1.521 × 104, (b) Q = 105, Ra = 1.088 × 106 � Rac = 1.078 × 106, (c) Q = 106, Ra = 1.038 × 107 �
Rac = 1.028 × 107 and (d) Q = 107, Ra = 1.016 × 108 � Rac = 1.006 × 108. Vertical dashed red lines show
the results from linear theory.

the stabilizing effect of the Lorentz force is weakened at around Ra/Rac ∼ 80, which
also marks the onset of the merging plume regime. Figure 2(r) shows such a case. Upon
comparisons with the flow structures in 3-D simulations, we observe that the intercolumn
distance in 2-D simulations is identical in the horizontal direction. However, no such
uniformity is seen in 3-D simulations of Yan et al. (2019). To illustrate the differences,
in figure 3, we have presented instantaneous temperature contours computed in a 3-D
simulation in the columnar regime. Given insulating boundary conditions (∂xΦ|x=0,1 = 0)

(non-conducting walls), electric currents induced by the horizontal motion (u × êx) will
close within the convective roll itself. In 3-D simulations, this gives rise to currents in
the horizontal plane ( y–z) near the boundaries. In the case of 2-D simulations, since one
horizontal component of velocity is zero (uz in the present case), the current associated
with that component also ceases to exist, and only one of the components, uy, remains.
This gives rise to the Lorentz force which is confined to the only horizontal degree of
freedom ( y) existing in the 2-D flow. Since everything is constrained to a single horizontal
dimension, there is a tendency of the flow structures to adhere to a specific equidistant
pattern, until the stabilizing effect of the Lorentz force is weakened at relatively higher Ra.
At that point, the interplume distance starts to vary.

The anisotropy in the convective flow can be characterized by examining the
Reynolds number based on the vertical and horizontal components of the root mean
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0.2 0.5

θ
0.8

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 2. Instantaneous temperature contours in 2-D quasi-static magnetoconvection at Q = 106; Ra increases
from (a) to (r), as listed in the Appendix for Q = 106, from the smallest (1.1 × 107) to the largest (8 × 108).
From (a) to (r), Ra/Rac = 1.07, 1.26, 1.46, 1.65, 1.94, 2.43, 2.92, 3.89, 4.86, 5.84, 6.81, 8.75, 9.73, 14.59,
19.45, 24.32, 38.91, 77.82, respectively. The colourmap values have been adjusted to [0.2, 0.8] for better
visibility.

square (r.m.s.) velocity. Figure 4(e) clearly shows that the vertical component of the
velocity dominates over the horizontal component. As Ra is increased, the vertical
component increases significantly relative to the horizontal component.

In figure 4(a,b), vertical profiles of time- and horizontally averaged mean temperature
〈θ〉y, and horizontally averaged r.m.s. fluctuations of temperature 〈θrms〉y at Q = 106 are
presented. For lower values of Ra, the r.m.s. fluctuations of temperature are small, and
the mean temperature follows the conduction profile. At larger values of Ra, the mean
temperature tends to be an isothermal profile in the bulk, and the near-wall peaks in
the r.m.s. profiles indicate the presence of well-developed thermal boundary layers. The
darkest shade in figure 4 represents Ra = 7 × 107, which lies in the columnar regime (see
figure 2k).

Figure 4(c,d) show the depth-dependence of the time- and horizontally averaged viscous
(εν = (Pr/Ra)1/2〈|∇u|2〉y) and Ohmic dissipation (εη = Q(Pr/Ra)1/2〈|J |2〉y). Since we
have adopted stress-free boundary conditions, the viscous dissipation is larger in the
bulk of the domain, away from the boundaries. Ohmic dissipation, on the other hand, is
dominant near the boundaries and decreases in the interior of the domain. At larger Ra, an
increase in the Ohmic dissipation is expected due to larger currents generated by enhanced
convection.
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0.2

0.5

0.8
θ

Figure 3. Columnar structures in a 3-D simulation at Ra = 1 × 108, Q = 106, Γ = 1.0. Colour represents
instantaneous temperature. In the 3-D simulation, these values lie in the columnar regime.

3.2. Scaling analysis
Figure 5(a) gives a brief overview of the parameter space characterized by dimensionless
heat transport. Three distinct scaling regimes with different slopes are observed at large
values of Q: (i) a cellular regime close to the onset; (ii) Nu ∼ Ra regime, characterized
by the existence of elongated, vertically aligned columns; and (iii) Nu ∼ Ra1/3 regime,
which is characterized by the existence of plume-like structures with thin stems and
broadened heads. Some select cases representing these regimes are shown in figure 6.
The corresponding scaling regimes in (Nu, Ra) space are represented by black dashed
(columnar) and dotted (plume) lines in figure 5(a). It is important to note here that the
states where transitions occur from cellular to columnar to plume regimes are different in
2-D simulations in comparison with 3-D simulations. This is because, for 2-D simulations,
consistent with the mass conservation, we observed a higher Rex compared with that in
3-D simulations at the same Ra. To see a comparison of Rex in 2-D and 3-D simulations,
refer to figure 4(e). Higher Rex is responsible for enhancing the buoyant fluxes in 2-D
simulations, which ultimately translates into an increased Nu, at least for the regime that
we are most interested in (the 2-D columnar regime), for example, see figure 5(a). The
differing transition locations are evident. In addition to that, we can also clearly observe
the columnar regime in both 2-D and 3-D simulations, albeit with slightly different Nu.
The transition locations and the magnitude of the heat flux and flow velocity may differ;
however, structural similarities exist, and for 2-D and 3-D simulations alike, the flow
is characterized by cellular, columnar and plume-like structures for the considered Ra
range at different values of Q. This is important for scaling since a specific regime in 3-D
simulations is expected and shown to have a counterpart in 2-D simulations.

The existence of the columnar and plume regimes can be explained very well by
invoking the predictions from marginally stable thermal boundary layer analysis, which
predicts Nu ∼ L/λθ ∼ Ra/Q at large values of Qλθ = B2

0λ
2
θ /(μρνη) = Qλ2

θ /L2, and
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Figure 4. Vertical profiles of the (a) time- and horizontally averaged mean temperature 〈θ〉y, (b) horizontally
averaged r.m.s. fluctuations of temperature 〈θrms〉y, (c) viscous dissipation 〈εν〉y, (d) Ohmic dissipation
〈εη〉y and (e) Reynolds number. Blue curves represent Rey and red curves represent Rex; darker curves
represent higher Ra. The data are plotted for Q = 106. The Rayleigh numbers from smallest to largest
are 1.1 × 107, 1.5 × 107, 2 × 107, 3 × 107, 5 × 107, 7 × 107. The dashed black curve represents the vertical
Reynolds number (Rex) computed in a 3-D simulation at Ra = 7 × 107. The aspect ratio for the 3-D simulation
is Γ3D = 1.0. However, that is not expected to change the conclusion.

976 A4-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

90
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.902


S.H. Bader and X. Zhu

107 109 1011

Ra

100

101

102

Nu
Nu

 ∝
 Ra

Nu
 ∝ Ra

1/
3Q = 105

Q = 106

Q = 107

Q = 108

Q = 109

3-D

101 102 103

Ra/Q

10−2

10−1

λθ

λθ

101

Nu

10−2

10−1
λ
θ  ∼ L/Nu

(a) (b)

Figure 5. (a) Nusselt number; columnar and plume regimes are marked by Nu ∝ Ra (dashed) and Nu ∝ Ra1/3

(dotted) lines for Q = 107. (b) Thermal boundary layer thickness as a function of the supercriticality parameter.
The 3-D data adapted from Yan et al. (2019) are shown for Q = 105, 106, 107 and 108.
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θ
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Figure 6. Visualization of the cellular, columnar and plume regimes at Q = 107 with
Ra = 1.1 × 108, 8 × 108 and 5 × 109 from (a) to (c), respectively. The colourmap values have been
adjusted to [0.2, 0.8] for better visibility.

Nu ∼ L/λθ ∼ Ra1/3 at smaller values of Qλθ due to thinner thermal boundary layer
thickness in the plume regime (Bhattacharjee, Das & Banerjee 1991), see figure 5(b).

In the following sections, for the columnar regime, we will explain the scaling laws
concerning not only the heat transport, but also the horizontal length scale, flow velocity,
and Ohmic dissipation by using energetic arguments. To begin, we start with the exact
relations for time- and volume-averaged (area-averaged in 2-D simulations) viscous
dissipation rate εν = ν〈|∇u|2〉, Ohmic dissipation rate εη = (ρσ )−1〈|J |2〉 and the thermal
dissipation rate εθ = κ〈|∇θ |2〉 (Grossmann & Lohse 2000; Bhattacharyya 2006; Ahlers,
Grossmann & Lohse 2009; Song, Shishkina & Zhu 2023):

εν + εη = ν3

L4 (Nu − 1)Ra Pr−2, (3.1)

εθ = κ
Δ2

L2 Nu. (3.2)

The convective part of εθ can be expressed as

ε̃θ = εθ − εcond =⇒ Nu − 1 ∼ ε̃θ

κΔ2/L2 . (3.3)
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Introducing u, θ and � as the representative scales for convective velocity, temperature
and the length scale, the convective part of thermal dissipation rate can be expressed as
ε̃θ ∼ uθ2/�. Using this, after rearranging, we can rewrite (3.3) as (Song et al. 2023)

Nu − 1 ∼ θ2

Δ2
L
�

Re Pr. (3.4)

Nusselt number, Nu, can also be expressed in terms of convective heat transfer q ∼ uθ , as

Nu − 1 ∼ uθ

κΔ/L
. (3.5)

From (3.4) and (3.5), we get �/L ∼ θ/Δ, leading to

Nu − 1 ∼
(

�

L

)
Re Pr. (3.6)

Assuming the induction b, the total field can be written as B = B0 + b. From Ohmic
dissipation εη = (ρσ )−1〈|J |2〉, and J = (∇ × B)/μ, and assuming the length scale is �

we can write

εη = 1
ρσμ2 〈|∇ × B|2〉 ∼ 1

ρσμ2
b2

�2 , (3.7)

where b represents the typical magnitude of the induced field. Under the quasi-static
assumption, the induction equation can be simplified to

η∇2b + B0
∂ux

∂x
= 0, (3.8)

which upon using the scale estimates for b ∼ b, ux ∼ u, ∂2/∂x2 ∼ 1/L2, ∂2/∂y2 ∼ 1/�2,
1/�2 
 1/L2 and ∂/∂x ∼ 1/L becomes

η
b
�2 ∼ B0

u
L

=⇒ b ∼ B0

η

u�2

L
. (3.9)

Using this in (3.7), after rearranging and grouping relevant terms, we finally obtain a
scaling law for the Ohmic dissipation with the horizontal length scale dependence,

εη ∼ ν3

L4 Re2Q
(

�

L

)2

. (3.10)

With Re and � dependence of Nu and εη, we will proceed to derive the scaling relation
of Re ∼ Re(Ra, Q, Pr, �/L) and �/L ∼ Qγ in the columnar regime. It is to be noted the
length scale of the structures in the columnar regime varies negligibly with Ra, which
is why its Ra dependency is not considered. In figure 7(a), in the columnar regime,
we observe εη 
 εν . Hence from (3.1), we can consider εη ≈ (ν3/L4)(Nu − 1)Ra Pr−2.
Combining this together with (3.10) and (3.6), we derive the scaling law for Re in terms of
the input parameters and the horizontal length scale,

Re ∼ RaQ−1Pr−1
(

�

L

)−1

. (3.11)
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Figure 7. (a) Fraction of viscous dissipation fν = εν/(εν + εη) (solid symbols) and Ohmic dissipation fη =
εη/(εν + εη) (open symbols). (b) Dependence of the horizontal length scale on Q in the columnar regime. The
colour for both the open and solid symbols is the same as in figure 5.

Using this in (3.6), length scale and Prandtl number dependence drops out, yielding the
Nusselt number scaling,

Nu − 1 ∼ Ra
Q

. (3.12)

This result is consistent with the scaling law obtained from the marginally stable thermal
boundary layer analysis discussed above. For non-magnetic convection, a regime in which
the entire fluid layer is turbulent (at asymptotically large values of Ra) is referred to as the
ultimate regime. This regime, predicted by Kraichnan (1962), is characterized by the heat
transport becoming independent of the diffusion coefficients. With additional constraining
forces, like the Lorentz force in the present case, a heat transport regime independent of
the diffusion coefficients (ν and κ) can be observed at relatively low Rayleigh numbers.
It is noteworthy to point out that in the columnar regime (Nu − 1 ∼ Ra/Q), an inherently
different flow state in comparison with the ultimate state of conventional RBC, the heat
transport Nu × κΔ/L in the limit of an asymptotically large Q, is independent of ν and κ .
It does, however, depend on the magnetic diffusion coefficient η. It is also evident that
the scaling of the length scale has no bearing upon the scaling law for the dimensionless
convective heat transport in the columnar regime. Equation (3.12) is validated against our
data in figure 8(a).

One way to obtain the dependence of the horizontal length scale on the Chandrasekhar
number is to obtain the scaling for the critical horizontal wavenumber kc. From
linear theory, it is well known that at large Q, kc ∼ Q1/6, which implies lc ∼ Q−1/6

(Chandrasekhar 1961). In figure 7(b), the Q-dependence of the length scale found in the
data is compared with this result from the linear theory. We find a good collapse of data
for all the simulation sets according to �/L ∼ Q−1/6 in the columnar regime. Using this
in (3.10) and (3.11), we obtain the following relations for the Reynolds number and Ohmic
dissipation scaling:

Re ∼ RaQ−5/6Pr−1, (3.13)

εη

L4

ν3 ∼ Re2Q2/3 ∼ Ra2Q−1Pr−2. (3.14)
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Figure 8. Scaling of the (a) Nusselt number, (b) Reynolds number and (c) Ohmic dissipation in the columnar
regime.

Data from our simulations show a good collapse for the above relations, see figure 8.
In figure 8(a), at large Q, the Nu data collapse in the columnar regime. Similarly, in
figure 8(b), the Re data at large Q collapse, validating (3.13). It must, however, be noted for
Reynolds number scaling, the exponent differs from one suggested by Yan et al. (2019) for
3-D quasi-static magnetoconvection. They derive the scaling relation for Re by balancing
the Lorentz force with the buoyancy in the columnar regime, which is evident from their
3-D data. Our derivations are based on energetic arguments involving the dissipation rates.
Different assumptions invoked in these arguments is expected to lead to the differences
observed in the exponent. The Ohmic dissipation data, shown in figure 8(c), at all Q show
a solid trend towards the scaling given by (3.14), collapsing for Q in the asymptotic limit,
Q → ∞, in the columnar regime.

4. Concluding remarks

The effect of the horizontal length scale on the scaling behaviour of the response
parameters in quasi-static magnetoconvection has not been explored in the literature.
Previous studies concerning the energetic scaling arguments have considered the domain
height L as the sole length scale present in the system. In the present study, under the
quasi-static assumption, we consider the horizontal width of the columns as a relevant
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length scale and explore the effect of its dependence on the Chandrasekhar number on the
scaling of the dimensionless heat transport, flow velocity and Ohmic dissipation. Based
on our DNS data, the derived scaling laws are validated successfully for Nusselt number,
Reynolds number and Ohmic dissipation. The Nusselt number scaling obtained from our
analysis is shown to be consistent with the marginal stability predictions, which further
validates our theoretical analysis. The scaling law for the Reynolds number and Ohmic
dissipation also shows a reasonable collapse in our data at large Q, implying the validity
of our scaling arguments.

In the present work, we have considered periodicity in the horizontal direction and
a fixed Prandtl number of unity. Compared with periodic boundaries, the presence of
sidewalls has been shown to lead to convection at a much lower Ra (Busse 2008).
Numerical simulations of planar RBC by Liu, Krasnov & Schumacher (2018) confirmed
the existence of wall-modes at Ra � Rac. Akhmedagaev et al. (2020) also confirmed the
existence of these wall-modes at Ra � Rac. The effect of sidewalls at even higher Q and
Ra away from the onset will be something that we will explore in the future editions of
this work. The presence of sidewalls may have implications in the design of liquid-metal
batteries (Kelley & Weier 2018) and nuclear fusion technology (Ihli et al. 2008), wherein
the geometries are often confined by walls.

Magnetoconvection is usually studied in liquid metals, which have very small Prandtl
numbers and very high electrical conductivities. In the numerical and experimental low Pr
studies of Akhmedagaev et al. (2020) and Zürner et al. (2020), unlike the slender columns
and magnetoplumes observed in our simulations, the dominant structures were observed
to be a system of ascending and descending planar jets originating at the sidewalls. It must
be noted, however, that the aforementioned studies consider convection in a cylindrical
container in which sidewalls play a dominant role in organizing the flow. Hence, it remains
to be seen if the slender columnar or plume structures can emerge in 2-D simulations
by virtue of a low Prandtl number or exclusively in the presence of sidewalls. Whether
or not the flow structures are different, we believe that it does not affect the scaling
argument for the conditions that we have considered. That can be seen from the low Pr
(Pr = 0.025) simulations of Yan et al. (2019), who performed the comparative calculations
at Pr = 1 and Pr = 0.025. In their work, it was observed that the scaling behaviour of
the dimensionless heat transport seems to follow the same trend as in the case of Pr
being unity, i.e. Nu ∼ Ra/Q at asymptotically large values of Q; since in the columnar
regime, there is no Pr dependence of Nu. Although, Re and εη show Pr dependence in
this regime, in this work, our main goal was to test the scaling argument that we proposed
for asymptotically large Q. The Re and εη scaling relations show a good agreement with
what we observed in our DNS data (for Q and Ra dependence). Exploration of the Pr
dependence of the response parameters and the flow structures is a full-fledged campaign
in itself that we propose to study in future.
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Appendix

To ensure that the flow is well resolved, the resolution is chosen to be able to capture the
Kolmogorov length scales based on both the viscous as well as Ohmic dissipation. The
horizontal size of the 2-D domain is selected to resolve at least 10λc, where λc, which is
known from the linear theory at a given Q, is the critical horizontal wavelength. Table 2
lists the simulation data.

Ra Re Num Error (%) Nx × Ny

Q = 105, Γ = 5
1.3 × 106 10.22 1.36 0.07 48 × 512
1.5 × 106 16.18 1.63 0.12 48 × 512
1.7 × 106 21.80 1.92 0.19 48 × 512
2 × 106 29.94 2.47 0.31 48 × 512
2.2 × 106 35.40 2.73 0.38 48 × 512
2.5 × 106 43.21 3.26 0.25 64 × 768
3 × 106 55.21 4.09 0.35 64 × 768
4 × 106 78.78 5.43 0.52 64 × 768
6 × 106 112.24 7.43 0.27 96 × 1024
8 × 106 141.76 8.74 0.33 96 × 1024
1 × 107 159.08 9.42 0.35 96 × 1024
1.5 × 107 199.59 10.64 0.08 192 × 2048

Q = 106, Γ = 3.5
1.1 × 107 7.87 1.12 0.02 48 × 384
1.3 × 107 19.78 1.41 0.08 48 × 384
1.5 × 107 30.57 1.78 0.09 64 × 512
1.7 × 107 41.08 2.14 0.13 64 × 512
2 × 107 56.75 2.72 0.21 64 × 512
2.5 × 107 82.90 3.75 0.13 96 × 768
3 × 107 107.79 4.88 0.20 96 × 768
4 × 107 153.75 6.95 0.31 96 × 768
5 × 107 195.35 8.70 0.07 192 × 1152
6 × 107 233.00 10.15 0.09 192 × 1152
7 × 107 267.63 11.37 0.10 192 × 1152
9 × 107 316.38 13.03 0.11 192 × 1152
1 × 108 343.53 13.78 0.12 192 × 1152
1.5 × 108 462.75 16.52 0.08 256 × 1536
2 × 108 564.22 18.39 0.09 256 × 1536

Table 2. For caption see on next page.
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Ra Re Num Error (%) Nx × Ny

2.5 × 108 738.49 21.46 0.11 256 × 1536
4 × 108 933.23 23.82 0.14 256 × 1536
8 × 108 1750.32 36.74 0.05 512 × 3072

Q = 107, Γ = 2.25
1.1 × 108 14.62 1.18 0.01 96 × 384
1.3 × 108 34.33 1.56 0.03 96 × 384
1.6 × 108 57.55 2.28 0.03 128 × 576
2.0 × 108 90.89 3.28 0.02 192 × 768
3.0 × 108 186.58 5.89 0.05 192 × 768
4.0 × 108 293.38 8.38 0.04 256 × 864
5.0 × 108 397.24 10.74 0.05 256 × 864
6.0 × 108 484.78 13.12 0.06 288 × 1152
8.0 × 108 582.52 16.59 0.04 384 × 1536
1.0 × 109 839.61 20.50 0.05 384 × 1536
1.5 × 109 1266.29 27.42 0.03 576 × 2048
2.0 × 109 1611.88 33.14 0.02 768 × 2592
3.0 × 109 2192.99 40.87 0.03 768 × 2592
4.0 × 109 2683.44 45.96 0.02 864 × 3072
5.0 × 109 3117.13 49.72 0.02 1024 × 3456
6.0 × 109 3474.82 51.87 0.02 1024 × 3456
8.0 × 109 4108.87 55.36 0.02 1024 × 3456
1.0 × 1010 4712.78 60.63 0.02 1152 × 4096

Q = 108, Γ = 1.5
1.1 × 109 23.72 1.21 0.00 192 × 512
1.3 × 109 55.02 1.63 0.01 192 × 512
1.6 × 109 99.74 2.35 0.01 256 × 576
2.0 × 109 151.13 3.48 0.01 384 × 864
3.0 × 109 302.00 6.49 0.06 512 × 1296
4.0 × 109 420.63 8.99 0.31 512 × 1296
5.0 × 109 579.38 11.96 0.44 512 × 1152
6.0 × 109 757.51 14.66 0.51 576 × 1296
8.0 × 109 993.48 19.36 0.23 768 × 1728
1.0 × 1010 1334.82 24.84 0.11 768 × 1728
1.5 × 1010 1901.78 33.12 0.01 1024 × 2560
2.0 × 1010 2370.53 38.35 0.01 1024 × 2560
3.0 × 1010 4679.94 59.18 0.01 1536 × 3456
5.0 × 1010 6896.39 76.64 0.01 2048 × 4608
7.0 × 1010 8498.61 84.48 0.01 2048 × 4608
9.0 × 1010 9979.42 93.08 0.02 2560 × 5760
1.5 × 1011 14 009.06 109.52 0.02 2560 × 5760

Q = 109, Γ = 1
1.3 × 1010 80.37 1.68 0.01 384 × 576
1.6 × 1010 131.44 2.46 0.04 512 × 768
2.0 × 1010 221.78 3.62 0.24 512 × 768
3.0 × 1010 419.29 6.67 1.25 768 × 1152
4.0 × 1010 600.36 9.56 0.37 864 × 1296
6.0 × 1010 776.00 15.22 0.28 1152 × 1728

Table 2. For caption see on next page.
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Ra Re Num Error (%) Nx × Ny

8.0 × 1010 1173.95 20.65 0.05 1296 × 2048
1.0 × 1011 1509.97 25.35 0.04 1536 × 2048
1.5 × 1011 2236.29 32.61 0.01 1536 × 2048
2.0 × 1011 3062.54 40.90 0.01 2048 × 3072
3.0 × 1011 7260.48 69.85 0.00 2560 × 3840
4.0 × 1011 9529.59 82.35 0.01 2560 × 3840
5.0 × 1011 10 958.72 88.36 0.04 3072 × 4608

Table 2. Simulation details. Here Q is the Chandrasekhar number, Ra is the Rayleigh number, Num is the mean
of the Nusselt numbers computed using the thermal dissipation, kinetic energy dissipation via viscous and
Ohmic counterparts, plate Nusselt number and the Nusselt number based on volume-averaged heat flux. Error
represents the maximum deviation (as a percentage) between the smallest and the largest individual Nusselt
numbers. Here Re is the Reynolds number, Γ is the domain aspect ratio, Nx and Ny represent the resolution of
the grid in vertical and horizontal directions.
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