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Abstract . The dynamical evolution of the planetary rings is simulated by means of a numerical 
model in which particles interact through mutual attraction and inelastic collisions. We use a mixed 
simulation: a deterministic integration of the Ν - body problem for large distances ( "particle-
mesh" method with an expansion of density and potential in spherical harmonics ) and a Monte 
Carlo treatment for the close encounters. The implementation is done in the Connection Machine 
in order to be able to make a detailed simulation using a greater number of particles ( of the order 
of 10 5 ). The deterministic calculation of the action of a shepherding satellite on the particles will 
allow us to study the effect of resonances on the formation and the evolution of the sharp edges 
of the rings. 
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1. Introduction 

The observations made by the Voyager have revealed that the planetary rings are 

a dynamical system of a great complexity, not well understood yet. In particular, 

the confinement, the gaps, the sharp edges observed at many places in real rings. 

We will present a collisional and self-gravitational model to simulate numerically 

the dynamics of the rings. 

In our model we consider particle sizes of the order of the cm - m, so we neglect 

the force of Pointing - Robertson, the radiation pression, the solar winds, that 

are some important effects when we study the dust. We consider a great number 

of particles, of the order of 10 5 ( in the previous models, this number was of the 

order of a hundred of particles, [1], [2]). We take into account the self - gravitation -

resolution of Poisson equation by the method of a mean gravitational field ( particle-

mesh ) - and we treat partially elastic collisions and gravitational encounters by a 

Monte Carlo method. Concerning the encounters, we improve the model of Petit, 

Hénon [3], [4], [5], [6], because they kept only the semi-major axis of each orbit 

as parameter in their simulation and we are also interested in the effects on the 

eccentricity. 

2. Self - gravitation 

Concerning the self-gravitation, we apply the method of particle-mesh, initially 

developped to study the dynamics of galaxies. 

The Poisson equation 

V V = 4TTG/> (1) 

109 

S. Ferraz-Mello (ed.), Chaos, Resonance and Collective Dynamical Phenomena in the Solar System, 109-114. 
© 19921AU. Printed in the Netherlands. 

https://doi.org/10.1017/S0074180900091002 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900091002


1 1 0 

( G : constant of gravitation ) 

is solved by an expansion of density ρ and potential ψ in spherical harmonics 

that are, in particular, the proper vectors of Poisson operator. 

p(rA4>) = Σ Σ P n m ( c o s £ ) (Anm(r) cos(m<j>) + Bnm(r)sin{m<f>)) (2) 

ψ(τ,θ,φ) = ΣΣ P n m ( c o s ^ ) (C n m ( r )cos(m</>) + Dnm(r)sin(m<f>)) (3) 

[ The P™ 's are associated Legendre functions of degree η and order m , [7]. ] 

After the determination of the coefficients A , 5 , C , D, we are able to evaluate 

the acceleration. 

In order to solve this problem numerically we consider a spherical mesh which 

has, in particular, the advantage of allowing arbitrary spacings in the radial direc-

tion and so a better adaptation to the density distribution. 

W e assume that in each cell (i,j,k) the density is constant. 

The expansions in Legendre functions are taken up to degree η = 32. 

In the φ - direction, 4n cells oversample the expansion and in the θ - direction, 

we consider 2n cells. 

After knowing the value of the acceleration at all mesh points, we know it, in 

particular, at the four coins of each cell and so, by a linear interpolation, we are 

able to determine the acceleration for each particle in each cell. 

The time integration of the equation of motion is done with a leap-frog scheme. 

But we have to adapt this formalism, which was developped for 3 - dimensional 

systems, [8], to planetary disks, which are essentially 2 - dimensional systems. So 

we consider 

oo η 

n = 0 m=0 

oo η 

n = 0 m = 0 

l Ρ(τ,θ,φ) 

o(r,4>) 
Ii» ' if θ e J - [• ι - δβ, ^ + δθ] (δθ -* 0) 

ο, if θ £ J 

where σ{τ, φ) is the surface density. 

We treat the density as constant over the domain of each cell. 
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The function Anm is determined from the density distribution [9]: 

Anm(i)se=C / f + % s i n * P ™ ( c o s * ) £ Γ'αθ ffi*> 
n m K h e y f _ M bJ** A ^ / | _ + / ; d e s i n ö / ; ; + l r 2 d r 

where 

c ^ (2n + l ) e m ( n - m ) ! 

4π (η-h m ) ! 

with 60 = 1, e m = 2 (m = 1,2, — 

Now 

Anm{i) = \im Αητη(ί)δθ 

Off—y[) 

[ Bnm(i) is found by replacing cos(m</>) by sin(m</>). ] 

A a) - c r»(o) 2 s i n ( ^ ) Y M { i ' k )
 c o s f m ( ^ + 

k=l J r t 

If we put 

V 7 n m = C P - ( 0 ) l s i „ ( ^ ) 

we have 

A n r n W = Wnm £ > ( * , * ) C 0 8 [ m ( ^ + ^ l ) ] 

Jb=l 2 

where Â n m ( i ) are the coefficients for the mass. 

Similarly, and if we note 

Cnm(r) = C i > n | m ( r ) + C 2 , n i m ( r ) 

we obtain 
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4TIG ^ />r,+1 

[ u „ m is found by replacing Anm by Bnm. ] 

At the mesh corner (r,-, <£jt ) the potential becomes 

+ 2 <i s (11) 

1=0 

(12) 

3 2 η 

V>('\ ^) = Σ Σ ^ ( 0 ) [ σ " . « . ( 0 coe(m̂ ) + A,,ro(i) ein(mfo)] (13) 
n = 0 m = 0 

and the components of the acceleration are then 

3 2 η 

α, (i.Jb) = - J ] X ] P n

m ( 0 ) [ K , m ( O c o s ( m ^ ) + F n , m ( i ) s i n ( m ^ ) ] (14) 
n = 0 m = 0 

3 2 η 

= -Σ J ] m P n

m ( 0 ) [ i / n , m ( i ) c o s ( m ^ ) - G n , m ( i ) s i n ( m ^ ) ] (15) 
n = 0 m = 0 

where 

J5U(i) = _ ( n + l ) ^ ^ + n ^ ^ (16) 

Gnm(i) = ^ 1 (17) 

[ Fnm and # n m are found by replacing Cnm by D n m . ] 

The 3 - dimensional formalism to solve the Poisson equation with spherical 

harmonics is so adapted to the problem of a very thin disk. 

Now it may happen that when we make the system evolve in time, there is a 

collision between two particles in the same cell. So the next problem to be discussed 

is how to treat the collisions. 

3. Collisions 

The previous method cannot account for close encounters, i.e. gravitational inter-

actions when the particles are close together and physical inelastic collisions (we 

consider collisions that do not lead to acretion or fragmentation). 

2 - 1 
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W e consider binary encounters and we make the assumption that we can apply 

an impulse approximation. 

There is an encounter when one particle enters the sphere of influence of the 

other. The "sphere of influence" is defined such that inside it the gravitational 

force between the two particles is greater or equal to the differential attraction of 

the planet. 

Since we have a dominant central mass, Saturn, we can apply Hill's problem. 

So we consider the relative motion of the particles in a frame that rotates with 

the velocity of one of the particles. In this reference system, the motion of the other 

particle is an epicyclic one. We consider the following parameters ( Hill parame-

ters ) : 

ft : impact parameter 

- it is determined by the two semi - major axis of the two particles 

k : reduced eccentricity 

- it is determined by the two eccentricities of the two particles 

φ : phase 

And we replace the rigourous treatment of the encounters - which is too much 

time consuming - by a Monte Carlo method. T o do this, we need to know the 

distribution function of the effect of the encounters, when averaging over the phase. 

It is determined by a separated detailed study. We know the parameters ft and 

k before the encounter and this function will give us immediatly these parameters 

after the encounter. The phase φ gives us the exact configuration of the particles 

after the encounter. We take it as a parameter and we assume that it is uniformly 

distributed. It is selected at random. 

Many numerical experiments are needed to derive the analytical function or sev-

eral functions for different regions in the ft, k space. From our previous calculations 

[10], which we are actually refining, we need five distribution functions. 

4. Conclusion 

Since we have 10 5 particles we need a supercomputer. We treat our problem in a 

connection machine. 

The effects we want to simulate are essentially the following ones: 

- the ring spreadening due to collisions among particles 

- the ring confinement due to shepherding satellites 

- the sharp edges 

and finally 

- some finer structures by the inclusion of large boddies imbedded in the ring. 

https://doi.org/10.1017/S0074180900091002 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900091002


1 1 4 

References 

1. Sicardy, Β. (1991) 'Numerical experiment of perturbed collisional disks', J. Comp. Phys. (to be 
published). 

2. Lukkari, J. and Salo, H. (1984) 'Numerical simulations of collisions in self-gravitating systems', 
Moon and Planets 31, 1- . 

3. Hénon, M. and Petit, J.-M. (1986) 'Series expansions for encounter-type solutions of Hill's 
problem', Cel. Mechanics 38, 67-100. 

4. Petit, J.-M. and Hénon, M. (1986) 'Satellite encounters', Icarus 66, 536-555. 
5. Petit, J.-M. and Hénon, M. (1987) Ά numerical simulation of planetary rings. I. Binary en-

counters', Astron. Astrophys. 173, 389-404. 
6. Petit, J.-M. and Hénon, M. (1987) Ά numerical simulation of planetary rings. II. Monte Carlo 

model', Astron. Astrophys.XSS,12S-20b. 
7. Gradshteyn, I.S. and Ryzhik, I.M. (1980) 'Table of Integrals, Series and Products', Academic 

Press, New York. 
8. Ά Poisson solver for ellipsoidal stellar systems', private communication. 
9. Morse, P.M. and Feshbach, H. (1985) 'Methods of Theore tical Physics, McGraw-Hill, New 

York. 
10. Pereira Gama, F. and Petit, J.-M. (1990) 'Statistical analysis of the effects of close encounters 

of particles in planetary rings', A.E.Roy (ed.), ' Predictability, Stability and Chaos in N-Body 
Dynamical Systems', Plenum Publishing Corporation (to be published). 

Discussion 

P.GoIdreich - I am not sure that I understand what you mean by phase. However, 
if I do, then I have one comment. In regions perturbed by shepherd satellites or 
waves, collisions do not occur at random phase. This could be taken into account 
by drawing phase from an appropriate distribution 
Pereira Gama - Thank you for your hint. 
H.Kinoshita - Is the dynamical model of the encounter in your theory conservative 
or dissipative? 
Pereira Gama - Dissipative. 
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