
RESEARCH ARTICLE

Extended correlation functions for spatial analysis of
multiplex imaging data

Joshua A. Bull1 , Eoghan J. Mulholland2, Simon J. Leedham2,3,4 and Helen M. Byrne1,5

1Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
2Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
3Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
4Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
5Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
Corresponding author: Joshua A. Bull; Email: bull@maths.ox.ac.uk

Received: 20 June 2023; Revised: 11 January 2024; Accepted: 28 January 2024

Keywords: Digital pathology; image analysis; multiplex imaging; pair correlation function; spatial statistics

Abstract

Imaging platforms for generating highly multiplexed histological images are being continually developed and
improved. Significant improvements have also been made in the accuracy of methods for automated cell segmen-
tation and classification. However, less attention has focused on the quantification and analysis of the resulting point
clouds, which describe the spatial coordinates of individual cells. We focus here on a particular spatial statistical
method, the cross-pair correlation function (cross-PCF), which can identify positive and negative spatial correlation
between cells across a range of length scales. However, limitations of the cross-PCF hinder its widespread application
to multiplexed histology. For example, it can only consider relations between pairs of cells, and cells must be
classified using discrete categorical labels (rather than labeling continuous labels such as stain intensity). In this paper,
we present three extensions to the cross-PCF which address these limitations and permit more detailed analysis of
multiplex images: topographical correlation maps can visualize local clustering and exclusion between cells;
neighbourhood correlation functions can identify colocalization of two or more cell types; and weighted-PCFs
describe spatial correlation between points with continuous (rather than discrete) labels. We apply the extended PCFs
to synthetic and biological datasets in order to demonstrate the insight that they can generate.

Impact Statement
This paper introduces three methods for performing spatial analysis on multiplex digital pathology images. We
apply the methods to synthetic datasets and regions of interest from a murine colorectal carcinoma, in order to
illustrate their relative strengths and weaknesses. We note that these methods have wider application to marked
point pattern data from other sources.

1. Introduction

The move to digital pathology is revolutionizing the way in which histological samples are processed,
viewed and analyzed. Until recently, pathology was restricted to expert manual assessment of
hematoxylin and eosin and immunohistochemistry (IHC) slides stained with a small number of colored
dyes. Multiplex modalities now enable digital visualization of whole slide images (WSIs), stained with
relatively large numbers of markers, at submicrometer resolution. Digital pathology slides can be
generated using a variety of methods, including multiplex IHC, imaging mass cytometry (IMC),
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co-detection by indexing (CODEX/Phenocycler), and multiplexed ion beam imaging.(1–4) These plat-
forms can generate images with 50 or more cellular markers (see, e.g., Reference (5)). As the number of
cell types discernible in amultiplex image increases, simply viewing an image can be challenging because
of the difficulty in choosing a unique coloring for each cell marker. Additionally, existing statistical
methods struggle to exploit the full range of spatial information contained within the data, with analysis
dominated by nonspatial metrics such as cell counts or basic spatial metrics such as mean intercellular
distances, which do not account for the wider spatial context within an image. While the methodology
underlying different imaging technologies may vary, the images they generate all encode high-resolution
information about the spatial location of multiple cell markers. As such, computational methods
developed to analyze cell locations generated from one multiplex modality can be applied straightfor-
wardly to data generated from another.

State-of-the-art pipelines for the statistical analysis of multiplex images typically involve at least two
preprocessing steps: cell segmentation, in which the boundaries of individual cells are identified, and cell
classification, in which cells are assigned to categories based on the panel of markers used for image
generation.(6–9) The accuracy of cell segmentation has improved significantly in recent years, driven
primarily by advances in artificial intelligence (AI)-based approaches for cell detection.(10,11) Many of
these methods can be accessed via open source digital pathology platforms such as Qupath(12) or
MCMICRO(13), commercial tools such as HALO (indicalab.com/halo) and Visiopharm (visiopharm.
com), and standalone software such as Deepcell(10) and Cellpose.(11) By contrast, there are fewer tools for
cell classification, due perhaps to variation in the panels used for a given study. Existing tools are typically
iterative and semi-supervised.(6,7,14)

The above improvements in preprocessing digital pathology slides are increasing the demand for
methods that can describe and quantify the spatial information contained within multiplex images. Such
information is important because there is increasing evidence that physical contact can alter cell behaviors
and drive disease progression. For example, the formation of tumor microenvironment of metastasis
(TMEM) doorways is implicated in the metastasis of cancer stem cells.(15,16) TMEMs form when a
MenaHi tumor cell, a macrophage, and an endothelial cell come into physical contact on the surface of a
blood vessel.(17) This three-way spatial interaction enables tumor cells first to intravasate and then to
metastasize to other parts of the body, and has also been implicated in cancer cell acquisition of a stem-like
phenotype.(17) Other biological effects that manifest in altered spatial interactions include clustering of
immune cells and alveolar progenitor cells in the lungs during COVID-19 progression,(7) and the
formation of distinct cellular neighbourhoods which drive antitumoral immune responses in the invasive
front of colorectal cancer. For example, neighbourhoods which are rich in both granuloctyes and
PD-1 + CD4+ T cells correlate positively with patient survival.(18) While spatially averaged statistics,
such as cell counts, can be readily calculated from segmented and classified images, describing and
quantifying the spatial organization of cell types requires more complex analytical tools.

One promising approach for exploiting the spatial structure of multiplex images is AI and machine
learning, which learns to identify those regions of an image that are most strongly associated with
clinical features such as patient prognosis and disease status.(19,20)Machine learning approaches include
convolutional neural networks, generative adversarial networks, and transformers. They have been used
to perform a range of tasks, such as automatic identification of informative regions in WSIs,(21)

segmentation of ductal carcinoma in situ,(22) and prediction of molecular signatures from tissue
morphology.(23) However, such machine learning methods typically require large training datasets
and it can be difficult to understand or interpret their predictions. Further, machine learning methods
usually require the samemarker combinations to be used in each image, with data ideally collected from
the same equipment; otherwise they may require retraining on additional datasets. “Interpretable”
machine learning models or “explainable AI” provide potential solutions to this, but have yet to achieve
widespread application.(19,24,25)

Segmented and classified multiplex images can be viewed as marked point processes, in which x,yð Þ
coordinates representing cell centers are labeled with a “mark” describing their cell type. Statistical and
mathematical methods for analyzing these data are typically more amenable to interpretation than
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machine learning approaches, since they quantify interactions between specific cell populations. For
example, statistics such as themeanminimum distance between two cell types provide an accessible entry
point for analysis of spatial data (e.g., References (26, 27)), and are available in several software
tools.(12,28) Statistical approaches based on correlation metrics that were originally developed for
ecological applications can also be used to determine whether pairs of cells are colocated more
(or less) frequently than would be expected through random chance.(7,29) By viewing a multiplex image
as a network in which two cell centers are connected if the cells are in physical contact, methods from
network science can be used to identify common, recurring motifs within the cell interactions.(7) Notably,
many network-based approaches use graph neural networks to analyze the spatial patterns formed by the
different cell populations (see, e.g., References (30, 31)). Recently, topological data analysis (TDA), a
mathematical field which quantifies the shape of datasets, has emerged as a powerful tool for character-
izing histology data across multiple scales of resolution in terms of topological features such as connected
components and “loops.”(32,33)

A range of spatial statistics can be used to analyze point processes. These include the Morisita–Horn
index, which quantifies dissimilarity between two populations(27,34); Ripley’s K function, which
describes clustering or exclusion between points(35,36); and the J-function, which identifies clustering
or exclusion by computing nearest-neighbor distributions.(37,38) For points with more complex, continu-
ous marks, such as cell size or marker intensity, methods such as mark correlation functions(39–42) or mark
variograms(43,44) can be used. For a detailed description of spatial statistical methods for analyzing spatial
point patterns, we refer the interested reader to textbooks such as References (45–47).

While the abovemethods have been successfully applied to histology data, the complexity ofmultiplex
imaging data means that there is scope for more detailed statistical and mathematical analyses which
surpass what is possible with existing methods. In this paper, we focus on one spatial statistic – the cross-
pair correlation function (cross-PCF) – which we use as a foundation to show how existing tools can be
adapted to create new statistics that provide more detailed descriptions of multiplex imaging data. The
PCF quantifies colocalization and exclusion between pairs of points, across multiple length scales. It is
closely related to the cross-PCF, which identifies correlation between cells of different types. PCF
approaches are useful, but their limitations restrict their wider applicability to multiplex data:

1. Cross-PCFs cannot easily resolve heterogeneity in spatial clustering within a region of interest
(ROI). Variants of the cross-PCF that account for such heterogeneity do not quantify the contri-
butions of different subregions of an ROI to its overall signal.(35)

2. Cross-PCFs can identify correlations between pairs of cells in a spatial neighbourhood, but not
between three or more cell types.

3. Cross-PCFs require cell marks to be discrete, or categorical. Several alternative methods can
accommodate continuous marks (e.g., References (39, 43, 44)), but are unsuitable for establishing
how the spatial association between cells changes as their continuous marks vary.

In this paper, we discuss three extensions of the cross-PCF that address these limitations. The topograph-
ical correlation map (TCM) identifies heterogeneity in the correlation between pairs of cells across an
ROI, and has previously been applied by us to IMC data.(7) The neighbourhood correlation function
(NCF) extends the cross-PCF to quantify the correlation between three or more different cell types.
Finally, the weighted-PCF (wPCF) quantifies correlation between two cell populations where one, or
both, have a continuous mark, and has been applied to synthetic data.(48) In this paper, we present the first
applications of the NCF and the wPCF to multiplex imaging data.

Other authors have attempted to address some of these limitations usingmethods that differ from those
we propose. For example, Lavancier et al.(49) show how to generate a map of colocalization scores based
on the correlation of objects in two binary images, which could be applied to multiplex data before
segmentation (in contrast to the TCM, which is developed for point data). Anselin(50) introduced the local
indicator of spatial association (LISA), which decomposes global spatial statistics into local metrics that
can then be mapped onto the tissue. The TCM follows this approach, with the addition of a linearization
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step that enables local contributions to the cross-PCF to be combined by summing kernels at each point to
form a smooth surface. Previous attempts to compute the correlation between more than two points
simultaneously have also been proposed, such as the triangle-counting function(45,46,51) and the n-point
correlation function.(52,53) In particular, the NCF adopts a similar approach to the triangle-counting
function, but with the distance between three (ormore) points being described by the radius of the smallest
circle enclosing those points rather than the maximum distance between some pair of them (since this
metric generalizes more readily to n points and is sensitive to the location of all of them, rather than the
most distant pair). Finally, the wPCF uses a kernel approach to permit the local contribution to the cross-
PCF from each point to vary according to how closely their continuous mark matches a specified target
value. This varies substantially from previous approaches to define PCF-like functions on points with
continuous marks, which are typically not expressed as functions of a target mark.(39,41,43,44)

The remainder of the paper is structured as follows. In the methods section, we define the TCM, NCF
andwPCF, and presentmotivating examples generated from synthetic data.We also introduce a biological
dataset that derives from multiplex IHC images of a murine model of colorectal cancer.(54) In the results
section, we apply the TCM, NCF, and wPCF to this ROI, and demonstrate how each statistic identifies
different properties of the spatial interactions that exist between different immune cell populations and
cancer cells. We conclude by discussing how these methods expand the scope of the cross-PCF for
analyzing multiplex images, and suggest possible directions for further investigation.

2. Methods

In this section, we introduce the synthetic and experimental datasets which we analyze in this paper. We
then define the PCF and cross-PCF and their extensions: the TCM, NCF, and wPCF. The definitions are
accompanied by illustrative examples based on the synthetic datasets.

2.1. Data

We constructed two synthetic datasets, which are used in the Methods section to develop intuition and
understanding of the different spatial statistics. We also introduce a murine colorectal cancer imaging
dataset, which is used in the Results section to illustrate the performance of the methods on multiplex
imaging data.

2.1.1. Synthetic data
2.1.1.1. Synthetic dataset I We consider two cell types, with categorical marks C1 and C2. We generate
point clouds using different point processes on the left- and right-hand sides of a 1000 μm×1000 μm
square domain (see Figures 2a and 4a). On the left half of the domain (i.e., for x≤ 500), a Thomas point
process is used to generate clustered data.(55) This modified Neyman–Scott process samples cluster
centers from a Poisson process and samples a fixed number of points from Gaussian distributions around
each cluster center.(56) In synthetic dataset I, we randomly position 20 cluster centers in x≤ 500, and
sample 10 points of each cell type from a 2D Gaussian distribution, with standard deviation σ¼ 20 and
mean μ located at the cluster center. In x> 500, the same process is used, but 10 cluster centers are chosen
independently for each cell type, leading to a composite point pattern containing 300 cells of each type. By
construction, synthetic dataset I exhibits strong colocalization between cells of types C1 and C2 in x≤ 500,
while each cell type is located in independent clusters in x > 500.We assign a second, continuousmarkm to
cells of type C2. Those with x≤ 500 are randomly assigned a continuous markm∈ 0,0:5½ �while those with
x> 500 are assigned a mark m∈ 0:5,1ð �. Consequently, when a cluster contains both cell types, cells of
type C2 have low marks (m≤ 0:5), and when it contains only cells of type C2 high marks (m≥ 0:5) are
present.

2.1.1.2. Synthetic dataset II The second synthetic dataset comprises two distinct point patterns, each
containing cells of types, C1 , C2 , and C3 (see Figure 3). In both patterns, three cluster centers are
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positioned at x,yð Þ¼ 200,200ð Þ, 500,800ð Þ, 800,200ð Þ. For the first point cloud, each cluster contains
25 cells from two different cell types, with locations chosen from a 2D normal distribution (mean μ at
the cluster center, standard deviation σ¼ 50), so that all three pairwise combinations of cell types are
represented (for a total of 50 cells of each type). The same process is used to generate the second point
cloud, except all three cell types are present in each cluster (i.e., a total of 75 cells of each type). By
contrast, in the first pattern, no cluster contains all three cell types but each pairwise combination of
cell types is present in one cluster.

2.1.2. Multiplex IHC
2.1.2.1. Animals Intestinal tumor tissue from a villinCreERKrasG12D/+Trp53fl/flRosa26N1icd/+ (KPN)
mouse was used.(54) Procedures were conducted in accordance with Home Office UK regulations and
the Animals (Scientific Procedures) Act 1986. Mice were housed individually in ventilated cages, in a
specific-pathogen-free facility, at the Functional Genetics Facility (WellcomeCenter for HumanGenetics,
University of Oxford) animal unit. All mice had unrestricted access to food and water, and had not been
involved in any previous procedures. The strain used in this study was maintained on C57BL/6 J
background for ≥ 6 generations.

2.1.2.2. Multiplex immune panel and image preprocessing Akoya Biosciences OPAL Protocol
(Marlborough, MA) was employed for multiplex immunofluorescence staining on FFPE tissue
sections of 4-μm thickness. The staining was performed on the Leica BOND RXm auto-stainer
(Leica Microsystems, Germany). Six consecutive staining cycles were conducted using primary
antibody-Opal fluorophore pairs. The marker panel used is shown in Table 1.

The tissue sections were incubated with primary antibody for an hour, and the BOND Polymer Refine
Detection System (DS9800, Leica Biosystems, Buffalo Grove, IL) used to detect the antibodies. Epitope
Retrieval Solution 1 or 2 was applied to retrieve the antigen for 20 min at 100 °C, in accordance with the
standard Leica protocol, and, thereafter, each primary antibody was applied. The tissue sections were
subsequently treated with spectral DAPI (FP1490, Akoya Biosciences) for 10 min and mounted with
VECTASHIELD Vibrance Antifade Mounting Medium (H-1700-10; Vector Laboratories) slides. The
Vectra Polaris (Akoya Biosciences) was used to obtain whole-slide scans and multispectral images
(MSIs). Batch analysis of the MSIs from each case was performed using inForm 2.4.8 software, and
the resultant batch-analyzed MSIs were combined in HALO (Indica Labs) to create a spectrally unmixed
reconstructed whole-tissue image. Cell segmentation and phenotypic density analysis was conducted
thereafter across the tissue using HALO.

2.2. ROI overview

Weconsider a 1mm×1mmROI from aKPNmouse intestinal tumor, shown in Figure 1a (three additional
regions from this tumor are included in the Supplementary Material). Each color channel corresponds to
a different marker (blue –DAPI; orange – CD4; green – CD68; magenta – Ly6G; maroon – FoxP3; red –

Table 1. List of markers and opals used in the multiplex panel

Marker Opal

Ly6G (1:300, 551459; BD Pharmingen) Opal 540
CD4 (1:500, ab183685; Abcam) Opal 520
CD8 (1:800, 98941; Cell Signaling) Opal 570
CD68 (1:1200, ab125212; Abcam) Opal 620
FoxP3 (1:400, 126553; Cell Signaling) Opal 650
E-cadherin (1:500, 3195; Cell Signaling) Opal 690
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CD8; white – E-cadherin). To obtain a labeled point cloud, individual cell boundaries were identified via
cell segmentation (HALO, panel b). Classification of cell types was achieved by considering the average
pixel intensity within a cell boundary for each marker individually (e.g., CD4 pixel intensity, panel c),
with combinations of cell markers defining different cell types as outlined in Table 2. The final marked
point pattern (panel d) was obtained by assigning cell labels to the centroids associated with each cell
boundary.

The ROI in Figure 1 was selected because of the clear separation between the spatial position of
immune cell subtypes and tumor nests (epithelial cells), with immune cells located predominantly in

Figure 1.Obtaining point cloud data from amultiplex image. (a) 1 mm× 1mmROI from amultiplex IHC
image of murine colorectal carcinoma (blue – DAPI; orange – CD4; green – CD68; magenta – Ly6G;
maroon – FoxP3; red – CD8; white – E-cadherin). The epithelial cells (E-cadherin+) are cancer cells
which form dense “tumor nests” that are surrounded by stromal regions. Immune cells are largely

restricted to the stroma between tumor nests, so the region shows spatial correlation between immune cell
subtypes (particularly macrophage, neutrophil, and T helper cell) within the stroma, and anticorrelation
between immune cells and epithelial cells. (b) Cell segmentation (HALO) for the region in panel a. The
edges of E-cadherin positive cells are shown in pink to aid comparison with panel a. (c) Pixel intensity
from the color channel corresponding to the CD4 stain only. (d) Composite point cloud formed by

classifying each cell type stained in panel a, with points placed at the centroids of segmented cells. Lower
row: Magnified 500 μm×500 μm zoom from the upper panels.

Table 2. Cell types present in the ROI, with markers and number of cells present. Note that all cells
must also contain sufficient DAPI staining to be classified as a cell. Due to low numbers of cytotoxic T

cells and regulatory T cells, we exclude them from subsequent analyses

Cell type Marker Cell number

Epithelium E-cadherin 5845
Macrophage CD68 392
T helper cell CD4+ FoxP3- 314
Neutrophil Ly6G 214
Cytotoxic T cell CD8 12
Regulatory T cell CD4+ FoxP3+ 8
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regions between epithelial cell islands. Table 2 summarizes the different cell types, the markers used to
define them, and the number of cells of each type in the ROI.

2.3. Spatial statistics

We consider a point pattern in a rectangular domain Ω¼ 0,1000 μm½ �× 0,1000 μm½ �. The point pattern
comprises N points (or cells). Cell i (i∈ 1,2,…,N ) has spatial location xi ¼ xi,yið Þ, and a set of marks
which may be categorical (e.g., a label for a cell type, or a true/false label indicating whether a cell’s
average stain intensity exceeds a threshold value), or continuous (e.g., the average stain intensity of a
particular mark within a cell). For clarity, we denote categorical and continuous marks by c and m ,
respectively. We use lowercase for marks associated with a particular point and uppercase for target
values. We introduce the indicator function I C,cð Þ to determine whether a categorical mark associated
with a point matches a target mark:

I C,cð Þ¼ 1 if c¼C,

0 otherwise

�
: (1)

When we define correlation functions below, we will need to determine whether two points are separated
by a distance “close to” r. We do this by defining an indicator function, I a,b½ Þ rð Þ, which identifies whether
the distance r is within an interval a,b½ Þ:

I a,b½ Þ rð Þ¼ 1 for a≤ r < b,

0 otherwise,

�
(2)

where aand bare the real numbers with a< b. We calculate the statistics below at a series of discrete points
rk, which is equivalent to considering a sequence of annuli of width dr > 0whose inner radii are separated
by δr > 0, with rk + 1 ¼ rk + δr and r0 ¼ 0 (if dr¼ δr then the annuli are nonoverlapping). We denote by
Ar xð Þ the area of the annulus with inner radius r and width dr centered at the point x, intersected with the
domain. If this annulus lies wholly inside the domain then Ar xð Þ¼ π r + drð Þ2� r2

� �
¼ π 2r + drð Þdr ;

otherwise, only the area contained within the domain is recorded.
It is important to distinguish between the theoretical forms of correlation functions, which relate to

properties of a point process which has generated a pattern, and the empirical forms of the same functions,
which relate to observations of data (regardless of whether that data are generated from an underlying
point process). In the definitions below, we consider only empirical versions of these functions, which
may be defined differently (e.g., by using different kernels or edge-correction terms): for a detailed
discussion of the differences between empirical and theoretical spatial statistics, we refer the interested
reader to textbooks such as Reference (45).

It is important to note that these functions cannot distinguish, in a technical sense, between
colocalization of cells due to co-intensity (points being found in the same region due to, e.g., the
tissue being partitioned into tumor and stromal regions) or correlation (points being found in the same
region because they are subject to the same reference process). Since cell location data are not
generated by a well-defined statistical process, statistical correlation and co-intensity cannot be readily
distinguished using multiplex imaging data, and we use the terms interchangeably throughout this
manuscript. We note also that, in this manuscript, we use statistics to illustrate their potential as tools to
guide quantitative analysis of multiplex imaging. In order to assess the significance of these (or other)
spatial statistics, appropriate significance testing should be performed. For a given statistic, this could
be achieved by, for example, generating a simulation envelope using data derived from CSR and
comparing this with the observed measurements.
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2.3.1. Pair correlation function
2.3.1.1. Aims The PCF, gC rð Þ , quantifies spatial clustering or exclusion between pairs of points
separated by a distance r within an ROI, compared to a suitably selected null distribution. While a range
of null distributions could be considered (e.g., using a Matérn hard core process to simulate randomly
distributed cell centers separated by a minimum distance to approximate a cell radius(57)), we assume the
null distribution is complete spatial randomness (CSR) as represented by a homogeneous spatial Poisson
point process with intensity λ > 0 chosen to match the intensity of the point pattern being analyzed.

2.3.1.2. Definition LetNC ¼
PN

i¼1I C,cið Þbe the number of points inΩwith ci ¼C, for some categorical
mark C. The empirical PCF, gC rð Þ, is defined as follows:

gC rð Þ¼ 1
NC

XN
i¼1

I C,cið Þ
XN
j¼1

I C,cj
� � I 0,dr½ Þ jxi�xjj�r

� �
Ar xið Þ =

NC

A

 !
(3)

where A is the total area of the domain Ω and dr > 0. There are many ways to account for edge effects
associated with points close to the domain boundary, although the choice of a particular method is
generally not critical (see, e.g., Reference (45) for a detailed discussion of this). Throughout this paper, we
account for them by adjusting the contribution of each point to account for the area of each annulus
contained within the domain, Ar xð Þ. This form of edge correction ensures that the local contribution to the
PCF of a given point is based on the ratio of the observed number of points to the area of the annulus that
falls within the domain; note that many other forms of edge correction are used throughout the
literature,(45) and can be substituted here without substantially changing the methods introduced below.

For a theoretical PCF, CSR generates a value of 1. We note from Equation (3) that, for the empirical
PCF, gC rð Þ≈ 1 for data generated under CSR. Further, if gC rð Þ> 1 then points separated by distance r are
observedmore frequently than expected under CSR andwe say that points at this length scale are clustered
relative to CSR. Similarly, gC rð Þ< 1indicates fewer points than expected and is interpreted as exclusion at
length scale r.

The structure of Equation (3) provides the basis for the generalizations of the PCF introduced below.

2.3.2. Cross PCF
2.3.2.1. Aims The cross-PCF describes the correlation between pairs of points separated by distance r
which may have different categorical labels.(45)

2.3.2.2. Definition Consider the categorical marks C1 and C2. The cross-PCF, gC1C2
rð Þ, is defined as

follows:

gC1C2
rð Þ¼ 1

NC1

XN
i¼1

I C1,cið Þ
XN
j¼1

I C2,cj
� � I 0,dr½ Þ jxi�xjj�r

� �
Ar xið Þ =

NC2

A

 !
, (4)

where NCi ¼
PN

j¼1I Ci,cj
� �

is the number of points with mark Ci . We note that when C1 ¼C2 ,

Equation (4) reduces to Equation (3) (i.e., the cross-PCF reduces to the PCF).

2.3.2.3. Example The interpretation of the cross-PCF is similar to that for the PCF, with gC1C2
rð Þ> 1

indicating correlation between points with marks C1 and C2 separated by distance r and gC1C2
rð Þ< 1

indicating exclusion at distance r.
In Figure 2, we compute two cross-PCFs for synthetic dataset I. In Figure 2a, cells with labels C1 and

C2 are strongly spatially correlated on the left half of the domain, while they are clustered separately on
the right half. Figure 2b shows the cross-PCFs gC1C2

rð Þ and gC2C1
rð Þ for this point pattern. Colocalization

between the cell types is identified for r ≲ 200. The cross-PCFs are almost identical, since the cross-PCF
is symmetric up to boundary correction terms.While the cross-PCF successfully identifies the presence of
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clustering between the two cell types, it does not provide information about differences in colocalization
on the left- and right-hand sides of the domain.

2.3.3. Topographical correlation map
2.3.3.1. Aims The TCM, ΓC1C2 r,xð Þ, is an example of a LISA(50) and was introduced by us in Reference
(7) to visualize spatial heterogeneity in the correlation between pairs of points across anROI. In contrast to
direct visualization of two point patterns, the TCM provides a quantitative summary of colocalization
between the points which is spatially resolved across the ROI. Local maxima and minima of the TCM
identify areas where points with different labels are (positively or negatively) correlated, relative to a
baseline of CSR.Motivated by Equation (4), each point withmarkC1 is assigned a value that quantifies its
correlation with points withmarkC2. A series of kernels centered at each point withmarkC1 is summed to
produce a spatial map of local correlations between the cell types. We note that, since these kernels are
centered on points marked C1, the TCM is not symmetric (i.e., ΓC1C2 ≠ΓC2C1 if C1 ≠C2).

2.3.3.2. Definition The TCM, ΓC1C2 r,xð Þ, is visualized at a specific length scale r, chosen to reflect the
length scale at which onewishes to observe correlation. The choice of length scale can be determined from
the corresponding cross-PCF gC1,C2

rð Þ, by identifying the value at which g rð Þ≈ 1, for example, or based
on a priori assumptions about biological behavior, for example by choosing a length scale associated with
the approximate size of the cells of interest. Unless stated otherwise, we fix r¼ 50μmwhich corresponds

B D

C E

A

Figure 2.Motivating example I: Cross-PCF and topographical correlation map. (a) Synthetic dataset
I: a synthetic point pattern involving two cell types, with labels C1 and C2. For 0≤ x≤ 500, points with

labels C1 and C2 cluster together; for 500 < x≤ 1000, points of types C1 and C2 form distinct,
homogeneous clusters. (b) The cross-PCFs gC1C2

rð Þ and gC2C1
rð Þ for the point pattern in panel a. The

cross-PCF detects the short range clustering between cells of types C1 and C2, which is present for
0≤ x≤ 500. The cross-PCFs are almost identical, differing only for large r because of boundary
correction terms. (c) Function used to linearize the mark mC1C2 in Equation (6), used to calculate
the TCM, for α¼ 5. Dashed lines represent mC1C2 ¼ 1=α,1,α, which correspond to the maximum

detectable exclusion, CSR, and the maximum detectable clustering. (d, e) TCMs ΓC1C2 r¼ 50,xð Þ and
ΓC2C1 r¼ 50,xð Þ. The TCM identifies colocalization between cells of types C1 and C2 in 0≤ x≤ 500,
and distinguishes between the dense cluster in the top left quadrant and smaller clusters in the bottom
left quadrant. The TCM also identifies exclusion between the two cell populations in 500≤ x≤ 1000
and shows this to be less pronounced than the clustering in 0≤ x≤ 500. Note that while the regions of
positive correlation are similar between panels d and e, the regions of negative correlation differ.
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to clustering on the length scale of two to three cell diameters.We associate a continuousmarkmC1C2 r,xið Þ
with each cell i with mark C1, such that

mC1C2 r,xið Þ¼
XN
j¼1

I C2,cj
� � I 0,r½ Þ jxi�xjj

� �
Ar xið Þ =

NC2

A
, (5)

where Ar xið Þ is the area of that part of the circle with radius rμm centered at xi that falls within the ROI.
mC1C2 r,xið Þ can be viewed as the contribution of each point i to the cross-PCF, gC1C2

rð Þ, for the special
case of an annulus with inner radius 0 and width dr¼ r (note that this represents the cumulative
contributions of the annuli used to calculate the cross-PCF up to distance r; that is, the contribution to
the K-function – see, e.g., Reference (45)). Thus, mC1C2 r,xið Þ is interpreted similarly to the cross-PCF:
mC1C2 r,xið Þ< 1 indicates anticorrelation between cells with marks C1 and C2 separated by a distance of at
most rμm, and mC1C2 r,xið Þ> 1 indicates correlation.

Since mC1C2 r,xið Þ is based on a ratio of observed counts to counts expected under CSR, its
interpretation is nonlinear: an observation of three times as many points as expected corresponds to
mC1C2 r,xið Þ¼ 3, while three times fewer points than expected leads to mC1C2 r,xið Þ¼ 1=3. To facilitate
interpretation, we rescale mC1C2 r,xið Þ to produce a transformed mark μC1C2

r,xið Þ in which clustering and
exclusion can be compared on a linear scale, with μC1C2

r,xið Þ¼ 0 when mC1C2 r,xið Þ¼ 1:

μC1C2
r,xið Þ¼

1 if mC1C2 r,xið Þ≥ α,

1
α�1

� �
mC1C2 r,xið Þ�1ð Þ if 1<mC1C2 r,xið Þ≤ α,

1
α�1

� �
1� 1

mC1C2 r,xið Þ
� �

if
1
α
<mC1C2 r,xið Þ≤ 1,

�1 if mC1C2 r,xið Þ≤ 1
α
:

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(6)

In Equation (6), the constant α > 1describes the maximal degree of clustering (or exclusion) which can be
resolved under this transformation. A sketch of Equation (6) is presented in Figure 2c, for α¼ 5
(henceforth, we fix α¼ 5).

After calculating μC1C2
r,xið Þ for each cell with mark C1, we center a Gaussian kernel with standard

deviation σ¼ rμm, and scaled by μC1C2
, at xi (examples showing the effect of varying r and σ on the TCM

are presented in the Supplementary Material). The TCM, ΓC1C2 r,xð Þ, is obtained by summing over all
cells with mark C1 in the domain:

ΓC1C2 r,xð Þ¼
XNC1

i¼1

μC1C2

2πσ2
e�

1
2

∣x�xi ∣
σð Þ2 : (7)

Regions in which the TCM is positive indicate that more points marked C1 are positively correlated with
points markedC2 in this area than would be expected under CSR, at length scales up to rμm. Similarly, the
TCM is negative in regions where points withmarkC1 are negatively correlated with points withmarkC2.
The choice of σ changes the resolution of the TCM; we choose σ¼ r so that the resolution of the TCM
approximately matches the maximum radius at which correlation contributes to the TCM (see the
Supplementary Material for further details).

2.3.3.3. Example Figure 2d,e shows the TCMs associated with synthetic dataset I (the point pattern in
Figure 2a) for r¼ 50. Panel d shows ΓC1C2 r¼ 50,xð Þ and panel e shows ΓC2C1 r¼ 50,xð Þ. Both TCMs
identify differences in the colocalization of the two cell types on the left and right sides of the domain. In
particular, ΓC1C2 r¼ 50,xð Þ≈ 40 in the upper left quadrant of panels d and e, indicating strong positive
correlation, with weak association in the lower left (ΓC1C2 r¼ 50,xð Þ≈ 10). (Note that nonzero values of Γ
are consistent with clustering or regularity. In practice, however, significance testing should be conducted
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before concluding that the observed value is significantly different from Γ¼ 0.) For x≥ 500 both TCMs
correctly identify the regions in which cells of types C1 and C2 appear independently from one another
(ΓC1C2 r¼ 50,xð Þ≈ �10). The cross-PCFs in panel b are dominated by the correlation on the left-hand
side of the domain, and are unable to resolve the heterogeneity in clustering between the left and right
sides of the domain.We note that ΓC1C2 r,xð Þ ≠ΓC2C1 r,xð Þ, since the kernels used to construct the TCM are
centered on cells with label C1 (and vice versa). While areas in which cells with mark C1 and mark C2 are
co-located are identified by positive values of both ΓC1C2 r,xð Þ and ΓC2C1 r,xð Þ , their values differ in
regions where one or other TCM is negative, as in these regions the cell densities vary (e.g., on the right-
hand side of panels d and e). We, therefore, emphasize that ΓC1C2 r,xð Þ provides a spatial map of
subregions in which cells with mark C1 are correlated (or anticorrelated) with cells with mark C2. Finally,
we note that the TCM is not a densitymap showing the presence (or absence) of the cell types individually;
for example, when ΓC1C2 r,xð Þ≈ 0, either cells of type C1 are absent, or cells of both types are present in
numbers consistent with CSR.

2.3.4. Neighbourhood correlation function
2.3.4.1. Aims The NCF rð Þ extends the PCF to quantify spatial colocation between three or more cell
types with different categorical marks. We compare the observed number of triplets of points with marks
C1,C2 and C3 within a neighbourhood of size r against the number of triplets expected under CSR.
Selecting an appropriate definition for such a neighbourhood is nontrivial: while it is straightforward to
calculate the Euclidean distance between two points, many metrics can be used to calculate the proximity
of three or more points. We require a metric that is interpretable and extends naturally to more than three
points. Metrics such as the area of the polygon spanning the points are unsuitable (the area of the polygon
is identically zero when all points fall on a straight line, even though the points could be far apart). We
consider the minimum enclosing circle (details below) as it requires all cells to lie within a
“neighbourhood” of each other (with the distance between any two points at most 2r , where r is the
radius of the minimum enclosing circle). While some methods instead consider the maximum pairwise
distance between any two of the points to define the distance between a set of points (see, e.g., Reference
(45)), this is sensitive only to the location of the pair of points separated by the largest distance, and not to
the location of other points in the set. The radius of the minimum enclosing circle can be interpreted in
terms of pairwise distances (it is the length thatminimizes the largest distance of any point from a common
location, the center of the circle), but has a more natural interpretation in biological imaging contexts as
the radius of the region in which the cells of interest are located.

2.3.4.2. Definition Consider a point pattern for which there are N 1, N2, and N 3 points with categorical
marks C1,C2 , and C3 , respectively. We say that three points from this pattern fall within a
“neighbourhood” of radius r if there is a circle of radius r which encloses all three points. For a given
set of three points ζ ¼ x1,x2,x3f g, let R ζð Þ be the radius of the smallest circle enclosing every point in ζ
(the “minimum enclosing circle”).

There are N1 ×N2 ×N 3 possible triplets containing one point with each mark. We calculate R for each
of these, and then determine the number of circles of radius r containing a unique grouping of cells with
each mark (as for the PCF, these values are grouped into discrete bins of width dr).

As for the PCF, we compare the number of minimum enclosing circles with radius r with the number
expected under CSR. The probability of three points lying within a neighbourhood of radius r, p3 rð Þ, is:

p3 rð Þ¼ lim
M!∞

PM
i¼1I 0,dr½ Þ R x1i ,x

2
i ,x

3
i

	 
� �� r
� �

M
, (8)

where x1i , x
2
i , and x

3
i are three points within the domain, sampled under CSR. Since sampling such points

is computationally cheap, p3 rð Þ can practically be approximated for an arbitrary domain by sampling a
large number of random triplets (in this section, we useM ¼ 107) and calculating their minimum enclosing
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circles. There are many standard algorithms for computing the radii of minimum enclosing circles (see,
e.g., Reference (58), or (59) for the algorithm we use).

For a point pattern containing N points, the NCF is defined as the ratio of the observed number of
smallest neighbourhoods of radius r to the number of such neighbourhoods expected under CSR,
N1 ×N 2 ×N 3 × p3 rð Þ:

NCFC1C2C3 rð Þ¼
XN
i¼1

XN
j¼1

XN
k¼1

I C1,cið ÞI C2,cj
� �

I C3,ckð Þ I 0,dr½ Þ R xi,xj,xk
	 
� �� r

� �
N1 ×N2 ×N3ð Þp3 rð Þ: (9)

We note that it is straightforward to extend the NCF for n categorical marks:

NCFC1…Cn rð Þ¼
XN
i1¼1

…
XN
in¼1

I Ci1 ,ci1ð Þ×…× I Cin ,cinð Þ I 0,dr½ Þ R xi1 ,…,xinf gð Þ� rð Þ
N1 ×…×Nnð Þpn rð Þ , (10)

where pn rð Þ is the probability that n points sampled under CSR fall within a minimum enclosing circle of
radius r.

2.3.4.3. Example As for the PCF, NCF rð Þ> 1 indicates clustering and NCF rð Þ< 1 indicates exclusion.
We interpret the length scale r associated with the NCF as the neighbourhood radius within which the
points are contained.

In Figure 3, we compare the cross-PCFs and NCFC1C2C3 for the two point patterns from synthetic
dataset II. In Figure 3a, each cluster consists of only two cell types, so that any pairwise combination of
cell types can be found in close proximity while all three cell types are never in close proximity. In
Figure 3e, each cluster contains all three cell types.

Figure 3b,f shows that, for synthetic dataset II, all cross-PCFs gC1C2
, gC1C3

, and gC2C3
have the same

shape and, hence, that pairwise correlation is insufficient to distinguish the two point patterns in this
dataset. Figure 3c,g shows all minimum enclosing circles (with radius up to 300 μm) for these point
patterns, colored according to the radius of the circle; note that when all three cell types are present within
the same cluster, there are a large number of small (purple) circles present. Figure 3d shows that, in this
point pattern, all three cell types are never observed within a circle of radius r < 100 μm. The NCF
increases from 0 to 1 as r increases from 100 to 300, showing that circles with these radii may containmore
triplets of cells of type C1, C2, and C3. In particular, these represent combinations of cells drawn from
multiple clusters, requiring a large neighbourhood to encompass all three cell types and, hence, showing
that the three do not often occur in close proximity of one another. In contrast, Figure 3h shows that the
NCF distinguishes the two point patterns, by identifying strong correlation between the three cell types in
neighbourhoods with radii of at most 100 μm for the three-way correlation point pattern, which
corresponds to the approximate radius of the clusters.

2.3.5. Weighted-PCF
2.3.5.1. Aims The wPCF extends the cross-PCF to describe correlation and exclusion between cells
marked with labels that may be categorical or continuous. Here, we focus on pairwise comparisons
between points marked with a categorical label (e.g., points of type C1 ) and those marked with a
continuous label (e.g., points with mark m∈ 0,1½ �. The wPCF can also compute correlations between
points labeled with two continuous marks (see Reference (48) for an example of this).

2.3.5.2. Definition Consider a set of points labeled with categorical marks (C1) and continuous marks
(m∈ a,b½ � for some a,b∈ℝ). The wPCF describes the correlation between points with a given target mark
M ∈ a,b½ � and those with a categorical mark C1, at a range of length scales r.

The cross-PCF cannot be calculated for such points since, for a continuous mark, I M ,mð Þ is zero almost
everywhere. As such, we replace I C,cð Þ with a generalized version, the “weighting function” w M ,mð Þ, to
account for values of continuous marks m that are “close to” a target markM in the following way:
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Figure 3.Motivating example II: Neighbourhood Correlation Function. (a, e) Synthetic dataset II: point
patterns in which three cell types are spatially correlated pairwise (a) or in triplets (e). In (a), each cluster
contains only two cell types, so that all three cell types are never in close proximity. In (e), all three cell
types are in close proximity in each cluster. Hence, in both point patterns, there is positive correlation
between pairwise combinations of cell types, but the three-way correlations differ between the panels. (b,
f) Cross-PCFs for the point patterns in panels a and e, respectively. These cross-PCFs appear identical,
showing strong short-range correlation between the cell types (inside a cluster), exclusion from r¼ 0:2 to
r¼ 0:4, and a second peak of correlation around r¼ 0:6 (between clusters). (c, g) Minimum enclosing
circle for every combination of three points with marks C1, C2, and C3 (up to circles with a radius of
r¼ 0:3). Circles with small radii arise when all three cell types are in close proximity (panel g). Circles
are colored according to their radius. (d, h) NCFs for the point patterns in panels a and e, respectively.
The NCF in panel d correctly identifies short-range exclusion between the three cell types in panel a,

while the NCF in panel h identifies strong short-range correlation between the three cell types.
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w M,mð Þ¼ max 1� ∣M�m∣
ΔM

,0

� �
, (11)

where the positive parameter ΔM determines the width of the function’s support. Many other functional
forms could be used. Following,(48) we use a triangular kernel due to the simplicity of the relationship
between ΔM and the support of the weighting function (any marks more than ΔM from the target mark
have weight 0). We note that other kernels, such as a Gaussian kernel, could also be used, but that those
that have compact support,w M ,Mð Þ¼ 1andw M ,mð Þ∈ 0,1½ �, are likely to bemost informative. Choosing
an appropriate value for ΔM is important, and depends on the range over which the target marks vary and
the desired ratio of signal to noise. In general, fixingΔM ≈ 0:1 × Mmax�Mminð Þappears to provide a good
balance, whereMmax andMmin are the extremal values of the target marks (see Reference (48) for details
of alternative functional forms and a detailed analysis of how the choice of weighting function and ΔM
influence the signal to noise ratio in the resulting wPCF).

The wPCF is defined as follows:

wPCF r,M,C1ð Þ¼ 1
NC1

XN
i¼1

I C1,cið Þ
XN
j¼1

w M,mj
� �

I 0,dr½ Þ jxi�xjj�r
� �

Ar xið Þ =
WM

A

 !
, (12)

whereWM ¼PN
i¼1wm M ,mið Þ is the total “weight” associated with the target labelM across all points. The

wPCF extends the cross-PCF by weighting the contribution of each point based on how closely its
continuous mark matches the target mark.

We note that the wPCF can be used to compare point clouds with two continuous marks by replacing
the categorical target mark C1 with a second continuous mark (say, M 1):

wPCF r,M1,M2ð Þ¼ 1
WM1

XN
i¼1

w1 M1,m1ið Þ
XN
j¼1

w2 M2,m2j

� �
I 0,dr½ Þ jxi�xjj�r

� �
Ar xið Þ =

WM2

A

 !
: (13)

In Equation (13) the weighting functions w1 and w2 quantify proximity to target marks M 1 and M2,
respectively. Note that since the ranges of the marks m1 and m2 may differ substantially, the functions w1

and w2 may not necessarily use the same value of ΔM in Equation (11) (e.g., see Reference (48)).

2.3.5.3. Example We again use synthetic dataset I, where points withm< 0:5 are on the left-hand side of
the domain, and have been placed in clusters with the C1 cells. In contrast, points on the right-hand side
have m > 0:5 and cluster independently from the C1 clusters.

Figure 4b shows wPCF r,C1,Mð Þ for the point pattern in Figure 4a, with cross sections of the wPCF
shown in Figure 4c. For a given target valueM , the cross sections of the wPCF can be interpreted in the
same manner as the cross-PCF or PCF. Figure 4b identifies two types of correlation in the data, each
associated with different values of m. For 0 < r≈ 150, there is strong short-range clustering between cells
of type C1 and cells of type C2 with m < 0:5, with weak short-range exclusion up to this length scale for
m > 0:5. Since cells on left-hand side of the domain have 0≤m< 0:5, and those on the right-hand side have
0:5≤m≤ 1, this effect is consistent with the information from the cross-PCF and TCM above. One
advantage of visualizing the wPCF as a heatmap (Figure 4b) is that it identifies threshold values ofM at
which the nature of the cell–cell correlations changes, as demonstrated in Reference (48).

3. Results

In this section, we illustrate the utility of the TCM, NCF, and wPCF through their application to an ROI
from a multiplex IHC image of a murine colorectal carcinoma (see the Methods section for details, and
Section S1 of the Supplementary Material for similar analyses of three additional ROIs). Figure 5 shows
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the cross-PCFs that describe the pairwise correlations between all cell types present in the data. Due to the
low numbers of cytotoxic and regulatory T cells, we focus subsequent analyses on relationships between
epithelium and T helper cells (two abundant cell types that are spatially anticorrelated) and on T helper
cells and macrophages (the most abundant immune cell subtypes, which are spatially correlated). When
applying the NCF, we include neutrophils as a third immune cell subtype which colocalizes with T helper
cells and macrophages.

3.1. Cross-PCFs and TCMs identify colocalization and exclusion in cell center data

We first consider T helper cells (Th) and macrophages (M), which are shown to be colocalized from the
cross-PCFs in Figure 5. Figure 6a shows the channels of the multiplex image that correspond approxi-
mately with T helper cells (CD4+, orange) andmacrophages (CD68+, green); the cell centers of these cell
populations within the ROI are shown in Figure 6b (see Figure 1 for other cell locations). In this ROI, both
T helper cells and macrophages are predominantly found in the stromal tissue between islands of
(cancerous) epithelial cells, leading to positive spatial correlation on short length scales (0 ≲ r ≲ 75 μm).

Colocalization is clearly identified by the cross-PCF in Figure 6c: for 0 ≤ r ≲ 75 , gThM rð Þ> 1,
indicating clustering between the cells of up to 2.75 times greater than expected under CSR, on length
scales up to approximately 75 μm(a distance approximating the width of the stromal region that separates
epithelial clusters).

Figure 6d shows ΓThM r,xð Þ for r¼ 50 μm. This permits the clustering identified by the cross-PCF to be
mapped onto the ROI, revealing subregions in which T helper cells are spatially colocated with, or
excluded from, macrophages. We observe strong clustering in stromal regions, with islands of weak
exclusion where isolated T helper cells are present. We conclude that, while T helper cells typically
colocalize with macrophages, certain subregions of the ROI that contain T helper cells have low numbers

Figure 4. Motivating example III: weighted-PCF. (a) Synthetic dataset I: the same point pattern from
Figure 2, now shown with the continuous mark m associated with cells of type C2. Recall cells of type C2

with 0≤ x≤ 500 have 0≤m< 0.5, while those with 500 < x≤ 1000 have 0:5≤m≤ 1. (b) The wPCF,
wPCF r,C1,mð Þ, for the point pattern in panel a identifies differences in clustering between cells of type
C1 and cells of type C2 with marks above or below m¼ 0:5. (c) Cross sections of the wPCF in panel
b. These plots distinguish the strong clustering of cells of type C1 with cells of type C2 that have m < 0:5

and their weak exclusion from cells of type C2 that have m> 0:5.
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of macrophages within a 50 μm radius. Further, these subregions do not contribute significantly to the
overall correlation of T helper cells with macrophages in the cross-PCF.

In Figure 7, we focus on T helper (Th) and epithelial cells (E), which are shown to be anticorrelated by
the cross-PCFs in Figure 5. In Figure 7c, the cross-PCF gThE rð Þ shows exclusion for 0≤ r ≲ 75, with the
strongest exclusion occurring on small length scales. This exclusion is also identified by ΓThE r,xð Þ in
Figure 7d, which shows that the cross-PCF is dominated by strong exclusion from T helper cells in
the stromal islands between epithelial cells as expected. The contributions from T helper cells outside the
stromal regions (e.g., those in the lower right quadrant of the ROI) are negligible compared to those in the
lower left quadrant, due to the large number of T helper cells in that subregion.

3.2. NCFs identify spatial correlations between three cell types simultaneously

Figure 8 shows the NCF for macrophages, T helper cells, and neutrophils (spatial locations shown in
Figure 8a). We calculate the smallest circles enclosing each triplet containing one of each cell type, and
note their radii. Figure 8b compares the number of circles with radius r observed in the data, with the
expected number if macrophages, neutrophils and T helper cells are randomly distributed (obtained via
simulation as described in the methods, for M ¼ 108). More circles are observed than expected under
CSR. By taking the ratio of the curves in Figure 8b, we generate the NCF in Figure 8c. The NCF shows
that triplets comprising a macrophage, a neutrophil and a T helper cell are up to 35 times more likely to
cluster within a neighbourhood of radius 0–20 μm than would be expected if the cells were randomly
distributed. We conclude that these cell types are frequently found together.

3.3. The wPCF identifies correlations without classification or segmentation

Recall that in order to apply the PCF, cross-PCF, TCM, and NCF, the multiplex imaging data must
be segmented and then classified to identify cell centers and assign them categorical labels (or cell types).

Figure 5. Cross-PCFs for pairwise combinations of cell types in the ROI. Cross-PCFs for pairs of cell
types from the ROI. We observe exclusion between epithelium and all immune cell subtypes, and strong
pairwise correlation with macrophages, neutrophils, and T helper cells on short length scales. Results

involving regulatory and cytotoxic T Cells are omitted as their cell counts are low in this ROI.
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We now show how the wPCF can be applied directly to multiplex imaging data to identify spatial
correlations, without segmentation or classification.

Figure 9 demonstrates that the wPCF can identify correlations when some cells are not classified.
Rather than specifying a threshold value of the CD4 marker intensity to identify CD4+ cells, we instead
view the average CD4 intensity of each cell as a continuous mark. Figure 9a shows epithelial cells
determined by specifying a threshold, while Figure 9b shows all cells labeled according to their average
CD4 intensity. The wPCF calculated in panel c shows that the spatial positions of cells with low CD4
intensity differ from those with high CD4 expression (with ΔM ¼ 2 in Equation (11)). Figure 9c,d shows
that cells with mean CD4 intensity below approximately 4 are not strongly correlated with epithelial cells.
However, for larger values of CD4 intensity, the profiles of the wPCF are in good agreement with the
cross-PCF gThE rð Þ (shown as a red dashed line in Figure 9d).

Figure 6. PCF and TCM for positively correlated cell types. (a) Locations of T helper cells (CD4+,
orange) andmacrophages (CD68+, green) in the ROI (withDAPI, blue). These cell types colocalize in the
tissue between epithelial cell islands. (b) Cell centers identified as T helper cells (orange) and macro-
phages (green). (c) Cross-PCF for T helper cells to macrophages, gThM rð Þ. These cell types are spatially
colocated over a wide range of distances, that is, gThM rð Þ> 1 for 0 ≲ r ≲ 75 μm. (d) TCM for T helper cells
to macrophages, ΓThM , for r¼ 50 μm. Red regions indicate colocalization of the cell types in stromal

regions, while blue regions correspond to isolated T helper cells.

Biological Imaging e2-17

https://doi.org/10.1017/S2633903X24000011 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000011


Finally, in Figure 10, we show that application of the wPCF to multiplex images, without cell
segmentation or classification, can identify spatial correlation. Panels a and b show points from a regular
lattice sampled from the multiplex image of the ROI, at a resolution of 1 point every 5 μm. In panel a,
points are labeled according to a thresholded value of the epithelial cell marker, while in panel b, they are
labeled according to the CD4 intensity at that pixel (note we use the notation “Opal 520,” the marker
associated with CD4 cells, to distinguish these raw pixel intensities from themean pixel intensities used in
Figure 9). The wPCF which compares these marks is shown in panel c, and is in good qualitative and
quantitative agreement with the wPCF from Figure 9 (with ΔM ¼ 20 in Equation (11)). We conclude that
applying the wPCF directly to pixels and stain intensities can identify the same spatial patterns of
clustering and exclusion as those identified by the cross-PCF, without cell segmentation or classification.

Figure 7. PCF and TCM for negatively correlated cell types. (a) Locations of T helper (CD4+, orange)
and epithelial cells (E-cadherin+, white) in the ROI (with DAPI, blue). Epithelial cells exist in clumped
“nests,” with T helper cells restricted to the stromal regions between them. (b) Cell centers of T helper
cells (orange) and epithelial cells (blue). (c) PCF for T helper cells to epithelial cells, gThE rð Þ. We observe
strong spatial exclusion, as gThE rð Þ< 1 for r ≲ 75. (d) TCM for T helper cells to epithelial cells, ΓThE r,xð Þ,
for r¼ 50 μm . The blue regions showing strong exclusion indicate subregions of the ROI which are

devoid of epithelial cells. The strongest signals occur where T helper cells are organized in large clusters,
while regions with few T helper cells do not contribute significantly to the cross-PCF.
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4. Discussion

Multiplex images contain a wealth of spatial information, and have the potential to greatly increase the
information that can be extracted from histological samples. Each image provides a high-resolution map
of cell locations across tissue samples that may contain millions of cells, together with detailed
information about their phenotypes and morphology. As multiplex images become more widespread
and as digital tools for their visualization and analysis improve, the demand for automated methods that
can extract detailed spatial information from them is increasing. Such methods should be agnostic to the
technology used to generate the images, the disease under investigation, and the particular markers with
which the sample has been stained.

Many existing methods can extract information from multiplex images. One popular approach involves
using AI or machine learning approaches to identify correlations between features extracted from multiplex
images and clinically relevant features such as disease progression. AI methods can be extremely powerful,
but are not ideally suited to all situations. In particular, an AI algorithmmay require vast numbers of images
for use as training data. Further, the tissue type and panel of markers chosen for staining should be consistent
across the training data, thereby reducing the applicability of the algorithm to samples from different diseases
(e.g., an algorithm trainedonmultiplex images of immune cells in colorectal cancer cannot reliably be applied
to images of immune cells in prostate cancer, or to images of stromal cells in colorectal cancer). AI methods
can sometimes lack interpretability, making it difficult to understandwhich features of an image an algorithm
is using and to understand when errors are likely to arise.

On the other hand, a range of statistical and mathematical methods can also describe features of
multiplex images in an interpretable way. These methods may derive from a range of disciplines, such as
network science, TDA, and spatial statistics. They provide quantitative descriptions of specific spatial
features of an image; for example, ecological analyses may describe correlations in cell counts across
subregions of an ROI with a fixed area, quantifying the strength of local correlations.(29) Existing metrics
have typically been developed to address a specific problem. As a result, multiple methods may be used to
describe the same features of a point pattern. For instance, the field of spatial statistics encompasses a
range of methods designed to identify correlations in point patterns, with specialized tools to address
specific use cases. The PCF has been specialized to account for interactions between multiple classes of
point (the cross-PCF), points generated from processes that vary across a region (inhomogeneous-
PCF(35)), or points labeled with continuous marks (mark correlation functions, weighted-PCFs). Such
metrics can provide detailed information about the spatial structure of multiplex images, even though they

Figure 8. The NCF identifies spatial colocalization between three cell types. (a) Locations of T helper
cells (orange), macrophages (green), and neutrophils (purple) extracted from the ROI. All three cell types
are found in stromal regions, whilemacrophages and neutrophils aremore likely to be observedwithin the
epithelial islands (e.g., in the top left corner). (b) Expected and observed numbers of circles of radius r.

(c) NCF obtained by computing the ratio of the curves in panel b, NCFThMN rð Þ. For r ≲ 75 μm ,
neutrophils, macrophages, and T helper cells are colocalized within a circle of radius r more often than

would be expected under CSR.
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may have been developed for other types of data. In order to understand multiplex images using
quantitative metrics, we propose the application of multiple statistics (which may derive from different
mathematical fields), designed to quantify specific properties of the image.

In this paper, we have focused on three methods for extending the PCF that have been specifically
designed for application to multiplex medical images. Each is applied here for the first time to multiplex
IHC images from the Vectra Polaris system, in order to illustrate how they address limitations in the PCF.
We now summarize each method in turn, focusing on their strengths and weaknesses.

4.1. Topographical correlation map

The TCM can visualize spatial correlations between pairs of cell populations across an ROI, highlighting
subregions of strong positive or negative correlation that can be difficult to identify by visual inspection.

Figure 9. The wPCF identifies correlation between epithelial cells and cells with different CD4
expression levels. (a) Epithelial cell centers. (b) Cell centers labeled according to the average CD4 stain
intensity within each cell. (c) wPCF (r, E, CD4), showing clear qualitative and quantitative differences in
colocalization with epithelial cells as CD4 expression levels vary. (d) Cross sections of the wPCF in panel

c. Points with low CD4 expression have a different pattern of correlation than those with higher
expression. The profile for cells with high CD4 expression corresponds to the cross-PCF gThE rð Þ,

calculated for cells which have beenmanually classified as T helper cells (red dashed line). Cells with low
CD4 intensity colocalize with epithelial cells, likely due to many epithelial cells having low CD4

expression. Cells with higher expression of CD4 are anticorrelated with epithelial cells for 0≤ r ≲ 75.
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The TCMcan be calculatedwithout requiring the user to estimate the intensity of an inhomogeneous point
process; rather, it identifies subregions in which local interactions between the point patterns differ from
those that would be obtained under homogeneous CSR.While we have used the TCM for visualization, it
generates quantitative information which can be used for subsequent analysis. For example, the number
and size of the local minima and maxima could be used as summary statistics to compare and classify
images. The TCM can also be analyzed via a sub/super level-set filtration.(60) This method from TDA can
quantify spatial heterogeneity in heatmaps.

We note that, by design, the TCM is asymmetric (i.e., Γab r,xð Þ ≠Γba r,xð Þ). As such, care is needed
when interpreting the TCM. In particular, while Γab r,xð Þ and Γba r,xð Þ should coincide in regions of
positive correlation, they may differ in regions of negative correlation. Further, regions where
Γab r,xð Þ≈ 0 cannot be used to infer the presence (or absence) of either cell type without consideration
of other metrics (e.g., local cell densities).

Figure 10. wPCF identifies correlation between epithelial cells and pixels with varying CD4 expression.
The results from Figure 9 are recovered when the wPCF is calculated from points sampled from the
original multiplex image using a regular 5 μm lattice, showing that the spatial correlation between
T helper cells and epithelial cells can be identified without segmentation or classification. (a) Pixel
intensities of the Opal 520 marker (associated with CD4), sampled across the ROI on a regular 5 μm

lattice. (b) Pixels marked as Opal 780 positive (associated with epithelial cells), determined via
thresholding, sampled across the ROI on a regular 5 μm lattice. (c) wPCF describing correlation between
pixels positive for Opal 780 and the pixel intensity of Opal 520. (d) Cross sections of the wPCF in panel c

have the same shape as the cross-PCF in panel d for pixels with high CD4 intensity.
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4.2. Neighbourhood correlation function

TheNCF identifies whether groups of three or more cells are found in a circular neighbourhood of radius r
more or less frequently than expected under CSR. Since it requires distance calculations between n cell
types, the computational complexity of the NCF is at least O Nnð Þ. This limits its potential application to
WSIs or to identifying correlations between a large number of cell types simultaneously: although
calculating each enclosing circle is fast,(58) as the maximum number of circles which must be calculated
is N1 ×…×Nn (where Ni is the number of cells of type i) the computational effort involved increases
rapidly as the total number of cells and number of cell types increase. As for the PCF, the runtime
performance of the algorithm can be improved by calculating the NCF up to a maximal neighbourhood
size of interest r; this reduces the number of n-wise maximum enclosing circles that must be calculated
(any combination of points containing a pair separated by more than the length scale of interest can be
immediately discarded). TheNCF also relies on repeated sampling of randomdata to identify the expected
number of neighbourhoods that would be observed under CSR. For a given region, this probability can be
calculated in advance to an arbitrary level of precision, and becomes more accurate with more samples.
However, more research is needed to determine the minimum number of samples needed to achieve a
given accuracy.

The process of calculating the NCF suggests that in future work it could be adapted to produce a
spatially-resolved map, similar to the TCM, which would indicate areas of an ROI in which n cells of
interest colocalize. For example, Figure 3c,g suggest that placing a kernel on each neighbourhood which
is weighted inversely to the radius of the circle would generate a landscape in which colocalization of
multiple populations would be identified at local maxima.

4.3. Weighted-PCF

The wPCF generalizes the cross-PCF to data with continuous labels (e.g., cell centers that have not been
classified into discrete categories, or to pixels which have not been segmented to find cell centers). As
such it can be calculated without classification or cell segmentation preprocessing steps. However, this
also increases the number of “parameters” required. In particular, the choice of weighting function
determines the ratio of signal/noise identified by the wPCF and must be considered in advance (see
Reference (48) for a detailed examination of the impact of varying the weighting function on the wPCF).
The tuning parameters used to construct the wPCF are in some ways similar to those used to perform cell
classification (e.g. threshold values for stain intensities). Since it requires careful choice of the weighting
function and associated parameters, users should carefully consider the most appropriate choice of
method for comparing their data, since depending on the context methods designed to directly compare
random fields of intensities may be more appropriate than the point process setting (see, e.g., Reference
(61) for a detailed comparison of some relevant pixel-based and object-based methods for quantifying
colocalization).

There is considerable scope for developing approaches to interpret the wPCF. The heatmap that it
generates can be analyzed using techniques similar to those discussed for the TCM above. Further, since
the wPCF generates outputs comparable to a series of cross-PCFs with different target marks, it may be
possible to define an analogue of the TCM in order to localize regions in which the populations of interest
colocalize. For example, a similar kernel method to that defined for the TCM could be used, in which
kernels are scaled both by strength of colocalization (as in the current implementation) and by the
weighting of the point relative to the target mark in the wPCF.

It is also possible to use the outputs from the wPCF to create a vectorized “spatial signature”which can
be used to cluster regions which have similar spatial structures.(48) Such an approach could be used to
automatically identify regions with similar spatial cellular interactions, or which contain spatial patterns
associated with, for example, cancer progression or disease severity. Indeed, by vectorizing the spatial
descriptors described within this paper the approach described in Reference (48) to identify such “spatial
biomarkers” could be extended.
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4.4. Conclusions

Multiplex images contain vast amounts of spatial information which can be exploited using quantitative
techniques. The spatial statistics considered in this paper represent one approach to analyzing these data,
and benchmarking studies that compare the efficiency and insight of different methods are needed. There
are several challenges associated with applying methods based on spatial statistical analysis of point
patterns, such as those described in this paper, to large regions, such as whole slide images, or images with
large numbers of different cell types (e.g., 60+). Onemajor limitation relates to their scaling as the number
of cells increases (see Supplementary Material), since WSIs may contain millions of individual cells.
Improvements in the efficiency of code implementation are likely to be needed in these cases, such as
parallelizing calculations or restricting the number of pairwise distance calculations that must be
performed by introducing distance thresholds.

The methods described in this paper were designed to exploit the spatial information contained in
multiplex images.We note, however, that they can be applied to multiple imagingmodalities andmultiple
diseases. Equally, each method can be applied to generic point cloud data from contexts outside of
biology.

We have previously shown that combining spatial statistics can generate more comprehensive
descriptions of point data than individual metrics alone.(38,48) In future work, we will determine how
complementary methods from mathematical fields such as spatial statistics, network science, and
topology, can build upon this to provide a rigorous quantitative description of how data are spatially
distributed.
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