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FIXED POINT THEORY OF MONCH TYPE FOR WEAKLY
SEQUENTIALLY UPPER SEMICONTINUOUS MAPS

DONAL O'REGAN

A variety of fixed point results are presented for weakly sequentially upper semicon-
tinuous maps. In addition an existence result is established for differential equations
in Banach spaces relative to the weak topology.

1. INTRODUCTION

New fixed point theorems are presented for weakly sequentially continuous (and more
generally weakly sequentially upper semicontinuous) maps between Banach spaces (or
more generally metrisable locally convex spaces). In particular we extend Emmanuele's
and other fixed point theory in the literature [5, 13, 14]. Also we present an analogue
of Monch's fixed point theorem [11] in the weak topology setting for weakly sequentially
continuous maps. The paper will be divided into three main sections. Section 2 (respec-
tively Section 4) discusses fixed point theory for single valued (respectively multivalued)
maps whereas in Section 3 we use the theory developed in Section 2 to establish the
existence of weak solutions to differential equations.

2. SINGLE VALUED MAPS

We shall establish two new fixed point results in this section. However before we do
so we present a well known result from the literature which will be used throughout this
section (for completness we include its proof).

THEOREM 2 . 1 . Let E be a metrisable locally convex linear topological space with
Q a weakly compact subset of E. Suppose F : Q -¥ E is weakly sequentially continuous.
Then F : Q —> E is weakly continuous.

PROOF: Let A be a weakly closed subset of E. We first show F~1(A) is weakly
sequentially closed in Q. To see this let yn € F~1(A) and yn -»• y (here -1- denotes
weak convergence). Then F(yn) —* F(y). Also F(yn) € A and A weakly closed implies
F(y) € A, that is, y € F~l(A). Thus F~!(>1) is weakly sequentially closed. Now
since Q is weakly compact we have F~1{A)W weakly compact. Let x € F~l(A)w. The
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Eberlein-Smulian Theorem [4, p.549] guarantees that there is a sequence xn 6 F~1(A)

with xn -»• x. Since F~l(A) is weakly sequentially closed we have x € F~1(A), that is,
F~l(A)w = F~l(A). Thus F~l(A) is weakly closed. D

Our first result is the analogue of Monch's fixed point theorem in the weak topology
setting.

THEOREM 2 . 2 . Let E be a Banach space (or more generally a quasicomplete
metrisable locally convex linear topological space), Q a closed, convex subset of E and
x0 6 Q. Suppose there is a weakly sequentially continuous map F : Q ->• Q and assume
the following properties hold:

j C C Q is countable and C™ C co({x0} U F ( ( > ) )

1 implies Cw is weakly compact,

and

J for any relatively weakly compact subset A of E there
^ | exists a countable set B of E with S"7 = A1".

Then F has a fixed point in Q.

REMARK 2.2. If E is a Banach space and E* (the dual of E) is separable then (2.2) is

true. To see this recall if if is a weakly compact subset of E then K with the relative

weak topology is metrisable. This together with the fact that compact metric spaces are

separable yields (2.2).

P R O O F : Let

Do = {x0} and Dn = co[{x0} U F(£ n _ i ) ) for n = 1,2,... .

We claim Dn is relatively weakly compact for n = 0,1, Certainly it is true if n = 0.
Now suppose Dk is relatively weakly compact for some k € {1,2, . . .} . Notice from
Theorem 2.1 that

F : D% -* E is weakly continuous,

and as a result
F\Df\ is weakly compact.

The Krein-Smulian Theorem [3, p.434]; [6, p.82] guarantees that Dk+\ is relatively weakly
compact.

From (2.2) there exists a sequence of countable sets {Cn}o° with C% = D% for
n = 0 , 1 , . . . . Let

D = 0 Dn and C - \J Cn.
n=0 n=0
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Note that D is convex, since Z?n_i C Dn for n = 1,2,. . . . It is immediate since (Dn) is
increasing that

D={jDn=\J co({x0} U F(Dn_0) = co({x0} U F(D))
0 ln=0 n=l

and so [15, p.66] guarantees that

(2.3) 5^(= tf) - co({x0} U

Also since
oo oo oo u

l)DnC[jD»C\jDn
n=0 n=0 n=0

we have

(2.4) Q ° n = 0 Dn = DW and U D% =UCn =\JCn = C
n=0 n=0 n=0 n=0 n=0

Now (2.3) and (2.4) imply

C* = D* = co(F{D) U {X0}) C co(F(S^) U {SO}) = S ( F ( C * ) U {

This together with (2.1) guarantees that Cw is weakly compact. Hence Dw is weakly
compact. From Theorem 2.1 we have that

(2.5) F : Dw —tEis weakly continuous.

Also (2.3) implies F(D) C S» and so

(2.6) F(D)W C

Now (2.5) and (2.6) (note the weak closure of F(D) (respectively D) in 15™ equals the
weak closure of F(D) (respectively D) in E) gives

C F{D)W C D*.

We may apply the Schauder-Tychonoff Theorem (consider E with the weak topology
and note F : Dw —> Dw is continuous with Dw compact) to deduce that F has a fixed
point in 2> \ D

We now present a fixed point result when (2.2) is not assumed. As one would expect
(2.1) needs to be adjusted also.

THEOREM 2 . 3 . Let E be a Banach space (or more generally a metrisable locally
convex linear topological space), Q a closed, convex subset of E and XQ € Q- Suppose
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there is a weakly sequentially continuous map F : Q —> Q with the following property
holding:

j AC Q and A

1 implies Aw is' '—'-'-- "'" :- weakly compact.

Then F has a fixed point in Q.

PROOF: Let

Do = {x0}, Dn = co({x0} u F{Dn-t)) fbrn = 1,2,... , and D = Q Dn.
n=0

As in Theorem 2.2 we have

Now (2.7) implies Dw is weakly compact. Note also that F(D) C Dw and so F{D)W C
Dw. In addition Theorem 2.1 guarantees that F : Dw —> E is weakly continuous, so

C F(D)W C 2 F .

Apply the Schauder-Tychonoff Theorem to deduce the result. D

3. APPLICATION

We begin with a discussion of the operator equation

(3.1) x{t) = Fx(t) on [0,T].

Solutions to (3.1) will be sought in C([0,T],£;).

THEOREM 3 . 1 . Let E be a Banach space with Q a nonempty, bounded, closed,
convex, equicontinuous subset ofC\[0,T},EY Suppose F : Q -» Q is wk-sequentially
continuous (that is, if for any sequence (xn) in Q with xn(t) -> x(t) in (E,w) for each
t € [0,T], then Fxn(t) -+ Fx(t) in (E,w) for each t € [0,T]) and assume (2.7) holds.
Then (3.1) has a solution in Q.

P R O O F : The argument in [12, p.103] guarantees that F : Q -t Q is weakly sequen-
tially continuous so the result follows from Theorem 2.3. D

We next gather together some facts that will be needed in this section. Let ilE be
the bounded subsets of a Banach space E and let Kw be the family of all weakly compact
subsets of E. Also let BE be the closed unit ball of E. The De Blasi measure of weak
noncompactness is the map 0 : QE —* [0, co) defined by

0(X) = inf {t > 0 : 3Y € Kw with X C Y + tBE} : here X € fiE.
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We now state the following well known result [10].

THEOREM 3 . 2 . Let H C C([0, T], E) be bounded and equicontinuous. Then

P(H)= sup /?(#(<)) = P(H[O,T\)

and the function t K+ fi\H(t)j is continuous; here

H(t) = {(j>(t) : <£ G # } and H[0,T] = [{ }
te[o,T)

We now discuss a special case of (3.1), namely

(3.2) y(t) = x0 + J* /(«, y{s))ds for t 6 [0, T\;

here xo € E and E = (E, |.|J is a real Banach space. Assume that the following conditions
hold:

{ for each t € [0,T], ft = f{t,.) is weakly sequentially continuous
(that is, for each t e [0, T], and for each convergent sequence (xn),
the sequence ft{xn) is weakly convergent),

(3.4) for each continuous y : [0, T] -+ £ , / ( . , y{.)) is Pettis integrable on [0, T],

and

f for any r > 0 there exists hT e L^O,T] with |/(t, y)\ < /ir(t)
| for almost all t € [0, T] and all y € £ with \y\ ̂  r.

Define the operator F by

(3.6) Fx{t) = x0 + J f (s, x(s)) ds.

A standard argument [12, p.103] guarantees that

We say w : [0, oo) -^ [0, oo) is a Kamke function if the unique solution to the integral
inequality

u(*Kjf'u;(ii(T))dT, t€[0,T]

which satisfies u(0) = 0 is u = 0.
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THEOREM 3 . 3 . Let E be a Banach space with Q a nonempty, bounded, closed,
convex, equicontinuous subset ofC[\0,T],EY Suppose (3.3), (3.4) and (3.5) hold. Also
assume

(3.7) p(f([O,T] x X)) ^ w(p(X)) for all bounded subsets X of E

is satisfied; here w is a Kamke function. Let F be as defined in (3.6) and assume
F :Q -+Q. Then (3.2) has a solution in Q.

PROOF: We shall apply Theorem 3.1. First we show F : Q —¥ Q is wfc-sequentially
continuous. Let (xn) be a sequence in Q and let xn(t) -*• x(t) in (E, w) for each t e [0, T].
Fix t € (0,T). Since ft is weakly sequentially continuous, the Lebesgue dominated
convergence theorem for the Pettis integral [7, Corollary 4] implies for each cf> 6 E* that

<j>(Fxn(t))^(f>(Fx(t)).

We can do this for each t € [0, T] and so F : Q -t Q is wfc-sequentially continuous. It
remains to show (2.7). Let x* 6 Q and C - co[{x*} U F(C)) for some C C Q. We must
show C is relatively weakly compact. Notice from Theorem 3.2 that the function

v : t —> p(C(t)\ is continuous on [0,T\.

For fixed t € (0, T] divide [0, t] into m parts: 0 = t0 < t\ < ... < tm = t, where U — it/m
for i = 0 ,1 , . . . ,m. Let

C[t»_i, t{\ = \u{s) : u 6 C and U-i $J s

There exists (by Theorem 3.2 and the continuity of v) Sj e [tt-i.^t] with

(3.8) p(C[ti-i, U]) = sup{/?(C(s)) : U-i ^ s ^ u] = v(si).

Also by the Pettis integral mean value theorem we obtain for u 6 C,
m—1 rti+i m—1

Fu(t) = x0 + E / f(s,u(s)Jds £ io + 53 I
i=0 •'ti i=0

and so
m-1

FC(i) C x0 + E (ti+i -
i=0

Now
m-1

t=0
m-1

i=0
m-1

Y, {ti+i - ti)w(p{c[u,u+i]))
i=0 ^ 'i=0
m-1

«=0
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using (3.7) and (3.8). Let m —> oo and we have

m—l -i

Y, (U+i -tjwlyisi)) -¥ / w(y(s))ds

so

(3.9) P(FC(t)) ^ f'wlyistyds for t G [0,T].

Since C = co({x*} U F(C)) we have for t € [0, T] that

and this together with (3.9) yields

Now since w is a Kamke function we get v(t) = 0 for each t e [0,T], that is, fl(C{t)\ - 0
for each t € [0, T]. This together with Theorem 3.2 implies C is relatively weakly compact.
Thus (2.7) holds. Our result follows from Theorem 3.1. D

We now use Theorem 3.3 to establish a general existence result for (3.6).

THEOREM 3 . 4 . Let E be a Banach space and suppose (3.3), (3.4) and (3.7) hold.

In addition assume

j there exists a € Ll[0, T] and tp : [0, oo) —> (0, oo) a nondecreasing continuous

1 function with | / (s , u)| ^ a(s)ip(\u\) for almost all s € [0, T] and allue E,

and

(3.11)

are satisfied.

PROOF:

Then

Let

(3.2) has

I ot(s)ds <
Jo

a solution in C(\

f°° dx

J\zo\ il>{x)

0,T),E).

Q = \y € C([0,T],E) : \y(t)\ ^ b(t) for t € [0,T] and

\y(t) - y{s)\ ^ Kt) - b(s) for t,se [o,

where

Notice Q is a closed, convex, bounded, equicontinuous subset of C([0, T], E\ Let F be
as denned in (3.6). A standard argument [12, p.104] guarantees that F : Q -¥ Q. The
result follows from Theorem 3.3. D
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4. MULTIVALUED MAPS

We begin with the analogue of Theorem 2.1 in the multivalued setting.

THEOREM 4 . 1 . Let E be a metrisable locally convex linear topological space with
Q a weakly compact subset of E. Suppose F : Q -¥ C{E) (here C(E) denotes the family
of nonempty, closed, convex subsets of E) is a weakly sequentially upper semicontinuous
map. Then F : Q -» C{E) is weakly upper semicontinuous.

REMARK 4.1. Note F : Q -> C(E) is weakly sequentially upper semicontinuous if for
any weakly closed set A of E, F~l(A) is weakly sequentially closed.

P R O O F : Let A be a weakly closed subset of E. Then since F : Q -»• C(E) is weakly
sequentially upper semicontinuous we have that F~1(A) is weakly sequentially closed.
Now since Q is weakly compact we have F~l(A)w weakly compact. Let x G F~l(A)w. The
Eberlein-Smulian Theorem [4, p.549] guarantees that there is a sequence xn G F~l(A)
with xn —* x. Now x G F~l(A) since F~l(A) is weakly sequentially closed. Thus
F~l(A)w = F~l(A) so F~l{A) is weakly closed. D

The following well known result of Himmelberg [8, p.206] will be used in this section
(alternatively we could use Ky Fan's fixed point theorem).

THEOREM 4 . 2 . Let U be a nonempty, convex subset of a Hausdorff locally convex
linear topological space E. Let F : U —> U be an upper semicontinuous multifunction
such that F(x) is closed and convex for all x G U and F(U) is contained in a compact
subset Q ofU. Then F has a fixed point.

We begin by presenting the analogue of Theorem 2.3 for multivalued maps.

THEOREM 4 . 3 . Let E be a Banach space (or more generally a metrisable locally
convex linear topological space), Q a closed, convex subset of E and x0 G Q. Suppose
F : Q —¥ C(Q) is a weakly sequentially closed map (that is, has weakly sequentially
closed graph) with (2.7) holding. In addition assume

(4.1) F(Awj C F(A)W for every relatively weakly compact subset A ofQ.

Then F has a fixed point in Q.

P R O O F : Let

Do = {x0}, Dn = co({x0} U F(DB_,)) for n = 1,2,..., and D - ( j Dn.
n=0

As in Theorem 2.2 we have

(4.2) D = co(F{D) U { X 0 } )

and

(4.3) D = D* = co(F{D) U { X 0 } ) .
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Now (2.7) and (4.3) imply tha t ~D™ is weakly compact. Also (4.3) implies F(D) C I?™,

and so F(D)W C D*. This together with (4.1) yields F^JP) C W>. Thus

F : Dw -¥ C(DW} with F a weakly sequentially closed map.

The result follows from [14, Theorem 2.2] (the argument in [14] shows F is weakly upper

semicontinuous so F has a fixed point by Theorem 4.2). D

We now discuss the analogue of Theorem 2.2. Two results will be presented.

THEOREM 4 . 4 . Let E be a Banach space (or more generally a quasicomplete

metrisable locally convex linear topological space), Q a closed, convex subset of E and

XQ S Q. Suppose there is a weakly sequentially upper semicontinuous map F : Q —¥ C(Q)

with (2.1) and (2.2) holding. In addition assume (4.1) is satisfied. T i e n F has a fixed

point in Q.

P R O O F : Let Dn be as in Theorem 2.2. Suppose Dk is relatively weakly compact for

some k € { 1 , 2 , . . . } . Notice from Theorem 4.1 that

F : D™ —¥ C(E) is weakly upper semicontinuous,

and so [1, p.464] guarantees that

\ is weakly compact.

The Krein-Smulian Theorem [6, p.82] guarantees that Dk+i is relatively weakly compact.

Let Cn, D, C be as in Theorem 2.2 and note (as in Theorem 2.2) that

(4.4) D = co(F(D) U {X 0 } )

and

(4.5) £> = £& = co(F{D) U {XQ}) and 2 F = C57.

Consequently

C^ = W = w{F{D) U {X0}) C co{F(p^) U {X0}) = CO[F{C^) U {X0}).

Now (2.1) guarantees that Cw (and so Dw) is weakly compact. Also notice from (4.4)

that

F: D-> C{D) with F(D) C W and S » is weakly compact.

Theorem 4.1 now implies that F : D —t C(D) is weakly upper semicontinuous. In

addition (4.1) guarantees that F(25") C F{D)W C 2 F . Now apply Theorem 4.2. D

In our next result we replace (2.1) with a less restrictive condition.

THEOREM 4 . 5 . Let E be a Banach space (or more generally a quasicomplete

metrisable locally convex linear topological space), Q a closed, convex subset of E and
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x0 G Q. Suppose F : Q -¥ C(Q) is a weakly sequentially upper semicontinuous map with
(2.2) holding. In addition suppose

j CCQ is countable and C™ = co({x0} U F(C))

1 implies C is relatively weakly compact,

and

(4.7) F(A?>) C F(A)W for any subset A ofQ

are satisfied. Then F has a fixed point.

REMARK 4.2. Notice that co({x0} U F(Cf) could be replaced by co({x0} U F ( C " ) ) in
(4.6).

P R O O F : Let Dn be as in Theorem 2.2. As in Theorem 4.4 we have that Dn is
relatively weakly compact for each n — 0,1, — Let Cn, D, C be as in Theorem 2.2 and
note

(4.8) D = DW = co{F{D) U { X 0 } ) and Dw = Cw.

In addition (4.7) implies

F{D) U {x0} C F(Z5™") U {X0} C F(Z?) U {XO}"" C CO[F{D) U { X 0 } )

and so

(4.9) co(F{D) U { X 0 } ) = co(F(Z557) U { X 0 } ) .

Then (4.8) and (4.9) imply

C^7 = I)"7 = co(F(D)u{x0}) = co(F(Z5«;r)u{xo}) = co(F(C«')u{a;o}) = C O ( F ( C ) U { Z 0 } ) .

Now (4.6) guarantees that C™ (and so 15™) is weakly compact. Also F^D"7) C U57 and

Theorem 4.1 guarantees that F : £>™ —> C(DW) is weakly upper semicontinuous. Now

the result of the theorem follows from Theorem 4.2. D

REFERENCES

[1] CD. Aliprantis and K.C. Border, Infinite dimensional analysis (Springer-Verlag, Berlin,
Heidelberg, New York, 1985).

[2] M. Cichon, 'On bounded weak solutions of a nonlinear differential equation in a Banach
space', Fund. Approx. Comment. Math. 21 (1992), 27-35.

[3] N. Dunford and J.T. Schwartz, Linear operators; Part I: General theory, A Wiley Inter-
science Publication (John Wiley and Sons Inc., New York, London, 1958).

https://doi.org/10.1017/S0004972700022450 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022450


[11] Upper semicontinuous maps 449

[4] R.E. Edwards, Functional analysis, theory and applications (Holt, Rinehart and Winston,
New York, 1965).

[5] G. Emmanuele, 'Measures of weak noncompactness and fixed point theorems', Bull. Math.
Soc. Sci. Math. R.S. Roumanie 25 (1981), 353-358.

[6] K. Floret, Weakly compact sets (Springer-Verlag, Berlin, Heidelberg, New York, 1980).
[7] R.F. Geitz, 'Pettis integration', Proc. Amer. Math. Soc. 82 (1981), 81-86.
[8] C.J. Himmelberg, 'Fixed points of compact multifunctions', J. Math. Anal. Appl. 38

(1972), 205-207.
[9] I. Kubiaczyk and S. Szufla, 'Knaeser's theorem for weak solutions of ordinary differential

equations in Banach spaces', Publ. Inst. Math. (Beograd) 32 (1982), 99-103.
[10] A.R. Mitchell and C.K.L. Smith, 'An existence theorem for weak solutions of differential

equations in Banach spaces', in Nonlinear equations in abstract spaces, (V. Lakshmikan-
tham, Editor) (Academic Press, New York, 1978), pp. 387-404.

[11] H. Monch, Boundary value problems for nonlinear ordinary differential equations of sec-
ond order in Banach spaces, Nonlinear Anal. 4 (1980), 985-999.

[12] D. O'Regan, 'Weak solutions of ordinary differential equations in Banach spaces', Appl.
Math. Lett. 12 (1999), 101-105.

[13] D. O'Regan, 'Fixed point theory for weakly contractive maps with applications to oper-
ator equations in Banach spaces relative to the weak topology', Z. Anal. Anwendungen
17 (1998), 281-296.

[14] D. O'Regan, 'Fixed point theorems for weakly sequentially closed maps', Arch. Math.
(Brno) (to appear).

[15] W. Rudin, Functional analysis (McGraw Hill, New York, 1973).

Department Of Mathematics
National University of Ireland
Gal way
Ireland

https://doi.org/10.1017/S0004972700022450 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022450

