
On The Uniformisation of Algebraic Curves of Genus 3.

By M. MURSI.

(Received 3rd January 1930. Bead 1th February 1930.)

§1. Introduction.
An algebraic equation

/(*, a ) = 0 (1)

determines, in general, s as a many valued function of z. If s and z
can be expressed as one valued functions of a third variable t, then t
is called the uniformising variable. As Poincare showed, s and z are
automorphic functions of t.

For the hyperelliptic case where equation (1) is of the form

s* = (z - d) (z - e2) ( z -e 2 ) l + 2 ) ,

where w > 1, the uniformising variable is the quotient of two
solutions of1

^ I f 2"+2 1
dz2 + 16 t Z'dz2 + 16 t PZ'1 (z- er)

2

2) z2"

(z-ei)(z-e2)....(z-e = 0
2n + i)

2n + 2
where ^i = 2 e,.

r = l

-and the c,'s are constants whose values have never yet been found
but which are theoretically to be determined by the condition that
the group of equation (2) is to be fuchsian.

Dr J. M. Whittaker2 has suggested that the true equation
(satisfying the condition that its group is fuchsian) is

dz* + 1 6 L \ ^ ( 2 ) ^ ~ 2n+ 1 <f>(z)
where

4> (2) = (^ - Cj) (z - e2) (2 - e2n+2)-

The group of this equation for the case of the functions denned by
•s* = z5 + 1, which are of genus two, was actually calculated by
Prof. Whittaker3 and proved to be a fuchsian group.

1 Cf. E. T. Whittaker, Phil. Trans., Royal Soc. (A) 192 (1899), 1.
2 Journal London Math. Soc. 5 (1930).
3 Journal London Math. Soc. 4 (1929), 274.
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102 M. MTJRSI

The object of the present note is to show that equation (3) also
gives a fuchsian group for a case in which n = 3 by calculating the
generating transformations of the group. The algebraic form
taken is

S2 = 1 + 27

which is of genus 3. The process in its essentials runs parallel with
the case worked out by Prof. Whittaker for the form s2 = 1 + 25.

§ 2. The hypergeometric form of equation (3).

Equation (3) has the same form for the curve s2 = l+2 2 n + 1 = <£ (z)
as for the curve s2 = 1 + z2n+2, which has the same number of branch
points.

Changing the dependent variable by the relation

(since we are concerned only with the ratio of two solutions we can
multiply y by any convenient function of z), equation (3) takes the
form

, rf2 u \ du 1 / 3 2n + 2\

Now let us change the independent variable from z to s where

52 = 1 +
we then obtain

If again we change from s to z, where s = 2x — 1, we get

or, finally,
2n ,_ . J M n (n — 1)

( 2 a ; ~ 1 ) +

which is readily seen to be the differential equation of the ordinary
hypergeometric function

(n — 1 n 2n \
•t -V2n + 1' 2n + 1 ' 2n + 1 ' ' '

§ 3. Let us consider in detail the case n = 3, the algebraic form
taken being s2 = 1 + z1.
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The hypergeometric equation (4) for this particular case takes
the form

4 9 z ( z - 1)? " + 42(2a;- 1) ~ + 6w = 0 (5)
a;r2 a a;

If we put a = 1/7 (since multiples of 1/7 will appear often in the
following calculations), four solutions of equations (5) will be

P = F {2a, 3a; 6a; x)
Q = x" F(3a, 4a; 8a; 3)

which are valid at x = 0, and

i? = z-2* p(2a, 3a; 6a; z-1)

£ = x~3a F(3a, 4a; 8a; a;-1)

which are valid at x = 00 .
These solutions are connected by the relations :

where in either case the upper or lower sign is taken according as the
imaginary part of x is positive or negative.

Take t = Q; P for the uniformising variable and let t denote
QIP at i 00 and t' denote Q IP at — i 00 ; then

~-^—:—-—' exp (3n-oi) • -̂  4 cos 2T7« COS 7ra exp (47rai)
, 1 ( 5(1 ) . 1 ( 4:(t )

4 cos 2r,a cos 77a exp (277fli) . — + —|g°j ' p ^ exp (37rtit)

and
F (a) . r (8a) . o ., R ,
—^/ — exp (— i-nm) . —- — 4 cos 2?7a . cos 77a exp (

1 = ~» ^ l ] ^ ^ f (6a). T ( - a ) I
4 cos 27ra cos 77a exp (— 2-nai)— + ^7ir-r--pr7S-r e x P (~ 37TfM)

If we eliminate R/S from these equations we get

[4 cos ira cos 2na exp (— 2nai) ~~ 2 cos Tra] t -|- ——-—r--̂ - 2i sin
1 (OOJ 1 4C/

f

i 1 J \ ' 2isin7ra J + [4cos7ra cos 27raexp (27rai) — 2 cos 77a]2isin7ra J + [

(6')
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or
, _ 2 cos -n-aexp ( —4wai). ^ — 8 cos2 77a cos 2-na . 2i sin -na .

1 ~ 2i sin va t1 + 2 cos 77a exp iirai
where

r ( 6 a ) . r ( - a )
1 r(2a).r(3o) '

This is the transformation which the quotient of two solutions of
equation (5) undergoes when x passes from too to — i <x> making a
circuit round the singularity x = 1.

When x makes a circuit round the origin in the x-plane, i.e. s
makes a circuit round the singularity — 1 in the s-plane, then the
quotient of two solutions of the equation undergoes the trans-
formation

t^ — exp (2,Trai). tx.

Before proceeding any further let us put equation (6) in a more
convenient form by taking

tt = i c o t w a e x p {Sirai) t2;

we then have the two transformations

exp (— rrai) . t2— 8 sin27r<z cos

and
<,' = exp

or again, taking

L = (8 sin27Ta . cos 2-na)^ t3,

we get the transformations

, _ exp (— irai) (8 sin2 ira cos 2Tra)~i t3 — 1 ._
exp (— Trai) t3 — (8 sin2 na cos 2-na) ^2 ^

and t'3= exp {2-rrai) .t3. (8)

If we call these transformations L and M respectively, it can easily
be shown that LM^1 is the transformation which the quotient of two
solutions of (5) undergoes when 2 makes two successive circuits: (i)
from infinity up to the neighbourhood of the singularity zx= exp (vcii)
round zu and back to infinity; (ii) from infinity to the neighbour-
hood of the singularity z2 = exp (S-nai), round it and to infinity again.
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This is better seen in Fig. 1. If we call E1 and E2 the transforma-
tions which the quotient undergoes when describing the two contours
in the figure we have ElE2 = LM~X, so that

„ _ . exp
JJJ j Hi 2 (t) =

3-rrai). [8 sin277« cos t — 1

:
exp (— 3irai) t — (8 sm27ra cos

X-

Fig. 1

§ 4. Consider now the seven transformations given by

s . = at - exp (to + l)irai/2
r {} ~ exp {- (4M + 1) nai/2} t — a '

where n = 0, 1, 2, . . . . 6 and r = 1 , 2 , . . . .7 respectively. The value
of a is given by

a = (2 C0S7ra — 1)~*.

It is easily verified that this set of transformations satisfies the
following conditions.

(i) They are elliptic transformations of period 2, i.e. they are self-
inverse transformations.

(ii) The same is true for the compound transformation S7S6 .. . .St.
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(iii) The unit circle is invariant with respect to each of them and
hence is invariant under any combination of these trans-
formations.

(iv) The fixed points (double points) of the transformations are

p exp (4n + 1) Trail2, n = 0, 1, 2, 6,

and their inverses in the unit circle, where

p = (2 cos7ra — l)-£ (1 — 2 sin \ na).

Now consider

(<)) S S (t\ — t a 2 ~ e x P (~477ai/2)] t + a (exp77«i/2 — exp onai/2)
a [exp (— Trail2) — exp (—57rai/2)] t + a2 —exp 4irai/2 '

Comparing this with the expression for E1E2(t) in §3 we find
(after inserting the value of a in (9)) that

Thus we may take as the set of transformations Ex, E2 . . .., En

the expressions1

Er (t) = ^ i = ^ P i ( f ! L + X) ̂ » / 2 } , n = 0 ,1 ,2 , 6 ,
exp { - {An + 1) Tmi/2} t - a

where a = (2 cos -na — l)~i.

§5. In this section the properties of the "fundamental region" of
the group generated by the transformations Ex E2, . . . ., EXE7 will
be enumerated briefly.

The fundamental region for the group generated by Elt E2,..., E-
is bounded by arcs of circles passing by the double points and cutting
the fixed circle orthogonally. This is the heptagon ABCDEFG of
figure (2). The genus of the group, i.e. the genus of its fundamental
region, is zero, but we shall see that it has sub-groups of genus greater
than zero. Now call this heptagon Eo and transform it by any of the
transformations Ex say; then we get another region Rx abutting on
Eo along the side AB. The combined region AC1D1E1 F1G1B
CDEFGA will be the fundamental region for the group of trans-
formations generated by E1Ei, ElEz, . . . . , E-^ET It has six
congruent pairs of sides of the 1st kind, namely, ACX and BC, Ci-D,
and CD, . . . . and, finally, GtB and GA, which are congruent by the

1 This follows from the uniqueness of the group of the diflerential equation and also
from the symmetry of the positions of the contour in the .t-plane.
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substitutions E2EX, E3EV . . . . E7 Et. All the various vertices are
congruent and form a cycle the sum of whose angles is 2TT. The
genus of this fundamental region is three.

Fig-. 2

Now the interior of the region ABCDEFG is the conformal repre-
sentation in the t plane of the whole 2-plane bounded by cuts drawn
radially from the finite singularities to infinity (which is another
singular point in our case), the sides of the heptagon being the
transforms of these cuts. Now adjoin to this heptagon the
neighbouring one .Rj, and the resulting curvilinear figure will be the
conformal representation on the £-plane of two 2-planes joined
together along one of the branch lines (er, 00 ). In fact it is the
dissected Riemann surface of the curve

The uniformisation of the functions connected with the form
5 2 =l+e 7 is effected by automorphic functions of the group, the
construction of these functions being a matter of straightforward
calculation.
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