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Abstract. In this paper, we deal with the global existence and blow-up of solutions
to a doubly degenerative parabolic system with nonlinear boundary conditions. By
constructing various kinds of sub- and super-solutions and using the basic properties
of M-matrix, we give the necessary and sufficient conditions for global existence of
non-negative solutions, which extend the recent results of Zheng, Song and Jiang (S. N.
Zheng, X. F. Song and Z. X. Jiang, Critical Fujita exponents for degenerate parabolic
equations coupled via nonlinear boundary flux, J. Math. Anal. Appl. 298 (2004), 308–
324), Xiang, Chen and Mu (Z. Y. Xiang, Q. Chen, C. L. Mu, Critical curves for
degenerate parabolic equations coupled via nonlinear boundary flux, Appl. Math.
Comput. 189 (2007), 549–559) and Zhou and Mu (J. Zhou and C. L Mu, On critical
Fujita exponents for degenerate parabolic system coupled via nonlinear boundary flux,
Pro. Edinb. Math. Soc. 51 (2008), 785–805) to more general equations.
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1. Introduction. In this paper, we investigate the existence and non-existence of
global weak solutions to the following doubly degenerate parabolic equation

uit = (|uix|pi
(
umi

i

)
x

)
x (i = 1, 2, . . . , k), x > 0, 0 < t < T, (1.1)

coupled via nonlinear boundary flux,

−|uix|pi
(
umi

i

)
x(0, t) =

k∏
j=1

uqij

j (0, t) (i = 1, 2, . . . , k), 0 < t < T, (1.2)
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with initial data

ui(x, 0) = ui0(x) (i = 1, 2, . . . , k), x > 0, (1.3)

where parameters k ≥ 1, mi ≥ 1, pi > 0, qij > 0 (i = 1, 2, . . . , k) and ui0 (i =
1, 2, . . . , k) are non-negative continuous functions with compact support in R+. Let the
initial data be appropriately smooth functions and satisfy the compatibility condition.

Nonlinear parabolic equation (1.1) comes from the theory of turbulent diffusion
(see [5, 11] and references therein) and appears in population dynamics, chemical
reactions, heat transfer and so on. Equation (1.1) includes both the porous medium
operator (with p = 0) and the gradient-diffusivity p-Laplacian operator (m = 1) as
special cases, which have been the subject of intensive study (see [5, 7, 10, 11, 13, 16,
23–25, 29, 36, 38] and references therein).

As it is well known that degenerate equations do not possess classical solutions;
however, the local in time existence of the weak solution (u1, u2, . . . , uk) to the problems
(1.1)–(1.3), defined in the usual integral way, as well as a comparison principle, can
be easily established by using the standard theory of parabolic equations (see [6, 15,
22, 36). Let T be the maximal existence time of a solution (u1, u2, . . . , uk), which
may be finite or infinite. If T < ∞, then ‖ u1 ‖∞ + ‖ u2 ‖∞ + · · · + ‖ uk ‖∞ becomes
unbounded in finite time and we say that the solution blows up. If T = ∞ we say that
the solution is global.

The problems on blow-up and global existence conditions and blow-up rates to
nonlinear parabolic equations have been intensively studied (see [1, 3–5, 7, 9, 10,
13–15, 18–20, 27, 30, 32, 33–41] and references therein). In particular, the critical
Fujita exponents are very interesting for various nonlinear parabolic equations of
mathematical physics (see [5, 16, 29, 30, 32–36, 38–41] and references therein). The
concept of the critical Fujita exponents was proposed by Fujita in the 1960s (see [9])
during discussion of the heat conduction equation with a nonlinear source.

Galaktionov and Levine in [10] studied the single equation case,

ut = (um)xx, x > 0, 0 < t < T,

−(um)x(0, t) = up(0, t), 0 < t < T,

u(x, 0) = u0(x), x > 0,

(1.4)

and the heat conduction equation with gradient diffusion

ut = (|ux|m−1ux
)

x, x > 0, 0 < t < T,

−|ux|m−1ux(0, t) = up(0, t), 0 < t < T,

u(x, 0) = u0(x), x > 0,

(1.5)

with m ≥ 1, p > 0 and u0 has compact support. They proved that for problem (1.4) the
critical global exponent is p0 = 1

2 (m + 1) and the critical Fujita exponent is pc = m + 1,
while for problem (1.5) the critical global exponent is p0 = 2m

m+1 and the critical Fujita
exponent is pc = 2m. The critical global existence exponent and the critical Fujita
exponent of (1.5) were also considered in [10] for a special case m = 1.

Quiros and Rossi in [27] considered degenerate equations

ut = (um)xx, vt = (vn)xx x > 0, 0 < t < T,

−(um)x(0, t) = vp(0, t), −(vn)x(0, t) = uq(0, t) 0 < t < T,

u(x, 0) = u0(x), v(x, 0) = v0(x) x > 0

(1.6)
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with notation

α1 = 2p + n + 1
(m + 1)(n + 1) − 4pq

, α2 = 2q + m + 1
(m + 1)(n + 1) − 4pq

,

β1 = p(m − 1 − 2q) + (n + 1)m
(m + 1)(n + 1) − 4pq

, β2 = q(n − 1 − 2p) + (m + 1)n
(m + 1)(n + 1) − 4pq

.

They proved that solutions of (1.6) are global if pq ≤ 1
4 (m + 1)(n + 1), and may blow up

in finite time if pq > 1
4 (m + 1)(n + 1). In the case of pq > 1

4 (m + 1)(n + 1) if α1 + β1 ≤
0, or α2 + β2 ≤ 0, then every non-negative and non-trivial solutions of (1.6) blow up in
finite time: If α1 + β1 > 0 and α2 + β2 > 0, then there exist blow-up solutions for large
initial and global solutions for small initial data. The critical Fujita exponents to (1.6)
are described by αi + βi = 0, i = 1, 2, while the blow-up rate of the positive solution is
O((T − t)−α1 ) for component u and O((T − t)−α2 ) for v as t → T .

Zheng, Song and Jiang [38] considered the degenerate equations coupled via
nonlinear boundary flux

ut = (um)xx, vt = (vn)xx x > 0, 0 < t < T,

−(um)x(0, t) = uα(0, t)vp(0.t), −(vn)x(0, t) = uq(0, t)vβ(0.t) 0 < t < T,

u(x, 0) = u0(x), v(x, 0) = v0(x) x > 0

(1.7)

with notations

k1 = 2p + n + 1 − 2β

4pq − (n + 1 − 2α)(m + 1 − 2β)
, l1 = 1 − k1(m − 1)

2
, (1.8)

k2 = 2p + m + 1 − 2β

4pq − (n + 1 − 2α)(m + 1 − 2β)
, l2 = 1 − k2(n − 1)

2
. (1.9)

They proved that solutions of (1.7) are global if α < 1
2 (m + 1), β < 1

2 (n + 1) and pq ≤
( 1

2 (m + 1) − α)( 1
2 (n + 1) − β), and may blow up in finite time if α > 1

2 (m + 1) or β >
1
2 (n + 1). In the case of α > 1

2 (m + 1), β > 1
2 (n + 1) and pq > ( 1

2 (m + 1) − α)( 1
2 (n +

1) − β) if l1 < k1, or l2 < k2 or l1 = k1 and l2 = k2, then every non-negative and non-
trivial solutions of (1.7) blow up in finite time: If l1 < k1 and l1 > k1, then there exist
blow-up solutions for large initial and global solutions for small initial data. The
critical Fujita exponents to (1.7) are described by ki = li (i = 1, 2), while the blow-up
rate of the positive solution is O((T − t)−k1 ) for component u and O((T − t)−k2 ) for v

as t → T .
Zhou and Mu in [27] considered the following problem:

ut = (|ux|m−1ux
)

x, vt = (|vx|n−1vx
)

x, x > 0, 0 < t < T,

−|ux|m−1ux(0, t) = uα(0, t)vp(0.t), −|vx|n−1vx(0, t) = uq(0, t)vβ(0.t), 0 < t < T,

u(x, 0) = u0(x), v(x, 0) = v0(x), x > 0,

(1.10)

where m > 1, n > 1, p > 0, q > 0, α ≥ 0, β ≥ 0 and u0(x), v0(x) are continuous, non-
negative and compactly supported in R+. They obtained the critical global existence
curve and the critical Fujita curve; the blow-up rates of the non-global solution were
also obtained.
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Xiang, Chen and Mu [37] considered the following degenerate equations:⎧⎪⎨
⎪⎩

uit = (|uix|mi−1uix
)

x (i = 1, 2, . . . , k), x > 0, 0 < t < T,

−|uix|mi−1uix(0, t) = upi
i+1(0, t) (i = 1, 2, . . . , k), uk+1 := u1, 0 < t < T,

ui(x, 0) = ui0(x) (i = 1, 2, . . . , k), x > 0,

(1.11)

where parameters k ≥ 2, mi > 1, pi > 0, ui0, vi0 (i = 1, 2, . . . , k) are continuous, non-
negative functions. They obtained the critical global existence curve and the critical
Fujita type curve.

In [11], Galaktionov and Levine studied the following single equation:

ut = ∇(|∇u|σ∇um) + up, x ∈ RN, t > 0,

u(x, 0) = u0(x), x ∈ RN,

where σ > 0, m > 1, p > 1 and u0(x) is a bounded positive continuous function.
They showed that the critical exponent is pc = m + σ + σ+2

N .
Recently, Jiang and Zheng [13] studied the following single equation:⎧⎪⎨

⎪⎩
ut = (|ux|β(um)x

)
x, x > 0, 0 < t < T,

−|ux|β(um)x(0, t) = up(0, t), 0 < t < T,

u(x, 0) = u0(x), x > 0,

(1.12)

where m ≥ 1, p > 0, β > 0. They obtained the critical global existence exponent
p0 = 2β+m+1

β+2 and the critical Fujita exponent pc = 2β + m + 1. These results are the
extensions of those of Galaktionov and Levine [10].

In [3], Chen, Mi and Mu studied the following problem:⎧⎪⎪⎨
⎪⎪⎩

ut = (|ux|p1 (um1 )x
)

x, vt = (|vx|p2 (vm2 )x
)

x, x > 0, 0 < t < T,

−|ux|p1 (um1 )x(0, t) = uα1 (0, t)vβ2 (0.t), 0 < t < T,

−|vx|p2 (vm2 )x(0, t) = uα2 (0, t)vβ1 (0.t), 0 < t < T,

u(x, 0) = u0(x), v(x, 0) = v0(x), x > 0,

(1.13)

where parameters mi ≥ 1, pi > 0, αi > 0, βi > 0 (i = 1, 2) and u0, v0 are non-negative
continuous functions with compact support in R+. They obtained the critical global
existence curve and the critical Fujita type curve, but classification of global existence
and non-existence of solutions to system (1.13) is very complicated.

Motivated by the references cited above, the aim of this paper is to give a simple
criteria of the classification of global existence and non-existence of solutions to
systems (1.1)–(1.3) by using a combination of various kinds of self-similar sub- or
super-solutions and the basic properties of the so-called M-matrix for general powers
mi, indices pij and number k ≥ 1, which complicate the interaction among various
components ui. Paradoxically, our proof is more simple than that of [3, 38, 41] in the
sense that we do not need some specific computations of parameters in the construction
of self-similar sub- or super-solutions, even though we are dealing with an abstract
system without specific number k.

To proceed further, we introduce some useful symbols from the matrix theory.
Following [2, 16], A ≥ 0 if each element of the vector or matrix A is non-negative, and
A > O if at least one element is positive, while A 
 0 if each element is positive. Symbols
≤,< and � can be similarly understood. We also need the following important
definitions.
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DEFINITION 1.1. A k × l matrix C is said to be reducible if there exists a permutation
matrix Q such that

QCQT =
(

C1 0

C2 C3

)
,

where C1 and C2 are square matrices and QT is the transpose of Q. Otherwise, C is
said to be irreducible.

Throughout this paper, we let

P =
(

(pi + 2)qij

mi + 2pi + 1

)
(1.14)

be a matrix of order k. Without loss of generality, we assume that matrix P is
irreducible, since if not the case, systems (1.1)–(1.3) can be reduced to two subsystems
with one being not coupled with the order. When det(I − P) �= 0, we denote by
k := (k1, k2, . . . , kk)T the unique solution of the following linear algebraic system:

(I − P)k =
(

− p1 + 1
m1 + 2p1 + 1

,− p2 + 1
m2 + 2p2 + 1

, . . . ,− pk + 1
mk + 2pk + 1

)T

, (1.15)

where I is an identity matrix of order k, and then define

li = 1 − pi − mi

pi + 2
ki + 1

pi + 2
(i = 1, 2, . . . , k). (1.16)

To state our results, we also need some concepts from the theory of M-matrices,
which have important applications, for instance, in the study of the Markov chains, in
iterative methods in numerical computations and in the blow-up analysis of parabolic
systems in bounded domain and source terms (see [2, 17, 21]). In this paper, we show
that M-matrices play a key role on the global existence and non-existence of systems
(1.1)–(1.3).

DEFINITION 1.2. A matrix C is called an M-matrix if C can be expressed in the
form

C = sI − B, s > 0, B ≥ 0 (1.17)

with s ≥ ρ(B), the spectral radius of matrix B.

REMARK 1.1. A matrix C is an M-matrix if and only if all of the principal minors
of C are non-negative (see [2]). In [26, 31], the authors use the signs of principal minors
to describe the global existence and non-existence for a different problem.

Our main results are stated as follows.

THEOREM 1.1. (1) If I − P is an M-matrix, then every non-negative solution of
systems (1.1)–(1.3) is global in time. (2) If I − P is not an M-matrix with ki > 0 for
some i or there exists i such that qii >

pi+2
mi+2pi+1 , then systems (1.1)–(1.3) have a solution

that blows up.

REMARK 1.2. Theorem 1.1 suggests that the global existence or non-existence is
completely characterised by whether the matrix I − P is M-matrix or not, in case that
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the algebraic system (1.13) has a solution k with ki > 0 for some i. The assumption
on k, which holds naturally if one investigates the systems studied in [3, 24, 37, 38,
41], is rather technical. On the other hand, if there exists i such that qii >

pi+2
mi+2pi+1 ,

then I − P is not an M-matrix by Remark 1.1. Therefore, we believe that the critical
characterisation of global existence or non-existence of systems (1.1)–(1.3) should be
given by I − P being M-matrix or not.

Since we are studying parabolic equations posed on an unbounded interval, in
the case that there exist non-global solutions, there should exist another important
critical characterisation, the so-called Fujita type critical curve, which describes when
all solutions are non-global and there exist global solutions. Our next theorem is
related to this question. Note that there are no such results for the problem posed on
a bounded domain (see [8]).

THEOREM 1.2. Assume that I − P is not an M-matrix and that system (1.13) has
unique solution k with ki > 0 for some i. (1) If maxi{li − ki} < 0, then every non-negative,
non-trivial solution of systems (1.1)–(1.3) blows up in finite time. (2) If mini{li − ki} > 0,
then there exists a global non-negative solution to systems (1.1)–(1.3).

REMARK 1.3. Theorem 1.2 is a partial result of the Fujita type. We believe that
the critical Fujita results should be characterised by mini{li − ki} = 0. The restriction
max{li − ki} < 0 in Theorem 1.2(2) is rather technical, it comes from the construction
of the so-called Zel’dovich–Kompaneetz–Barenblatt profile [10, 15, 28].

REMARK 1.4. Unfortunately, we cannot obtain the blow-up rates of the non-global
solution. We expect to answer this question in near future.

The rest of this paper is organised as follows. In Section 2, we give preliminary
properties of M-matrix and the proof of Theorem 1.1. The proof of Theorem 1.2 is
shown in Section 3.

2. Proof of Theorem 1.1. In this section, we characterise when solutions to
problems (1.1)–(1.3) are global in time for any initial data or may blow up for large
initial values. Our methods of establishing the global existence or non-existence are
based on M-matrix, the construction of self-similar solutions and the comparison
principle. Thus, we begin with presenting the basic properties of M-matrix, whose
proof can be found in [2, 16].

LEMMA 2.1. (1) If C is an irreducible M-matrix of order k, then there exists a vector
x 
 0 such that Cx ≥ 0; (2) if an irreducible matrix C of the form (1.15) is not an
M-matrix, then there exists a vector x 
 0 such that Cx � 0.

We now prove that all solutions are global if I − P is an M-matrix.

Proof of Theorem 1.1. (1) In order to prove that the solution (u1, u2, . . . , uk) of
(1.1)–(1.3) is global, we look for a globally defined in time super-solution of the self-
similar form

ui(x, t) = eκ2i−1t(M + e−Lixe−κ2i t
)

1
mi , (i = 1, 2, . . . , k), x ≥ 0, t ≥ 0,

where parameters Li and κ2i will be chosen later, M = maxi{‖ u0i ‖mi∞ +1}. Obviously,
we have ui(x, 0) ≥ u0i (x), (i = 1, 2, . . . , k) for x ≥ 0. After a direct computation, we
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obtain

uit ≥ κ2i−1eκ2i−1t(M + e−Lixe−κ2i t
)

1
mi ≥ κ2i−1eκ2i−1tM

1
mi ,

|uix|pi (umi
i )x = −Lpi+1

i

mpi
i

epi(κ2i−1−κ2i)t+(miκ2i−1−κ2i)te−(Lix+piLix)e−κ2i t
(M + e−Lixe−κ2i t

)pi( 1
mi

−1),

(|uix|pi (umi
i )x)x ≤ (pi + 1)

Lpi+2
i

mpi
i

epi(κ2i−1−κ2i)t+(miκ2i−1−2κ2i)tMpi( 1
mi

−1)

in R+ × R+, i = 1, 2, . . . , k. On the other hand, on the boundary we have

− |uix|pi
(
umi

ix

)
x(0, t) = Lpi+1

i

mpi
i

epi(κ2i−1−κ2i)t+(miκ2i−1−κ2i)t(M + 1)pi( 1
mi

−1),

k∏
j=1

uqij

j (0, t) = (M + 1)
∑k

j=1
qij
mj et

∑k
j=1 qijκ2j−1 .

Therefore, we can see that (u1, u2, . . . , uk) is a super-solution of problems (1.1)–(1.3)
provided that

κ2i−1eκ2i−1tM
1

mi ≥ (pi + 1)
Lpi+2

i

mpi
i

epi(κ2i−1−κ2i)t+(miκ2i−1−2κ2i)tMpi( 1
mi

−1) (2.1)

and

Lpi+1
i

mpi
i

epi(κ2i−1−κ2i)t+(miκ2i−1−κ2i)t(M + 1)pi( 1
mi

−1) ≥ (M + 1)
∑k

j=1
qij
mj et

∑k
j=1 qijκ2j−1 . (2.2)

In order to verify inequalities (2.1) and (2.2), we only need to impose

κ2i−1 ≥ (pi + mi)κ2i−1 − (pi + 2)κ2i (i = 1, 2, . . . , k), (2.3)

pi(κ2i−1 − κ2i) + miκ2i−1 − κ2i ≥
k∑

j=1

qijκ2j−1 (i = 1, 2, . . . , k) (2.4)

and

κ2i−1M
1

mi ≥ (pi + 1)
Lpi+2

i

mpi
i

Mpi( 1
mi

−1) (i = 1, 2, . . . , k), (2.5)

Lpi+1
i

mpi
i

(M + 1)pi( 1
mi

−1) ≥ (M + 1)
∑k

j=1
qij
mj (i = 1, 2, . . . , k). (2.6)

Now we show that such choice in (2.3)–(2.6) is valid. Firstly, by taking

Li = m
pi

pi+1
i (M + 1)

1
pi+1

∑k
j=1

qij
mj

− pi−mipi
mi (pi+1) ,

we see that (2.6) holds. Secondly, to obtain (2.3) we take κ2i−1 = (pi + mi)κ2i−1 − (pi +
2)κ2i, (i = 1, 2, . . . , k), that is

κ2i = pi + mi − 1
pi + 2

κ2i−1 (i = 1, 2, . . . , k). (2.7)
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Meanwhile, we must ensure that such choices are suitable for inequalities (2.4). To this
end, we substitute (2.7) into (2.4) and then (2.4) becomes

mi + 2pi + 1
pi + 2

κ2i−1 ≥
k∑

j=1

qijκ2j−1 (i = 1, 2, . . . , k), (2.8)

or equivalently

k∑
j=1

(
δij − (pi + 2)qij

mi + 2pi + 1

)
κ2j−1 ≥ 0 (i = 1, 2, . . . , k). (2.9)

As a result, we are left with showing the existence of (κ1, κ3, . . . , κ2k−1) satisfying
(2.5) and (2.9). To do this, we recall Definition (1.12) of matrix P, and see that (2.9) is
equivalent to the existence of non-negative solutions to the algebraic system

(I − P)(κ1, κ3, . . . , κ2k−1)T ≥ (0, 0, . . . 0)T . (2.10)

It follows from Lemma 2.1(1) that there exists (κ1, κ3, . . . , κ2k−1)T 
 (0, 0, . . . 0)T

solving (2.10) under the assumption that I − P is an M-matrix. Since (2.10) is a
homogeneous linear system, we can further choose each κ2i−1 > 0 large enough such
that (2.5) holds.

Therefore, we have proved that (u1, u2, . . . , uk) is a global super-solution of systems
(1.1)–(1.3). Hence, the comparison principle gives (u1, u2, . . . , uk) ≥ (u1, u2, . . . , uk)
and we conclude that (u1, u2, . . . , uk) is global.

(2) For the case ki > 0 for some i, we show that (1.1)–(1.3) has non-global sub-
solution of the self-similar form

ui(x, t) = (T − t)−ki fi(ξi), ξi = x(T − t)−li (i = 1, 2, . . . , k), (2.11)

where ki, li(i = 1, 2, . . . , k) were defined as before, T is a positive constant and fi ≥
0 (i = 1, 2, . . . , k) are the compactly supported functions to be determined.

After some computations, we have

uit = (T − t)−(ki+1)(kifi(ξi) + liξifi
′(ξi)

)
,

|uix|pi
(
umi

i

)
x = (T − t)−piki−pili−miki−li |fi

′|pi
(
f mi
i

)′
(ξi),(|uix|pi

(
umi

i

)
x

)
x = (T − t)−piki−pili−miki−2li

(|fi
′|pi

(
f mi
i

)′
(ξi)

)′

and

|uix|pi
(
umi

i

)
x(0, t) = (T − t)−piki−pili−miki−li |fi

′|pi
(
f mi
i

)′
(0),

k∏
j=1

uqij

j (0, t) = (T − t)−
∑k

j=1 qijkj

k∏
j=1

f qij

j (0).

By using (1.13) and (1.14), we have

ki + 1 = piki + pili + miki + 2li, piki + pili + miki + li =
k∑

j=1

qijkj (i = 1, 2, . . . , k).
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Thus, (u1, u2, . . . , uk) is a sub-solution of (1.1)–(1.3) provided that

(|fi
′|pi

(
f mi
i

)′
(ξi)

)′ ≥ kifi(ξi) + lif ′
i (ξi)ξi, (2.12)

− |fi
′|pi

(
f mi
i

)′
(0) ≤

k∏
j=1

fj
qij (0). (2.13)

Set

fi(ξi) = Ai(ai − ξi)
pi+1

pi+mi−1
+ (i = 1, 2, . . . , k), (2.14)

where Ai > 0 and ai > 0 (i = 1, 2, . . . , k) are constants to be determined. It is easy to
see that

f ′
i (ξi) = −Ai

pi + 1
pi + mi − 1

(ai − ξi)
pi+1

pi+mi−1 −1
+ , (2.15)

|f ′
i |pi

(
f mi
i

)′ = −miAmi+pi
i

(
pi + 1

pi + mi − 1

)pi+1

(ai − ξi)
pi+1

pi+mi−1
+ , (2.16)

(|f ′
i |pi

(
f mi
i

)′)′ = miAmi+pi
i

(
pi + 1

pi + mi − 1

)pi+2

(ai − ξi)
pi+1

pi+mi−1 −1
+ . (2.17)

Substituting (2.14)–(2.17) into (2.12), inequality (2.12) is valid provided that

kiAi(ai − ξi)
pi+1

pi+mi−1
+ − liξiAi

pi + 1
pi + mi − 1

(ai − ξi)
pi+1

pi+mi−1 −1
+

− miAmi+pi
i

(
pi + 1

pi + mi − 1

)pi+2

(ai − ξi)
pi+1

pi+mi−1 −1
+ ≤ 0 (i = 1, 2, . . . , k).

To show that the above inequalities hold, we choose ai with

ai = ciAmi+pi−1
i (i = 1, 2, . . . , k), (2.18)

where

ci = mi(pi + mi − 1)
ki(pi + mi − 1) + |li|(pi + 1)

(
pi + 1

pi + mi − 1

)pi+2

(i = 1, 2, . . . , k),

by the assumption ki > 0 for some i, we know that (2.11) is true.
On the other hand, the boundary conditions in (2.12) are satisfied if we have

Ami+pi
i ρia

pi+1
pi+mi−1
i ≤

k∏
j=1

Aqij

j a
qij (pj+1)

pj+mj−1

j , (2.19)

where ρi = mi(
pi+1

pi+mi−1 )pi+1 > 0. According to (2.17), we see that (2.18) holds provided
we choose Ai (i = 1, 2, . . . , k) to satisfy

Ami+2pi+1
i ρic

pi+1
pi+mi−1
i ≤

k∏
j=1

Aqij(pj+2)
j c

qij (pj+1)

pj+mj−1

j (i = 1, 2, . . . , k), (2.20)
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which is equivalent to

k∏
j=1

λ
δij− (pi+2)qij

mi+2pi+1

j �
k∏

j=1

(
Apj+2

j

)δij− (pi+2)qij
mi+2pi+1 ≥ di, (2.21)

where

di =
⎛
⎝ρ−1

i c
− pi+1

pi+mi−1
i

k∏
j=1

c
qij (pj+1)

pj+mj−1

j

⎞
⎠

pi+2
mi+2pi+1

(i = 1, 2, . . . , k),

then inequality (2.20) can also be written as

k∑
j=1

(
δij − qij(pi + 2)

mi + 2pi + 1

)
log λj ≤ di, (i = 1, 2, . . . , k). (2.22)

We show that this inequality is valid for some sufficiently large λj. Indeed, since p is
irreducible, it is equivalent to I − P, which is also irreducible, and since we have assumed
that I − P is not an M-matrix, it follows from Lemma 2.1(2) that we can choose λi >

3, (i = 1, 2, . . . , k) such that (I − P)(log λ1, log λ2, . . . , log λk)T � (0, 0, . . . 0)T . Then
we can amplify log λi such that (2.22) holds.

Therefore, we have shown that (u1, u2, . . . , uk) given by (2.11) and (2.14) is a sub-
solution of systems (1.1)–(1.3) if we further choose the initial data (u01, u02, . . . , u0k)
large enough such that

u0i ≥ ui(x, 0) = T−ki fi

( x
Tli

)
(i = 1, 2, . . . , k). (2.23)

Noticing the construction of fi(ξi) and the assumption ki > 0 for some i, we see that
limt→T− ui(0, t) = +∞ for such i. Then it follows from the comparison principle that
there exist non-global solution to systems (1.1)–(1.3).

Finally, we investigate the case that there exists i such that qii >
2pi+mi+1

pi+2 . Without

loss of generality, we assume q11 >
2p1+m1+1

p1+2 . Consider the initial data satisfying
(|(u0i)′|pi (umi

0i )′)′ ≥ 0(i = 1, 2, . . . , k), which imply that uit > 0. The existence of such
initial data is primary, since u0i are independent of each other. It follows from the
results of [13] that the following scalar equation⎧⎪⎨

⎪⎩
u1t = (|u1x|p1

(
um1

1

)
x

)
x, x > 0, 0 < t < T,

−|u1x|p1
(
um1

1

)
x(0, t) = uq11

1 (0, t)
∏k

j=2 uq1j

0j (0), 0 < t < T,

u1(x, 0) = u01(x), x > 0

(2.24)

has non-global solution. On the other hand, it is clear that (u01(x, t), u02(x, t),
. . . , u0k(x, t)) would be a sub-solution of systems (1.1)–(1.3). Then the desired result
follows from the comparison principle. �

3. Proof of Theorem 1.2. In this section, we consider a more subtle description
when there exist non-global solutions to systems (1.1)–(1.3). We shall still prove
Theorem 1.2 by constructing self-similar solutions and self-similar super-solutions
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and using the comparison principle; however, the fact that we are dealing with a
system instead of a single equation forces us to develop some new techniques.

Proof of Theorem 1.2. (1) We construct the following well-known self-similar
solution (the so-called Zel’dovich–Kompaneetz–Barenblatt profile [10, 15, 28]) to (1.1)–
(1.3) in the form

uiB(x, t) = (τ + t)−
1

mi+2pi+1 hi(ξi), ξi = x(τ + t)−
1

mi+2pi+1 (i = 1, 2, . . . , k), (3.1)

where τ > 0 and

hi(ξi) = Ci

(
c

pi+2
pi+1
i − ξ

pi+2
pi+1

i

) pi+1
pi+mi−1

+
(i = 1, 2, . . . , k), (3.2)

with ci > 0 (i = 1, 2, . . . , k), and

Ci =
(

1
mi(mi + 2pi + 1)

(
pi + mi − 1

pi + 2

)pi+1
) i

pi+mi−1

. (3.3)

It is not difficult to check that

(|h′
i|pi

(
hmi

i

)′)′
(ξi) + 1

mi + 2pi + 1
ξih′

i(ξi) + 1
mi + 2pi + 1

hi(ξi) = 0,

h′
1(0) = 0 (i = 1, 2, . . . , k),

Combining with h′
i(0) = 0 (i = 1, 2, . . . , k), implies (uiB)x(0, t) = 0 (i = 1, 2, . . . , k).

Since ui(x, t) (i = 1, 2, . . . , k) are non-trivial and non-negative, we see that ui(0, t0) >

0 (i = 1, 2, . . . , k) for some t0 > 0 (compare with the Barenblatt solution of
corresponding equations). Noticing that ui(x, t0) > 0 (i = 1, 2, . . . , k) are continuous
(see [12, 36]), we can choose τ large enough and ci small enough so that

ui(x, t0) > uiB(x, t0) (i = 1, 2, . . . , k) for x > 0.

A direct calculation shows that (u1B, u2B, . . . , ukB) is a weak sub-solution of (1.1)–(1.3)
in (0,+∞) × (t0,+∞). By the comparison principle, we obtain that

ui(x, t) > uiB(x, t) (i = 1, 2, . . . , k) for x > 0, t > t0.

Since maxi {li − ki} < 0, we get Tli � Tki for large T . So there exists t∗ ≥ t0 satisfying

Tli � (τ + t∗)
1

mi+2pi+1 � Tki (i = 1, 2, . . . , k). (3.4)

Let ui (i = 1, 2, . . . , k) be the function given by (2.11) and (2.14). Then for any x > 0,

ui(x, 0) ≤ uiB(x, t∗) ≤ ui(x, t∗) (i = 1, 2, . . . , k).

It follows from the comparison principle that

ui(x, t) ≤ ui(x, t + t∗) (i = 1, 2, . . . , k), for x > 0, t > 0.

As a proof of Theorem 1.1(2), we see that (u1, u2, . . . , uk) blows up in a finite time T .
Therefore, (u1, u2, . . . , uk) blows up in a finite time, which is not larger than T + t∗.
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Observing that (3.4) holds for general non-trivial (u10, u20, . . . , uk0), we know that every
non-negative and non-trivial solution of (1.1)–(1.3) blows up in finite time.

(2) In order to prove the conclusion, we only need to show that solutions of
(1.1)–(1.3), which are small initial data, have global existence, which will be proved by
constructing self-similar global super-solution,

ui(x, t) = (τ + t)−ki Fi(ξi), ξi = x(τ + t)−li , (3.5)

where ki, li (i = 1, 2, . . . , k) were defined as before, T is a positive constant and Fi ≥
0 (i = 1, 2, . . . , k) are compactly supported functions to be determined.

After some computations, we have

uit = (τ + t)−(ki+1)(−kiFi(ξi) − liξiFi
′(ξi)),

|uix|pi
(
umi

i

)
x = (τ + t)−piki−pili−miki−li |Fi

′|pi
(
Fmi

i

)′
(ξi),(|uix|pi

(
umi

i

)
x

)
x = (τ + t)−piki−pili−miki−2li

(|Fi
′|pi

(
Fmi

i

)′
(ξi)

)′

and

|uix|pi
(
umi

i

)
x(0, t) = (τ + t)−piki−pili−miki−li |Fi

′|pi
(
Fmi

i

)′
(0),

k∏
j=1

uqij

j (0, t) = (τ + t)−
∑k

j=1 qijkj

k∏
j=1

Fqij

j (0).

By using (1.13) and (1.14), we have

ki + 1 = piki + pili + miki + 2li, piki + pili + miki + li =
k∑

j=1

qijkj (i = 1, 2, . . . , k).

Thus, (u1, u2, . . . , uk) is a super-solution of (1.1)–(1.3) provided that(|Fi
′|pi

(
Fmi

i

)′
(ξi)

)′ + kiFi(ξi) + liF ′
i (ξi)ξi ≤ 0, (3.6)

− |Fi
′|pi

(
Fmi

i

)′
(0) ≥

k∏
j=1

Fj
qij (0). (3.7)

We choose

Fi(ξi) = AiCi

(
(aibi)

pi+2
pi+1 − (ξi + ai)

pi+2
pi+1

) pi+1
pi+mi−1

+
= Aihi(ξi + ai) (i = 1, 2, . . . , k), (3.8)

where Ci (i = 1, 2, . . . , k) were defined by (3.3), hi (i = 1, 2, . . . , k) were defined by (3.2),
ai > 0, bi > 1 and Ai > 0 (i = 1, 2, . . . , k). We claim that Ai, bi, ai (i = 1, 2, . . . , k)
exist such that inequality (3.6) is valid for Fi (i = 1, 2, . . . , k) defined by (3.8), then
hi(ξi + ai) (i = 1, 2, . . . , k) satisfy the following equations,

(|h′
i|pi

(
hmi

i

)′)′ = − 1
mi + pi + 1

(ξi + ai)h′
i − 1

mi + pi + 1
hi (i = 1, 2, . . . , k), (3.9)
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and

h′
i(ξi + ai) = −Ci

pi + 2
pi + mi − 1

(
(aibi)

pi+2
pi+1 − (ξi + ai)

pi+2
pi+1

) pi+1
pi+mi−1 −1

+
(ξi + ai)

1
pi+1 . (3.10)

In fact, when ai ≤ ξi + ai ≤ biai (i = 1, 2, . . . , k) substituting (3.8)–(3.10) into (3.6),
denoted by yi = ξi + ai (i = 1, 2, . . . , k), then (3.6) can be transformed into the
following inequality with respect yi

Gi(yi) = −ei1y
pi+2
pi+1
i + ei2aiy

1
pi+1
i − ei3(aibi)

pi+2
pi+1 ≤ 0 (i = 1, 2, . . . , k), (3.11)

where

ei1 =
(

ki − Ami+pi−1
i

mi + pi − 1

)
+ pi + 2

pi + mi − 1

(
li − Ami+pi−1

i

mi + pi − 1

)
(i = 1, 2, . . . , k),

ei2 = li(pi + 2)
pi + mi − 1

(i = 1, 2, . . . , k),

ei3 = Ami+pi−1
i

mi + pi − 1
− ki (i = 1, 2, . . . , k).

Since mini{li − ki} > 0, we can choose a suitable constant A1 > 0 such that

l1 >
Am1+p1−1

1

m1 + p1 − 1
> k1

and (
k1 − Am1+p1−1

1

m1 + p1 − 1

)
+ p1 + 2

p1 + m1 − 1

(
l1 − Am1+p1−1

1

m1 + p1 − 1

)
> 0;

for such A1, it is easy to verify that e1j > 0 (j = 1, 2, 3) and G1(y1) is a concave function

with respect to y
1

p1+1

1 , then G1(y1) attains its maximum at z1∗ = e12a1
(p1+2)e11

. Therefore,
(3.11) is valid provided that

G1(z1∗) = a
p1+2
p1+1

1

{
p1 + 1
p1 + 2

(
1

e11(p1 + 2)

) 1
p1+1

e
p1+2
p1+1

12 − e13b
p1+2
p1+1

1

}
≤ 0. (3.12)

So, we only need to choose b1 sufficiently large such that b1 ≥
max{( (p1+1)e12

(p+2)e13
)

p1+1
p1+2 ( e12

(p+2)e11
)

1
p1+2 , 1}. Similarly, there exist Ai > 0, bi > 0 (i = 2, 3, . . . , k)

such that inequality (3.11) holds. Consequently, we have proved that inequality (3.6)
is true.

Now we consider the boundary condition (3.7), we only need to show that

(AiCi)mi+pi mi

(
pi + 2

pi + mi − 1

)pi+1 (
b

pi+2
pi+1
i − 1

) pi+1
pi+mi−1

a
2pi+mi+1
pi+mi−1

i

≥
k∏

j=1

(AjCj)qij

(
b

pj+2

pj+1

j − 1

) (pj+1)qij
pj+mj−1

a
(pj+2)qij
pj+mj−1

j
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with Ci(i = 1, 2, . . . , k) defined by (3.3). We are left with showing that for Ai > 0, di (i =
1, 2, . . . , k) fixed as above, we may take ai small enough so that above inequality holds.
To do this, we rewrite it as

k∏
j=1

h
δij− (pi+2)qij

mi+2pi+1

j �
k∏

j=1

(
a

pj+2

pj+mj−1

j

)δij− (pi+2)qij
mi+2pi+1

≥ mi, (3.13)

where

mi = ((AiCi)−mi−pi mi

(
pi + mi − 1

pi + 2

)pi+1 (
b

pi+2
pi+1
i − 1

) −pi−1
pi+mi−1

×
k∏

j=1

⎛
⎜⎝AjCj)qij

(
b

pj+2

pj+1

j − 1

) (pj+1)qij
pj+mj−1

⎞
⎟⎠

pi+2
mi+2pi+1

.

Without loss of generality, we assume hi < 1 (i = 1, 2, . . . , k). Then (3.13) is equivalent
to

k∑
j=1

(
δij − (pi + 2)qij

mi + 2pi + 1

)
(− log hj) ≤ − log mi. (3.14)

Since I − P is irreducible and is not an M-matrix, it follows from Lemma (2.1)(1) that
we can choose hi ∈ (0, 1) small enough such that (3.14) holds, which completes the proof
of (3.13). Thus, for the case mini{li − ki} > 0 we have constructed a class of global self-
similar super-solutions defined by (3.5) and (3.8). Owing to the comparison principle,
the solution of problems (1.1)–(1.3) is global if the initial datum (u10, u20, . . . , uk0) is
small enough. The proof of Theorem 1.2 is complete. �
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