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On the Lie ring of a group

of prime exponent II

G.E. Wall

Let p be a prime number. The Lie ring of the largest finite

group of exponent -p and nilpotency class 3p - 3 is determined

under certain assumptions (which are conjectured always to hold).

1 . Introduction

1.1. The present paper, like its predecessor [8], is concerned with

the Lie ring L{G) of a finite group G of prime exponent p . Certain

results of the earlier paper for degree 2p - 1 are extended, in part, up

to degree 3p - 3 .

We first recall some of the background. Let L(n) denote the free

Lie algebra over F on n free generators x^, ..., x and let

3,, s2, ... be the basic Lie products in these generators. Let E An)

denote the (p-l)th Engel ideal of L{n) . Then E An) is spanned by

the elements

(1.1) <u±, ...» M > ,

where u , ..., u € L(n) ([*}, §§3.1, 3.h). Further, since (l.l) is a

symmetric, multilinear function which vanishes when its p arguments are

all equal, E _(n) is even spanned by the elements
p-1

(1.2) <m131»
 m 2 2 2 ' •••> = (m1!m2! ...)~ (s±, ..., z^ zg, ..., z^, ...) ,

terms m^ terms
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12 G . E . WaI I

where

(1.3) 0 5 m . < p ( i = 1 , 2 , . . . ) , Y m . = p .

I t i s conjectured tha t , for p S d < 2p-2 , those elements ( i .2) which have

t o t a l degree d in x . , . . . , x are l inearly independent1; and th is has

been confirmed2 in the case where n = 2 and d S p+k .

The quotient algebra

AM = LM/E An)p-1

has properties "broadly analogous to those of A(n) . Let £. , . .., £ and

£, , £„, ... denote the images of x, , ..., x and s. , s , ... in h(n) .

Consider the elements

(l.fc) <<<V -.., «££_!>> .

where w , ..., w € A(w) ([S], §3.3). The expression (1.1)) is a

symmetric, multilinear function of its arguments which vanishes when any p

of them are equal. Thus, the subspace spanned by the elements (l.U) is

already spanned by the elements

(1.5) <<"!,?,, "?„£„, . . .>>

UL "Eerms m^ terms

where

(1.6) 0 5 77K < p (i = 1, 2, . . . ) , Y,mi = 2p - 1 .

Now, if B(n) denotes the n-generator free group of the variety of

a l l groups of exponent dividing p , there i s an isomorphism of graded Lie

F -algebras of the form

1 Holenweg ( [ 3 ] , Satz 3.13, and [4] , Hauptsatz 9) claims to prove an
equivalent group-theoretical resu l t , but the proof seems incomplete. For
example, the def ini t ion of the mapping a on p. 193 of [3] i s quite
unclear .
2 Kostrikin [ 5 ] , Theorem 5. As Kostrikin shows, the elements (1.2) of
degree greater than 2p - 2 are l inearly dependent•
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The L ie r i n g o f a group 13

(1.7) L[B(n)) &

» §1)- Let I! (n) denote the homogeneous component of Z(n) of
r

degree r . By Theorem A of [&], §•*•!, £__ _(n) is spanned by those
2p-l

elements (1.5) of total degree 2p - 1 in £ , . . . , £ . It then follows

from Proposition 7 of [S] that aZZ elements (1.5) are in E(«) . I shall

prove the following result.

THEOREM 1. Let d be an integer such that 2p-l 5 d 2 3p-3 .

Assume that those elements (1.2) which have total degree d - p + 1 in

x , ..., x are linearly independent. Then Z,(n) ts spanned by elements

(1.5).

As an application of Theorem 1, we determine, in §4, a set of ideal

generators of E(n) in the special case n = 2 , p = 5 . This provides

one way of verifying that the largest 2-generator finite group of exponent

5 has order 5 (Havas, Wall, and Wamsley [2]).

1.2. The method of proof of Theorem 1 in fact yields a rather

stronger, but less simply stated, result, which we now proceed to explain.

Let us consider an n-fold multi-index, that is, a row

ni = [m. , ..., m ] of n non-negative integers. The height of m is

|m| = m. + ... + m . The monomial function associated with m is the

m m
mapping / : Fn •+ F defined by / (Xn , .. . , X ) = X, ... \ n . Write

m p p S. 1 n' L n

6(m) = {m' : |m'| = |m| and /^ = fj .

We denote by £(n)S the subspace of L(n) spanned by those monomials

in X- , ..., x which have respective partial degrees m , ..., m in

these generators. We extend this notation to subspaces, U , and quotients

of subspaces, U/V , by defining

tfS = U

Finally, we write

(U/V)£
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14 G . E . Wa i I

THEOREM 2. Let m be an n-fold multi-index such that

2p-l 5 |m| 5 3p-3 . Assume that, for each multi-index m' satisfying

f , = f and |m'| = |m| - p + 1 , those elements (1.2) which lie in

L(n)= are linearly independent. Then E(n) — is spanned by elements

(1.5).

I t is obvious that Theorem 2 implies Theorem 1. We note one case in
which Theorem 2 takes a particularly simple form.

COROLLARY. If in is an n-fold multi-index which satisfies

2p-l 5 |m| s 3p-3 and m. < p (i = 1, 2, . . . ) then 1= is spanned by

elements (1 .5) .

(Let m be as in the corollary and let r_ be an arbitrary n-fold

multi-index. It is easily seen that f = f implies r. 2 m.
£ S l v

{i = 1, 2, . . . ) . Thus there are no m1 which satisfy the conditions in
Theorem 2 and the set 9(m) consists solely of the element m .)

We comment briefly on the term £(n) = in the enunciation of
Theorem 2.

The n-fold multi-indices form a semigroup, V , under the usual
addition of rows. Furthermore, the family

provides a T-grading of L(n) in the sense that

L(n) = © £(n)£ ,

= c L ( n ) « ' for all m, m' € T .

We may call this the formal grading.

I t can be verified that the equivalence classes 8(m) form a quotient
semigroup, A , of T and that the family

defines a A-grading of L(n) . We shall call this the functional grading.
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Now i t can be shown that

A(n)/E(n) = © (A(«)/Z(n))9(=) ,
9(m)€A

that is A(n)/£(«) inherits the functional grading; this is a fairly-

easy consequence of Proposition 6 of [S]3 . On the other hand, it is not

known whether A(n)/T.{n) inherits the formal grading.

The proof of Theorem 2 occupies §§2 and 3. It is the same, in

principle, as that of Theorem A in [£]. Because of this, our general

policy will tie to refer the reader to [S] for the basic ideas and

procedures, merely indicating, for the most part, what modifications are

necessary. This means, in particular, that we shall continue to use the

same notation as in [£], often without specific comment.

2. Preparations

We are concerned in the present section with A(n, c; Dj) and its

subring A[n, c; Q) ) , where Q is the rational field and OJ the ring of

rational p-integers (see §2.1 of [is] for the relevant general

definitions). We shall follow the special notation used in §§3.1-3.3 of

[g], namely,

A = A{n, a; ty) , =a= _a(n, e ; Q ) , L = L(n, e; <J) ,

4° = A{n, e; <Q°) , a° = a(n, e; <5°) , L° = L[n, a; <?°) .

We express the Baker-Campbell-Hausdorff formula within A in the

general form

(2.1) Z1.../»=/,

where H = H[x. ..., x ] € L . The part played in [£] by the truncatedv 1 w

p-1
exponential function £ x /mi is here taken by the Artin-Hasse

0
exponential function

3
More generally, in the notation of that proposition, if N is a fully

invariant subgroup of F , then L(F/N) inherits the functional

grading.
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16 G.E. WaI I

(2.2) E(x) = exp

Since the coefficients in the power series expansion of E{x) are in Q)

(see Dieudonne [/]), it follows that its general functional equation takes

the form

(2.3) E[x1) ... E{xn) = E(V) ,

where

The main result of the present section is Proposition 1, in which the

terms of V of degree up to 2p - 2 are determined. Its corollary

expresses the same results in a form suitable for subsequent specialization

to A[n, c; T ) .

2.1. LEMMAS

DEFINITION. Let 6 denote the derivation of A such that

x.6 = aP./p (i = 1, ..., n) .

LEMMA 1. ( L ° n a 2 ) « c / + I .

The lemma is easily proved by induction, using the formula

£*p, b] = < (p-l)a, [a, b])
= p![(p-l)a, [a, b]\ + [a, b, a, ... , a] .

p-1 terms

DEFINITION. Let A denote a 0} - l inear mapping of L n a,2 into A

such that [L n ji )(6-A) c L .

The existence of such a A is guaranteed by the lemma. If A' is

another candidate, then

[L° n a 2 ) ( A ' - A ) c A ° n J i = i 0 .

LEMMA 2. Suppose p > 2 and let <j> fee an endomorphism of A which

maps the set
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The L i e r i n g o f a g r o u p 17

into itself. Then

c L° .

P r o o f . Le t u € L n a. . S i n c e (L n _a ) <|> C L n a, , i t f o l l o w s

t h a t w<j)A i s d e f i n e d and

(2 . I t ) w(<l>S-<j>A) € L .

A l s o , s i n c e I ^ c l , we h a v e

( 2 . 5 ) ' u(6ct>-A<}>) € L .

A simple computation (using the assumption that p > 2 ) shows that

(j>6 = 5<(> . Therefore (2.it) and (2.5) give

u(4>A-A(|>) € L .

Clearly, M(<))A-A(|)) € /I , whence w(<J>A-A<|>) i A n L = L , as required.

We require a simple formal property of the function R defined in

Lemma 2 of [&].

LEMMA 3 . If av . . . , a f l , Z>1> . . . , 2>t , . . . €

^ , . . . , « s , 6 r . . . , 6 , , . . . ) - i ? | a . , p . , . . .

E fl(a;L, . . . , a a ) + fl^, . . - , bt) + . . . ( m o d i 0 )

We omit the easy proof.

2.2. FUNCTIONAL EQUATION FOR E(x)

In view of (2.1) and (2.2), the functional equation (2.3) for E(x)

is equivalent to

(2.6) i / v = tffz *?V, • • •, i ̂ /P*] •
0 1-0 x 0 " -1

Let ^ = Hr,ixx> •••' *„) ^ fr = " y K - •••>*„) denote the

homogeneous components of H and 7 of degree r . Comparing terms of

like degree in (2.6), we get
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(2.7) Vr = Hr € -4° n L = L° ( l S r < p - l ) .

PROPOSITION 1 . J / c = 2p - 2 ,

V = W (mod £° n aP) J

( S ] ( ) ( D ^ P£ .

Proof. Both V and V are in A° and, by (2 .7) , V = W (mod af)

I t i s therefore sufficient to prove that

(2.8) V = W (mod L) .

Now, since a < 2p , (2.6) becomes

(2.9) 7 + F^/p = H^+aP/p, . . . , x ^ /

= H + H6 .

Let E denote congruence modulo L and write K = £ H . Then
2 r

(2.10) ^ = | £ V } (since e = 2p - 2 )
I 1 r>

(•p-l ip

= I ff
r fa (2-7))

*• 1 ^

c? + i ? + p!i?(x , . . . , a; , A:l (by definition of R )
'Z' -!- Yl

nn
= V x? + p!i?(x , . . . , x , K) (since a = 2p - 2 )

.. 'Z- X W

Therefore
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The L i e r i n g o f a g r o u p 19

V = H + H8 - ifi/p (by ( 2 . 9 ) )

(p - 1 -i
£ Hj& - vP/p (as e = 2p - 2 )

E Kh - (p-l)!i?(xl5 ..., xn, K) (by (2.10))

E W .

This proves (2.8) and the proposition.

COROLLARY. Suppose e = 2p - 2 . Let G denote the group generated

by E[x ) , ..., E[x^\ . If E{u) € G , then u has the form

X.,p.€(l!0 (1 S i 5 M) , D (J0 n a2 .
"Z< "t- —

Proof. It will be sufficient to prove that u is congruent modulo

L n j? to an expression ijj of the given form. For, if u) € i n jf ,

then u) = u(l+A) because c = 2p - 2 ; therefore ^ + to again has the

same form as i|i .

The corollary is easily verified when p = 2 and we shall assume

henceforth that p > 2 . Then E(x)~ = E(-x) , so that E{u) is

expressible in the form

(2.11) E(u) =E{yx) ... E[yp)

with

After adding extra redundant factors ff(a;.)^(-a;.) if necessary, we may

assume that r 2 n . Then (2.1l) follows from the equation

(2.12) E(V') = E{x±) . . . E[xr)

in A(r, a; Q) by applying the endomorphism r| defined by
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£1 ~ y^ ~ > • • • > r> •

The form of V is given by Proposition 1. (We may define A in

A(r, c; Q)) in such a way as to extend A in A(n, e; Q)) ; however, this

is not really necessary because, in any case, images under A are uniquely

determined modulo L n _a" .) Applying n to (2.12) and using Lemma 2, we

conclude that

u E T y + v(l+A) - (p-l)lR[y , . . . , y , v) (mod L° n aP) ,
1 ° 1 r

r 0 2
where v d L n a.

For i = 1, . . . , n , l e t X'. of y , . . . , y be equal to x . and

X" equal to - x . . Then

r n

where X. = X1. - X" . F u r t h e r , s ince # ( • ) i s a symmetric funct ion modulo
If If 1s

r0 p
L n af , we have

E i?(cc l 5 . . . , x l 5 - x x , . . . , - x 1 , x 2 , . . . , v) ( m o d i n a P ) .

X' t e r m s A" t e r m s

Now,

i?U, . y , ^ , -x, . ^ . , -x) = I—

X' terms X" terms

where X = X' - X" . Therefore, by Lemma 3,

n

^ 1 ' ' " r 1 J *• l l ' n M
 ; i *

where
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Putting these resul ts together, we get the corol lary.

3. Proofs

From now on, we shall work exclusively in the algebra A[n, a; F J ,

writing A = A[n, a; F ] , L = L[n, a; F ) , and so on. We recall that P

denotes the Lie p-algebra generated by x , ..., x and that, if S c_ A ,

gr S denotes the (graded) subspace spanned by the leading terms of the

elements of 5 . The common principles behind the proofs of both Theorem 2

and Theorem A of [£] are set out in some detail in §§2.it, 3.h of [£] .

Let F denote the multiplicative subgroup of A generated by the

elements E{x^ , . . ., E{x^ . If T c F , define

l(T) = {u : E(u) € T) .

The proof of Theorem 2 is based on the Lie ring isomorphism1*

L(3(n.. a)) ̂ P/zr{l[FP)) ,

where B(w, e) denotes the largest nilpotent quotient group of B(n) of

class less than or equal to a . This is essentially the same as the

isomorphism used in [8]; for, since u and E(u) - 1 have the same

leading term, it follows that gr(T-l) = gr(£(T)) for every subset T of

F .

The first step in the proof is to determine 1{F) when o = 2p - 2

(Proposition 2). This is hardly more than a characteristic p trans-

cription of the corollary to Proposition 1. The next step is to determine

when a = 3p - 3 (Lemma h, Corollary). It is shown, in fact, that

is the subspace spanned by the pth powers of the elements of

l(F) . The final step is almost the same as for the proof of Theorem A in

§lt.2 of [«].

3.1. THE GROUP F

We assume in the present subsection that c = 2p - 2 .

NOTATION. Let z , ..., z^ be a basis of P satisfying the

"* The notation $(n, c) replaces the (unfortunate) notation B(n, c) of

m.
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following conditions:

(a) each 3 . i s either a homogeneous element of I or a power

• 5 '
(b) the s. are arranged in order of increasing degree;

(c) 3. = x. for i = 1, ..., n .

Define 3*, ..., z* as follows:

3*. = 3. + 3.A (see §2.1), if s. € £ n a2 ;

2I = 3 . o therwise .
% ^

PROPOSITION 2 . Le t o = 2p - 2 . Wr>ite

Z(F) = {w : E(u) € JF} .

Then u € Z(F) t/", and only if, u has the form

t

j^i-t 11' ' t t 1' ' t p

Proof. Since c = 2p - 2 , we have

(• s
pf i „ \ P I _ p i 1 ™ 1 „ V 1 •

i t I A . < s ^ j . * . , A . « 1 ] ~ n A . i t . j . . . j A ^ , / A . '

I! v v [ x i n n "~'_ 'Z-

and

si = s. for i > s ,

where z , . . . , z are those z. of degree less than p . Therefore, by
I s t

the corollary to Proposition 1, every u € l(F) has the specified form.

On the other hand, the number of elements of this form is p = \P\ , which

equals |?j = \l{F) \ because P s* L(F) . This clearly implies the

proposition.

3.2. THE SUBGROUP FP

NOTATION. If Me a , then
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E(M) = {E(u) : u (. M] ,

Lie M = Lie subalgebra generated by M .

If ff c 1 + a. , then

1{N) = {u : E{u) € N) ,

gp H = multiplicative subgroup generated by N .

LEMMA 4. If M <z_&" , where rp > a , then

gp E{M) = £(Lie M) .

Proof. Let * denote the binary operation on A defined by the

first p - 1 terms of the Baker-Campbell-Hausdorff formula:

p-1
a * b = J_ H (a, b) .

1 r

Now, since rp > a , we have (a**)^ = 0 . Therefore, by Theorem {h.6) of

Lazard [7], ji is a group under * and the subgroup generated by the

subset M is the Lie subalgebra generated by M :

(3.1) gp* M = Lie M .

On t h e o t h e r h a n d , i f u, V € ^ , t h e n , by ( 2 . 7 ) ,

E(u)E(v) = E{u * v) . Hence

(3.2) gp E{M) = E(gP< M) .

The lemma follows immediately from (3.1) and (3.2).

COROLLARY. If c < p2 , then

^ : u

Proof. Taking M = {iP : u € 1{F)} , we have E{M) = FP by the

formula E[u?) = E(.u)P . The corollary now follows directly from the lemma.

REMARK. We shall see in §3.3 that, when a = 3p - 3 ,

actually the subspace spanned by {up : u € l(F)} .

3.3. CONCLUSION OF PROOF

We assume here that a = 3p - 3 . Consider an element if , where
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u € l(F) . In calculating ic , it is legitimate to take the form of u

derived in Proposition 2 for class 2p - 2 . Write

Then

= tf*)P +< (p-l)X*, R)

= (X*)P + [R, X*, . . . , X*] (by formula (3.12) of [«])

p-1 terms

= (X*)P + [R, X, . . . , X] (since c = 3p - 3 )

p-1 terms

= (X*f + [R\xp-1~] (by (2.2) and (3.13) of [«]) .

Let M denote the subspace spanned by \uF : u € 1{F)\ . By Lemma h,

Corollary,

l[F) = Lie M .

Furthermore, by the same argument as in the proof of Theorem A in §*+.2 of

[8], we conclude that M is spanned by the following elements:

(3.3) BP. (with z. of degree 1 or 2);

with 0 < a . < p {i = 1, 2, . . . ) , Y,a- = P > a n d where, i f

< a13_ , a^Sp, . . . > € L ( H ) = , t h e unwri t ten terms a r e in components L(n)=

with Iml = Irl + p - 1 and f = f ;

( 3 . 5 ) < < a i 3 l ' a 2 3 2 ' " - ^

wi th 0 £ a . < p U = 1 , 2 , . . . ) , £ a . = 2p - 1 .

From t h i s , we deduce f i r s t t h a t

https://doi.org/10.1017/S0004972700008406 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008406


The L i e r i n g o f a g r o u p 25

[M, M] c [P, P] c E n a2? ,

E _x n a 2 ?" 1 c jf ,

whence M i s a Lie subalgebra. Therefore

I [FP] = M .

Now let m be a multi-index satisfying the conditions of Theorem 2.

In view of the Lie algebra isomorphism

p/plp] ̂  L/E

p-1

(see (2.9) of [8]), what we have to show is that

( g r ^ ' f i ' c P ^ 1
 +W ,

where W is the subspace spanned by the elements of the form

<<i> z , b zo, ...>> with the b. integral.

It is evident from the form of the elements which span M that gr M

is spanned by elements (3.3), elements (3.5), elements <a z^, a
2
2 2 ' ""* '

and finally certain linear combinations

(3-6) X ' « a < a l

where

(3.7) 7r_ _ <ansn, * * „ , ...> = 0

and the sum is taken over a's such that < a z , a z , ...> has total

degree less than or equal to 2p - 2 in x , ..., a;

Thus, an element V of (gr M) — will be congruent modulo

P " + W to an element (3.6) with each of the corresponding terms

(a 2 , ctpJ3„, . . .> in a component Ir= with |m' | = |m| - p + 1 and

f , = f . By the hypothesis of the theorem, (3.7) implies that all

r are 0 . Hence V € P " + V , which proves the theorem.
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4. Appli cation

We now take

P = 5 , n = 2 .

If S(5, 2) denotes the largest 2-generator finite group of exponent 5 ,

then

£(5(5, 2)) S A(2)/I(2) .

I t is known5 that A(2) has dimension 3** and nilpotency class 12 . We

shall determine a set of generators for the ideal £(2) . A further

computation establishes that a l l these generators are zero, so that

1(2) = {0}

(see Havas, Wall , and Wamsley [2]). Hence 5"(5, 2) has order 5 and

nilpotency class 12 .

Now, the class of A(2) is 3p - 3 = 12 . Moreover, by the result of

Kostrikin cited in §1 , the elements (1.2) of total degree less than or

equal to 2p - 2 = 8 are linearly independent6. Therefore, by Theorem 1,

E(2) is spanned by the elements (1.5).

We shall use the following notation for the 2 generators £ , E, ,

and their basic products of degree less than or equal to h :

Degree 1: £, = ̂  , n = £2 ;

Degree 2: Z, = n£ ;

Degree 3: ^ = CC , ? 2 = Cn ;

Degree7 4: ^ = ̂  , ? 1 2 = ̂ n , ? g 2 = x,^\ .

We shall also use the simplified notation (? n ? ...) instead of

(< IE,, mn, w£, ... >> .

We now list all the elements (1.5) according to total degree:

5 These results have been proved by Krause and Weston [6] and checked by
Havas, Wall, and Wamsley [2]. (Krause and Weston say the nilpotency class
is 13 while at the same time proving it is 12 .)

s It is not difficult to check this directly.

7 The product r = £2£ is equal to r by the Jacobi identity.
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Degree 10: (£UiA) ;

Degree 11: [ c V c J (i = 1, 2) ;

( e V ^ 2 ) (r = 3, 1*) ;

Degree 12: j ^ A j (U, j ) = (1, D , ( l , 2), (2, 2)) ;

J (r = 3, U; i = 1, 2) ;

(£Sn6-V) (fl = 2, 3, 10 .

Using the identity

we find that £(2) is generated as an ideal "by the elements

Further, these elements span an SL(2, 5)-module8, which is generated "by

the 3 elements corresponding to (0 = 5, C_, t, . Thus, in order to

prove that 1(2) is zero it suffices to prove that these 3 elements are

zero. This computation was carried out by Havas, Wall, and Wamsley ([2]).

References

[/] Jean Dieudonne, "On the Artin-Hasse exponential series", Proa. Amer.

Math. Soo. 8 (1957), 210-2lU.

[2] George Havas, G.E. Wall, and J.W. Wamsley, "The two generator

restricted Burnside group of exponent five", Bull. Austral. Math.

Soo. 10 (197*0, U59-U70.

[3] W. Holenweg, "Die Dimensionsdefekte der Burnside-Gruppen mit zwei

Erzeugenden", Comment. Math. Helv. 35 (1961), 169-200.

8 See the final paragraph of §2.1+ in

https://doi.org/10.1017/S0004972700008406 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008406


2 8 G . E . W a i I

[4] W. Holenweg, "Uber die Ordnung von Burnside-Gruppen mit endlich vielen

Erzeugenden", Corment. Math. Eelv. 36 (1962), 83-90.

[ 5 ] A.M. HocTpt-iHMH [ A . I . K o s t r i k i n ] , "0 CBFI3H nemfly nepMOflHHecKHMi-i

rpynnaMM M KO/ibqaMM JIM." [On the connection between periodic

groups and Lie r i n g s ] , Izv. Akad. Nauk SSSR Ser. Math. 21 (1957),

289-310; English Translation: Amer. Math. Soo. Transl. (2) 45

(1965), 165-189.

[6] Eugene F. Krause and Kenneth W. Weston, "On the Lie algebra of a

Burnside group of exponent 5 ", Proc. Amer. Math. Soo. 27

(1971), U63-U7O.

[7] M. Lazard, "Sur l e s groupes nilpotents e t les anneaux de Lie", Arm.

Soi. toole Norm. Sup. (3) 71 (195*0, 101-190.

[S] G.E. Wai I, "On the Lie ring of a group of prime exponent", Proc.

Second Internat. Conf. Theory of Groups, Canberra, 1973, 667-69O

(Lecture Notes in Mathematics, 372. Springer-Verlag, Berlin,

Heidelberg, New York, 197U).

Department of Pure Mathematics,

Univers i ty of Sydney,

Sydney,

New South Wales.

https://doi.org/10.1017/S0004972700008406 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008406

