
12

Hydrodynamics and thermalization

Since the systems described by quantum fields are by definition extended, it is
natural to think that in some limit they may reasonably well be approximated
as fluids. This means that the state of the system is parameterized by a few
locally well-defined fields such as temperature or energy density, obeying a set
of hyperbolic equations of motion. A concrete example is the extensive use of
fluid models to describe high-energy collisions [BelLan56, CarDuo73, CoFrSc74,
Bjo83, CarZac83].

Our earlier derivation of quantum kinetic theory suggests a way to put this
insight on a formal basis. Within its range of validity, the Boltzmann equation
will drive the one-particle distribution function towards local thermal equilib-
rium. On scales much larger than the local thermalization scale, we expect to see
hydrodynamical behavior [BeCoPa02]. This is, after all, the usual way of deriving
hydrodynamics from kinetic theory [Hua87]. Beware, notwithstanding, that even
at the level of classical kinetic theory there are still open questions regarding the
cross-over from the kinetic to the hydro regime [KarGor02, KarGor03].

If we understand hydrodynamics as stated in the first paragraph of this chap-
ter, then a system defined in terms of a quantum field may not have a hydro-
dynamic limit. This has been shown in [Elz02] for the case of a free Fermi field.
However, since the hydrodynamic description seems justifiable when applied
to the physics of quark–gluon plasmas (see the discussion in Chapter 14) and
early universe cosmology [Hu82, Hu83, CalGra02], we shall accept as a working
hypothesis that for “interesting” systems whose fundamental description involves
quantum fields there is a local thermal equilibrium limit where the system may
be described as a fluid. The specifics of quantum fields are manifested through
the gap equation and constitutive relations, whose derivation will be our main
goal in this chapter.

Let us begin, however, with a brief review of basic thermodynamics, and then
its relativistic generalization. The subject of hydrodynamics is one where the
generally covariant formulation is actually simpler than the flat spacetime one,
and much simpler than the nonrelativistic version. Therefore, it is worth investing
some initial effort to familiarize ourselves with the generally covariant approach
from scratch. Our presentation follows the review articles by Israel [Isr72, Isr88];
see also [Cal98].
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346 Hydrodynamics and thermalization

12.1 Classical relativistic hydrodynamics

12.1.1 A primer on thermodynamics

The basic tenets of thermodynamics we need to keep in mind are the following: we
have a (simple) system described by some intensive parameters (temperature T,

chemical potential μ, pressure p, etc.) whose meaning we take for granted (e.g.
we already know everything about the zeroth law) and extensive parameters,
such as energy U , entropy S, volume V , and particle number N (we use particle
number for concreteness, but any – or several – conserved charge(s) would serve
just as well). In equilibrium, all these quantities are position independent. Their
first deviations from equilibrium are related by the first law

TdS = dU + pdV − μdN (12.1)

Extensive quantities are homogeneous functions of each other, so we must have

TS = U + pV − μN (12.2)

From the differential of this second identity we obtain the Gibbs–Duhem relation

dp = sdT + ndμ (12.3)

where s = S/V and n = N/V are the entropy and particle number densities,
respectively. This means

∂p

∂T

∣∣∣∣
μ

= s =
ρ + p− μn

T
;

∂p

∂μ

∣∣∣∣
T

= n (12.4)

where ρ = U/V is the energy density.
Actually, it is convenient to adopt as independent variables T and α = μ/T,

whereby

∂p

∂T

∣∣∣∣
α

=
ρ + p

T
;

∂p

∂α

∣∣∣∣
T

= Tn (12.5)

We may also write

S = Φ +
(

1
T

)
U − αN (12.6)

where the thermodynamic potential Φ = pV/T is the logarithm of the grand-
canonical partition function. Finally we have the second law

TdS ≥ dQ (12.7)

This concludes our mini-tutorial on nonrelativistic thermodynamics.

12.1.2 Covariant hydrostatics

We now generalize the above framework of thermodynamics to a relativistic fluid
evolving in a spacetime with an arbitrary metric gμν . After overcoming some
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12.1 Classical relativistic hydrodynamics 347

initial threshold, the reader will be rewarded in the long run by the economy
and exactitude of this formulation. All derivatives shall be covariant derivatives
with respect to the Levi-Civita connection, so that gμν;ρ ≡ 0. We use MTW
conventions [MiThWh72].

The divergence of a (contravariant) vector Xμ is defined by

Xμ
;μ =

1√−g
∂μ
(√−gXμ

)
(12.8)

(where ∂ denotes an ordinary derivative), and the flux of a vector through a
hypersurface Σ is ∫

d3x
√

(3)gnμX
μ (12.9)

where (3)gab is the induced metric on the surface and nμ is the outer normal.
If the surface element is space like (that is, the normal is a time-like vector)
we adopt the convention that n0 < 0 (so that n0 > 0, recall that g00 < 0 in any
frame). For example, in ordinary Minkowski space we say a t = constant surface
is space like, and its normal nμ = (∂/∂t)μ = (1, 0, 0, 0). Then we obtain Gauss’
theorem ∫

V

d4x
√−g Xμ

;μ =
∫
∂V

d3x
√

(3)g (εnμ)Xμ (12.10)

where ε = 1 if the normal is space like, and −1 if time-like.
To simplify matters we will describe the construction of a covariant theory in

terms of a set of rules:

(a) Intensive quantities (T, p, μ) are associated with scalars, which represent the
value of the quantity at a given event, as measured by an observer at rest
with respect to the fluid.

(b) Extensive quantities (S, V,N) are associated with vector currents Sμ, uμ, Nμ,
such that for any given space like surface element dΣμ = nμdΣ, then the
amount of quantity X within the volume dΣ as measured by an observer
with velocity nμ is given by −XμdΣμ. Therefore xn = −nμX

μ is the density
of the quantity X measured by such an observer. If the quantity X is con-
served, then Xμ

;μ = 0. The quantity uμ associated with volume is the fluid
4-velocity, and obeys the additional constraint u2 = −1. We call density tout
court the density measured by an observer comoving with the fluid, namely
x = −uμX

μ.
(c) Energy and momentum are combined into a single extensive quantity

described by an energy–momentum tensor Tμν which is symmetric. The
energy current, properly speaking, is Uμ = −Tμνuν , and the energy density
ρ = Tμνuμuν .

We wish to describe a fluid in a state of equilibrium. However, we do not assume
that the metric is stationary; at the very least, we must allow for the possibility
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348 Hydrodynamics and thermalization

that the metric appears time dependent in our chosen coordinates. An example
is a static de Sitter universe whose metric appears as an expanding spatially
flat universe if written locally in Robertson–Walker metric form. Because of the
(possibly) changing metric, we cannot expect that the relevant quantities are
position independent. We shall only assume that the fluid is isotropic in the rest
frame. This means that in the equilibrium state all vector currents are collinear
with the velocity, the mixed components of Tμν vanish in the rest frame, and the
spatial components (namely, the momentum flux) are isotropic. In other words,
in equilibrium we may decompose

Nμ = nuμ, Tμν = ρuμuν + pΔμν , Δμν = gμν + uμuν (Δμνuν = 0)

(12.11)

where p is the equilibrium or hydrostatic pressure of the fluid. The entropy
current Sμ is given by TSμ = −Tμνuν + puμ − μNμ, which we rewrite as

Sμ = Φμ − βνT
μν − αNμ (12.12)

Here, we have introduced the thermodynamic potential current Φμ = pβμ, and
the inverse temperature vector βμ = T−1uμ. Observe that T−2 = −βμβμ. Con-
tracting with uμ we get Ts = p + ρ− μn, so locally we recover the usual ther-
modynamics. The first law becomes

TdSμ = −d(Tμνuν) + pduμ − μdNμ = −uνdT
μν − μdNμ (12.13)

Contracting the Gibbs–Duhem relation (dT )Sμ = (dp)uμ − (dμ)Nμ with the
4-velocity, we recover the derivatives (12.5). If we regard the thermodynamic
potential as a function of βμ and α, then

∂Φμ

∂βν
= pδμν + (p + ρ)uμuν = Tμ

ν ;
∂Φμ

∂α
= nuμ = Nμ (12.14)

so

Sμ
;μ = −βνT

μν
;μ − αNμ

;μ (12.15)

This means that entropy production vanishes in equilibrium, provided the con-
servation laws of energy–momentum and particle number hold. Now, linear devi-
ations from equilibrium are constrained by the first law (12.13). If we consider a
state which deviates linearly from equilibrium, but where the conservation laws
still hold, then in this state the entropy production must be

d
(
Sμ

;μ

)
= (dSμ);μ = −βν;μdT

μν − α,μdN
μ (12.16)

On the other hand, entropy production must be stationary at equilibrium, so the
linear variation must vanish, whatever the deviations dTμν and dNμ might be.
In equilibrium the inverse temperature vector must be a Killing field (β(ν;μ) = 0)
and α must be constant. Being a Killing field means that a coordinate transfor-
mation of the type xμ → xμ + εβμ is a symmetry of the underlying spacetime.
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12.1 Classical relativistic hydrodynamics 349

Observe that not every spacetime or field theory may support an equilibrium
state.

If we consider the variation of the entropy content within some spatial region Σ
as a function of time, the second law demands that the increase in entropy should
be higher than the entropy flow through the boundary δΣ. Thus the covariant
statement of the second law is that entropy production must be positive, i.e.
Sμ

;μ ≥ 0.

12.1.3 Ideal and real fluids

In order to generalize the above framework to hydrodynamics (rather than hydro-
statics) let us first introduce the concept of an ideal fluid , namely a fluid where
the decomposition (12.11) is always available, not just under equilibrium con-
ditions. Everything we said about equilibrium states is valid for an ideal fluid
even away from equilibrium; this applies in particular to the vanishing of entropy
production.

The equations of motion for the perfect fluid are the conservation laws for
energy–momentum and particle number. Suppose we know α to be constant (for
example, α = 0). Then energy–momentum conservation implies the identities
(recall that uμu

μ
,ν = 0)

ρ,t − (ρ + p)uν
;ν = 0; − (ρ + p)uμ

,t + Δμνp,ν = 0 (12.17)

where X,t ≡ −uμX,μ. The second equation is the Navier–Stokes equation for a
fluid without viscosity. Since ρ and p become space dependent only through their
temperature dependence, we may write ρ,t = ρ,TT,t, and similarly for p. Using
the identity (12.5), equations (12.17) simplify to

1
T
T,t −c2su

ν
;ν = 0; −uμ

,t +
1
T

ΔμνT,ν = 0 (12.18)

which can be reduced in a standard way to the wave equation with

cs =
√
p,T /ρ,T (12.19)

denoting the speed of sound.
We are interested in weakly nonideal fluids, namely, fluids which are not ideal,

but whose properties remain close to a reference ideal fluid. The first obstacle
we encounter is an ambiguity in the concept of the velocity of the fluid.

In effect, if the decomposition (12.11) fails, then the motion of mass does not
agree with the motion of the conserved charges. In other words, heat transfer
implies energy transfer, and therefore mass transfer, even if there is no charge
flow. Therefore we must define what we mean by velocity. In practice, two differ-
ent conventions have proved useful, namely the Eckart and the Landau–Lifshitz
prescriptions [Wei72, LanLif59].

In the Eckart prescription, velocity and particle number densities are defined
from the particle number current through the equations Nμ = nuμ, u2 = −1, and
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350 Hydrodynamics and thermalization

the energy density is read off the energy–momentum tensor ρ = Tμνuμuν . In the
Landau–Lifshitz prescription, the velocity is defined as the (only) normalized
time-like eigenvector of the energy–momentum tensor, and the energy density
is (minus) the corresponding eigenvalue: Tμν = ρuμuν + Tμν

T , with Tμν
T uν = 0.

The number density is read off the number current, n = −uμN
μ. In either

case, the reference ideal fluid is chosen as having the same velocity, energy
and particle number densities as the actual flow. The equation of state pre-
scribes the pressure, p0 = p0(ρ, n) of the reference fluid, and we may param-
eterize Tμν

T = (p0 + π) Δμν + Tμν
TT , where Tμν

TTuν = Tμ
TTμ = 0. Here π measures

the deviation of the isotropic part of the stress tensor from its local equilibrium
value. By definition, it is the product of the bulk viscosity of the real fluid times
the local rate of expansion.

We must emphasize that, although so far we may think of the Eckart and
Landau–Lifshitz prescriptions as simply different conventions, later on, when we
impose constitutive relations, say, linking viscous stresses to velocity gradients,
these different prescriptions will lead to different physical models of the fluid.
For reasons which will become clear in due time, we adopt the Landau–Lifshitz
prescription.

Let us write the energy–momentum and particle number currents for a real
fluid as

Tμν = Tμν
0 + τμν ; Nμ = Nμ

0 + jμ (12.20)

where Tμν
0 = ρuμuν + p0Δμν and Nμ

0 = nuμ are the energy–momentum and par-
ticle number current of a reference ideal fluid. We emphasize that, while ρ and n

have a direct operational meaning, p0 is a theoretical construct. Concretely, p0

results from using ρ and n as inputs in the equation of state for the ideal fluid.
Recall that τμνuν = jμuμ = 0.

In order to complete the specification of the model for the real fluid, we
must describe also the entropy current. To do this, let us go back to our dis-
cussion of hydrostatics. There we saw that, if we consider an arbitrary state
departing by amounts dTμν and dNμ from an equilibrium state, then, to
first order in departures from equilibrium, the entropy production is given by
(dSμ);μ = −βν;μdT

μν − α,μdN
μ.

We shall apply this formula to two nonequilibrium states of two different fluids
(namely, the real and reference ideal ones) rather than to nonequilibrium and
equilibrium states of the same fluid, while disregarding the higher order correc-
tions. Suffice it to be forewarned that these assumptions are not rigorous (we
shall return to this point later) and will get us in trouble.

We therefore adopt as our model for a real fluid the entropy production formula

Sμ
;μ = −βν;μτ

μν − α,μj
μ (12.21)

which may be easily integrated to a formula for the entropy current, namely

Sμ = Φμ
0 − βνT

μν − αNμ (12.22)
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where Φμ
0 = p0β

μ. This formula may look like a simple extension of the corre-
sponding one for the equilibrium entropy current, but it is not, since it depends
on keeping the ideal form for the thermodynamic potential but replacing the
other two terms by their real counterparts.

The second law, in the form of positivity of entropy production, allows us to
put further restrictions on the form of τμν and jμ. For example, if we demand
that −α,μj

μ be nonnegative while jμ is transverse, then we are led to

jμ = −κΔμνα,ν (12.23)

and the second law implies κ ≥ 0. This coefficient is related to heat conductivity.
In the other term, it is convenient to decompose βν;μ in its components along

the direction transverse to the velocity, symmetrize, and, in the transverse part,
extract the trace part to obtain

β(μ;ν) = {PL + PLT + PT + PTT }μνρσ βρ;σ (12.24)

where

Pμνρσ
L = uμuνuρuσ (12.25)

Pμνρσ
LT =

−1
2

[uμuρΔνσ + uνuσΔμρ + uνuρΔμσ + uμuσΔνρ] (12.26)

Pμνρσ
T =

1
3
ΔμνΔρσ (12.27)

Pμνρσ
TT =

1
2

[
ΔμρΔνσ + ΔμσΔνρ − 2

3
ΔμνΔρσ

]
(12.28)

Observe that the P ’s are symmetric, mutually orthogonal projectors. Since more-
over PLτ = PLT τ = 0, and PT τ = πΔρσ, we obtain

−βν;μτ
μν = −πΔρσβρ;σ − Tμν

TT [PTTβρ;σ]μν (12.29)

which leads us to

Tμν
TT = −2ηT [PTTβρ;σ]μν ; π = −ζTΔρσβρ;σ (12.30)

where the coefficients η and ζ are, respectively, the shear (or first) and bulk (or
second) viscosities, and they must be nonnegative.

The reason why we have introduced factors of temperature explicitly in the
above formulae is that they cancel the corresponding powers of T−1 in

βρ;σ =
1
T

{
−T,σ

T
uρ + uρ;σ

}
(12.31)

The first term vanishes under the projectors, and the second is purely transverse
(uρuρ;σ = 0), so

Tμν
TT = −ηHμν ; π = −ζuσ

;σ (12.32)

Hμν = 2 [PTTuρ;σ]μν (12.33)
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which are the most often quoted forms. It is easy to see that with these con-
stitutive relations, energy–momentum conservation leads to the Navier–Stokes
equation in covariant form.

This outcome is very good from the phenomenological point of view, but trou-
blesome from a theoretical point of view, as it can be proven that the covariant
Navier–Stokes theory admits no stable solutions [HisLin83, HisLin85]. Eventu-
ally we shall learn to live with this contradiction, but let us elaborate on it a
little further, to the point where at least we understand what we have settled for.

12.1.4 Stability and the Landau–Lifshitz theory

Rather than attempting a direct study of stability in the Navier–Stokes equa-
tions, we shall show that the theory for a real fluid just constructed is a partic-
ular case of a class of theories which satisfy the essential condition of causality,
whereas the Landau–Lifshitz theory does not. These are the divergence type the-
ories of Geroch and Lindblom [GerLin90]. To simplify our discussion, we shall
assume α ≡ 0 throughout, since this is the relevant case to compare against the
quantum theory of a real scalar field.

In a divergence type theory, the degrees of freedom XA of the theory are used
to construct currents Tμ

A, which are assumed to be ultralocal functions of the
XA (that is, they depend on the XA at each point, but not on their derivatives).
The equations of motion take the form of conservation laws for the currents
Tμ
A;μ = IA. For simplicity, let us assume linear production terms, IA = −VABX

B

with a nonnegative matrix VAB (this will be the relevant case below).
Suppose we consider a linear departure δX from some solution to the equations

of motion, say X = 0. To make it even simpler, suppose that the Cauchy data are
homogeneous in space, so that δX depends only on time. Then the equations of
motion take the form MABδẊ

B = −VABδX
B , where MAB = ∂T 0

A/∂X
B . If the

solution we are starting from is stable, then δX must regress, and since the matrix
V is nonnegative, for this to be true the matrix M must be positive definite. In
a covariant theory, moreover, this must be true for any choice of time variable,
and so we conclude that the matrix −tμ∂T

μ
A/∂X

B must be positive definite for
every future-oriented, time-like vector tμ, or, equivalently, the vector

∂Tμ
A

∂XB
δXAδXB (12.34)

must be time-like and future oriented for any choice of the δX displacements.
This is our simple stability criterion.

The Landau–Lifshitz prescription does not directly fit in this scheme, because
under the obvious choice XA → βμ, Tμ

A → Tμν , the energy–momentum tensor is
not ultralocal. We must first extend the number of degrees of freedom, so that
we can write the theory as first order throughout.

Concretely we introduce a new traceless, symmetric tensor ζμν (ζμμ = 0) and
write (we shall omit indices, for simplicity) the viscous stress tensor as τ = Cζ.
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12.2 Quantum fields in the hydrodynamic limit 353

In time, we want this to be equivalent to the constitutive relations (12.30),
which we write as τ = −B∇β. To this end, we introduce a new current Aμνρ =
(T 2/2) [Δμνβρ + Δμρβν ] . The divergence of this current may be expressed in
terms of first derivatives of the velocity, Aμνρ

,ρ = D∇β. Then, by imposing the
conservation law ∇A = −(DB−1C)ζ, we see that indeed the new form τ = Cζ

of the viscous stress is equivalent to the old one.
So now we have a theory of fields βμ and ζμν , and ultralocal currents Tμν

and Aμνρ, and are ready to apply the stability criterion. But then we realize
that, while Tμν depends on all fields, Aμνρ depends on βμ only. The vector in
equation (12.34) cannot possibly be time-like for every displacement, since a
whole diagonal block is missing from ∂Tμ

A/∂X
B . So the Landau–Lifshitz theory

fails the stability criterion.
The failure of the Landau–Lifshitz approach to depict real fluids may be

attributed to two unwarranted assumptions, namely, that the real fluid could
be described with the same set of variables and with the same entropy current
as its perfect counterpart. As a matter of fact, all that equilibrium thermody-
namics suggests is that, whatever extra variables are brought in to describe
the nonequilibrium state, they must vanish in equilibrium, and the entropy
current must match its equilibrium value up to first order in the deviations
from equilibrium. In other words, when we write the entropy production as
Sμ

;μ = −βν;μτ
μν − α,μj

μ we are neglecting second-order deviations from equi-
librium. But under the Landau–Lifshitz constitutive relations, the two terms we
are retaining are second order themselves. The inconsistency of keeping only
some second-order terms is the root cause of our problems.

The fact remains that the Navier–Stokes theory is highly successful phe-
nomenologically. The answer to this riddle seems to be that the would-be run-
away perturbations of the Landau–Lifshitz theory are in reality high-frequency
oscillations around the Navier–Stokes solutions. These oscillations cancel out if
evolution is averaged over macroscopic time-scales, and therefore they do not
appear in actual observations [NaOrRe94, KrNaOrRe97]. With this understand-
ing, we shall carry on with the Landau–Lifshitz theory [Ger01].

12.2 Quantum fields in the hydrodynamic limit

12.2.1 Quantum hydrodynamic models

Since thermodynamics alone cannot provide further information on the transport
functions, to proceed, we must place the above discussion in the context of a
more fundamental description of the field, namely, the quantum kinetic field
theory based on the Kadanoff–Baym equations. Let us begin with analyzing the
equilibrium states.

Since we shall only discuss the theory of a real scalar field, we may also set
α = 0 from scratch. This reflects the fact that a real scalar field is its own
antiparticle. Thus our problem is to connect the hydrostatic equilibrium states,
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354 Hydrodynamics and thermalization

described by an ideal energy–momentum tensor Tμν
0 = ρuμuν + p0Δμν , with the

equilibrium kinetic theory states, described by the Bose–Einstein distribution
f0 = [exp |βp| − 1]−1.

To begin with, let us identify the energy–momentum tensor with the expec-
tation value of the corresponding Heisenberg operator. This is derived from the
CTPEA Γ. The arguments of Γ are field configurations on a closed time path
and in general we will have different metrics g

(1)
μν and g

(2)
μν in the forward and

backward branches, respectively. The energy–momentum tensor is defined by the
formula (valid for a general state)

Tμν =
2√−g

δΓ

δg
(1)
μν

(12.35)

where only the derivative with respect to the metric in the first time branch is
taken. After the derivative is taken we identify g

(1)
μν and g

(2)
μν with the physical

metric gμν . The effective action itself is given by

Γ[G] = − i�

2
Tr lnG +

1
2
S,ABG

AB + Γ2[G], (12.36)

where the functional Γ2 is −i� times the sum of all two-particle-irreducible dia-
grams with lines given by G and vertices given by the quartic interaction. The
first term Tr lnG does not depend on the metric. Written in full, the second term
reads

1
2

∫
d4x

{√
−g(1)

(
∂2
x −m2

b

)
G11 (x, x′)

∣∣∣
x′=x

− (1 → 2)
}

(12.37)

As usual

δ
√−g

δgμν
=

1
2
√−ggμν ;

δgμν

δgρσ
= −gμρgνσ (12.38)

and so the contribution from this term to Tμν is[
−∂μ∂ν +

1
2
ημν
(
∂2
x −m2

b

)]
G11 (x, x′)

∣∣
x′=x

(12.39)

In the third term, the metric appears through the
√−g factors multiplying the

coupling constants. The contribution to Tμνtakes the form

−λb

8
ημν
[
G11 (x, x)

]2 − Λ̃bη
μν (12.40)

where Λ̃b contains all the higher order contributions. To the accuracy desired,
Λ̃b is position independent, and we shall not analyze it further. Adding the two
nontrivial contributions we get

Tμν = −
[
∂μ∂ν − 1

2
ημν∂2

x

]
G11 (x, x′)

∣∣∣∣
x′=x

− ημν

2

[
m2

b +
λb

4
G11 (x, x)

]
G11 (x, x) − Λ̃bη

μν (12.41)
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We assume the quasi-particle approximation for G11

G11 =
(−i�)

p2 + M2 − iε
+ 2π�δ

(
p2 + M2

)
f (X, p) (12.42)

f is the solution to a kinetic equation of the form

pμ
∂f

∂Xμ
− 1

2
M2

,μ

∂f

∂pμ
= Icol (X, p) (12.43)

We only assume energy–momentum conservation∫
Dp pμIcol (X, p) = 0; Dp =

d4p

(2π)3
θ
(
p0
)
δ (Ω0) (12.44)

where Ω0 = p2 + M2. Observe that equation (12.42) implies that f must be real
and even in p. In turn, the effective mass M2 is the solution of the gap equation
(11.65) given in Chapter 11.

To write the energy–momentum tensor in terms of the distribution func-
tion, observe that ∂x → ip + 1

2∂X . We must neglect second derivative terms,
and observe that terms involving p∂X eventually vanish because G11 (X, p) is
even in p. So

Tμν (X) =
∫

d4p

(2π)4

[
pμpν − 1

2
ημνp2

]
G11 (X, p)

− 1
2
ημν
[
m2

b +
λb

4
G11

]
G11 − Λ̃bη

μν (12.45)

Let us isolate

Tμν
V = −i�

∫
ddp

(2π)d

[
pμpν − 1

2η
μνp2

]
p2 + M2 − iε

≡ −ημνΛ1 (12.46)

where

Λ1 =
(

(d− 2)
2d

)
ημνμε

�

∫
ddp

(2π)d
(−i) p2

p2 + M2 − iε
=

M4
�

32π2

[
z − 1

4
− 1

2
ln
(

M2

4πμ2

)]
(12.47)

and z was defined in (11.69) of Chapter 11. Also write

�

∫
d4p

(2π)4
pμpν2πδ (Ω0) f (X, p) ≡ Tμν

T (12.48)

and observe that∫
d4p

(2π)4

(
−1

2
p2

)
2πδ (Ω0) f (X, p) =

1
2
M2M2

T (12.49)

so we get Tμν = Tμν
T − Λbη

μν , with

Λb = Λ1 +
1
2

[
m2

b +
λb

4
G11

]
G11 + Λ̃b −

�

2
M2M2

T (12.50)
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If we regard G11 (x, x) and M2
T as functions of M2 defined by the gap equa-

tion, then Λb is a function of M2 too, meaning that there is no explicit state
dependence other than through M2.

Our first concern is to eliminate the formal divergences from these expressions,
following the procedure outlined in Chapter 11. With respect to the renormaliza-
tion of the cosmological constant Λb term, we observe that any M2 independent
term may be absorbed in the gravitational action (even if it is formally infinite).
So we only need to show that dΛb/dM

2 is finite. Now, the gap equation yields
dG11/dM2 = 2/λb, and

dΛb

dM2
=

−�

2
M2

T (12.51)

Consistency requires that we actually neglect the O
(
λ2
)

terms in Λ̃b, or at least
that we consider them as a true (temperature independent) constant. Equation
(12.51) then implies that energy–momentum conservation follows from the trans-
port equation. Henceforth we shall assume that any constant contribution has
been subtracted, and drop the b subscript.

To summarize, what we have done in this section is to introduce a class of
theories which, although they receive some support as the long-wavelength limit
of an underlying quantum field theory, may be – indeed, should be – studied as
bona fide models of physical systems. These theories describe fluids with energy–
momentum tensor Tμν = Tμν

T − Λgμν , where the first term is defined from a
one-particle distribution function f in equation (12.48), and Λ is the solution to
equation (12.51), with M2

T also defined in terms of f . The construction of the
model is completed by stipulating the collision term in the Boltzmann equation
for f and the gap equation, given by

M2 − ϕ
(
M2, μ2

)
=

�λ

2
M2

T (12.52)

The two functions Icol and ϕ allow us to incorporate some higher order effects
into the same general scheme.

Charge conservation may be introduced as in classical hydrodynamics through
the corresponding currents, provided the collision term has the required symme-
try. The entropy current was defined in Chapter 2, equation (2.98). From this,
entropy production is given by

Sμ
;μ = 2

∫
Dp

[
ln

(1 + f)
f

]
Icol (12.53)

where Dp was introduced in (12.44). The positivity of this integral is an expres-
sion of the H-theorem.

12.2.2 Thermal equilibrium states

Our next task is to investigate the equation of state for an equilibrium state
described by a Bose–Einstein distribution function f0. The energy–momentum
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tensor takes the perfect fluid form. The thermal component Tμν
T admits a similar

decomposition

Tμν
0T = 2�

∫
Dp pμpνf0 (X, p) = ρTu

μuν + pTΔμν (12.54)

where

ρT = 2�

∫
Dp (up)2 f0 (X, p) (12.55)

Since ρT and M2
T are scalars, we may compute them in the rest frame

ρT =
�

2π2

∫ ∞

M

dω ω2f0 (ω)
√
ω2 −M2 (12.56)

M2
T =

1
2π2

∫ ∞

M

dω f0 (ω)
√
ω2 −M2 (12.57)

For the thermal pressure, we find 3pT − ρT = −�M2M2
T , so

pT =
1
3
(
ρT − �M2M2

T

)
=

�

6π2

∫ ∞

M

dω
[
ω2 −M2

]3/2
f0 (12.58)

The total energy density and pressure are then ρ = ρT + Λ and p = pT − Λ.
The equilibrium entropy current takes the form

Sμ
0 = pβμ − Tμν

0 βν = (ρ + p)βμ = (ρT + pT )βμ (12.59)

On the other hand, equation (2.98) yields Sμ
0 = Φμ

0T − Tμν
0T βν , where

Φμ
0T = −2

∫
Dp pμ ln

[
1 − e−|�βμp

μ|
]

(12.60)

This form of the thermodynamic potential recalls another equivalent expression
for the thermal pressure

pT
T

=
−1
2π2

∫ ∞

M

dω ω
√
ω2 −M2 ln

[
1 − e−�βω

]
(12.61)

Together (12.51) and (12.61) imply the thermodynamic relationship dp/dT =
(p + ρ)/T . (Here and hereafter, we shall use d/dT to denote a total temperature
derivative, which accounts for the explicit temperature dependence through f0

as well as the implicit dependence through M2. We shall use ∂/∂T when we
mean only the former.) Indeed, equation (12.61) implies

T
dpT
dT

= pT + ρT − �M2
T

2
T
dM2

dT
(12.62)

but pT + ρT = ρ + p, and

T
dp

dT
= T

dpT
dT

− T
dΛ
dT

= T
dpT
dT

+
�M2

T

2
T
dM2

dT
(12.63)

Observe that for T 2 � M2 we recover the Stefan–Boltzmann law and p = ρ/3,
as expected (in this regime, the cosmological constant ∼ M2T 2 is negligible
compared to ρ ∼ T 4). This concludes our study of the equilibrium states.
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12.2.3 Local equilibria

We now extend this analysis to local equilibrium states. The idea is to generate
a solution to the transport equation as a formal expansion “in derivatives of”
βμ, replace this solution in the definition of Tμν , and to compare the result to
the Landau–Lifshitz energy–momentum tensor for a real fluid. The first point to
realize is that it is not possible to assume arbitrary values for the derivatives of
the temperature 4-vector at a given point; they must satisfy constraints derived
from the symmetries of the transport equation. These constraints may be used
to eliminate the time derivatives of the inverse temperature 4-vector from the
equations.

Let us recall the transport equation (12.43). Write f = f0 + f1, where f1 is
“first order,” and observe that, since the collision integral involves no derivatives,
Icol [f0] = 0. Therefore, to first order, we may write Icol [f ] = K̃ [f1] , where the
operator K̃ is linear. To analyze the left-hand side, let us assume p0 > 0, so
that

f0 =
1

e−�βμpμ − 1
(12.64)

Then

�f0 (1 + f0)
{
pμpνβμ;ν − 1

2
βμM2

,μ

}
= K̃ [f1] (12.65)

Our goal is to solve for f1. However, we must realize there are integrability
conditions derivable from (12.44), so a solution exists only when

�

∫
Dp f0 (1 + f0)

{
pκpμpνβμ;ν − 1

2
pκβμM2

,μ

}
= 0 (12.66)

The idea is to use the integrability conditions to eliminate time derivatives from
the linearized transport equations, thereby obtaining an equation relating f1 to
spatial derivatives of the inverse temperature tensor only.

Since the integrability conditions are clearly covariant, we may write them
down in any frame, in particular, the rest frame. In general, we have βμ =
(1/T

√
1 − v2)(1,v). In the rest frame, v = 0, the above equations result in

〈
ω3
〉 Ṫ

T 2
+

1
3
〈
ω
(
ω2 −M2

)〉 ∇v
T

− 1
2
〈ω〉TM2

,T

Ṫ

T 2
= 0 (κ = 0) (12.67)

1
3T
〈
ω
(
ω2 −M2

)〉 [
(v). +

∇T

T

]
= 0 (κ = 1, 2, 3) (12.68)

In these expressions, we have introduced the notation

〈X〉 =
∫

Dp f0 (1 + f0)X

=
1

2π2

∫ ∞

M

dω
√
ω2 −M2f0 (1 + f0)X (12.69)
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To simplify the integrability conditions, recall that

dρ

dT
=

dρT
dT

+
dΛ
dT

=
∂ρT
∂T

+ M2
,T

[
∂ρT
∂M2

− �

2
M2

T

]
(12.70)

∂ρT
∂T

= �
2

〈
ω3
〉

T 2
(12.71)

∂ρT
∂M2

=
(−�

2

)
1

2π2

∫ ∞

M

dω
ω2

√
ω2 −M2

f0

=
(−�

2

)
1

2π2

∫ ∞

M

dω

(
d

dω

√
ω2 −M2

)
ωf0 =

(
�

2

)[
M2

T − � 〈ω〉
T

]
(12.72)

so

〈
ω3
〉
− 1

2
〈ω〉TM2

,T =
T 2

�2

dρ

dT
(12.73)

On the other hand,

dp0

dT
=

dp0T

dT
− dΛ

dT
=

∂p0T

∂T
+ M2

,T

[
∂p0T

∂M2
+

�

2
M2

T

]
(12.74)

∂p0T

∂M2
= −�

2
M2

T (12.75)

∂p0T

∂T
=

�
2

3T 2

〈
ω
(
ω2 −M2

)〉
(12.76)

Also, recall that

dp0

dT
=

p0 + ρ

T
(12.77)

so finally 〈
ω3
〉
−M2 〈ω〉 =

3T
�2

(p0 + ρ) (12.78)

The integrability conditions are simply the conservation equations for the ideal
energy–momentum tensor built out of f0. These equations determine the dynam-
ics of local equilibrium states.

We may regard (12.73) and (12.78) as a system of equations for the two
unknowns 〈ω〉 and

〈
ω3
〉
, which yields

〈
ω3
〉

=
T 2

�2

dρ

dT

[
M2 − 3

2TM
2
,T c

2
s

]
[
M2 − 1

2TM
2
,T

]
〈ω〉 =

T 2

�2

dρ

dT

[
1 − 3c2s

][
M2 − 1

2TM
2
,T

] (12.79)

where c2s is the speed of sound (12.19).
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12.3 Transport functions in the hydrodynamic limit

While in equilibrium the energy–momentum tensor for the quantum fields takes
the ideal fluid form, for mere local equilibrium this will not be so. In general,
we may seek a solution of the transport equation as a formal series “in deriva-
tives of the hydrodynamic variables.” The first order in this series is given by
the solution to the linearized equation (12.65). When the corrected distribution
function is employed to compute the energy–momentum tensor, we get non-
ideal terms which are, by construction, linear in gradients. By matching these
terms to the Landau–Lifshitz template, we may read off the transport functions,
thereby “deriving” the constitutive relations for the quantum real fluid. This is,
of course, the traditional way of deriving the transport functions from kinetic
theory [ChaCow39, GrLeWe80, Lib98, Hei94]; what is new is the unconventional
form of the collision integral. Our treatment here follows [CaHuRa00].

It is amusing to observe that, while in deriving the Kadanoff–Baym equations
we had to justify at every step the neglect of higher gradient terms (and were
admittedly not always quite convincing), the transport terms are lifted from
terms in the energy–momentum tensor which are linear in gradients by definition.
So many approximations which may be controversial at the quantitative level,
are fully legitimate in the context of the derivation of the constitutive relations.
We shall not discuss the further issue of whether a first-order theory is a good
description of the quantum field in the hydrodynamic limit.

Let us begin by eliminating time derivatives from the left-hand side of the
linearized transport equation (12.65). In the rest frame

βμ,ν =
1
T

(
Ṫ
T

∇T
T

v̇ vi,j

)
(12.80)

Using the integrability conditions we get

βμ,ν =
1
T

(
−c2s∇v ∇T

T

−∇T
T vi,j

)
(12.81)

Obviously only the symmetric part contributes to the linearized transport equa-
tion. Also

1
2
M2

,μβ
μ =

1
2
M2

,T

Ṫ

T
=

−c2s
2

M2
,T∇v (12.82)

Splitting v(i,j) into the diagonal and the traceless parts, and reverting to the
covariant form, we get the left-hand side of (12.65) as

�f0 (1 + f0)
[

1
T
pμpνH

μν − 1
T

{
(p.u)2

[
c2s −

1
3

]
+

M2

3
− c2s

2
TM2

,T

}
uλ
,λ

]
(12.83)

where Hμν was defined in (12.33).
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12.3.1 The collision term

On the right-hand side of the transport equation the collision integral has the
structure of the balance between a gain and a loss term [FiGaJe06]. Let us
consider a collision process whereby n reactant particles are transformed into m

product ones. We get a gain when one of the product particles has the moment
p1, say, where we wish to evaluate Icol. Let the other product particles have
momenta p2, . . . pm, and the reactants have momenta q1,. . . qn. Then the gain
term is

�σ2
n,m [q,p] δ

⎛
⎝ m∑

j=1

pj −
n∑

i=1

qi

⎞
⎠ m∏

j=1

(1 + f (pj))
n∏

i=1

f (qi) (12.84)

where we have made explicit use of the energy–momentum conservation and
placed properly the Bose enhancement factor. The corresponding loss term is

�σ2
n,m [q,p] δ

⎛
⎝ m∑

j=1

pj −
n∑

i=1

qi

⎞
⎠ n∏

i=1

(1 + f (qi))
m∏
j=1

f (pj) (12.85)

We make the micro-reversibility assumption that the cross-section σ2 is the same
for both processes. The collision integral is

Icol [p1] = �

∑
n,m

∫ n∏
i=1

Dqi

m∏
j=2

Dpj σ
2
n,m [q,p] δ

⎛
⎝ m∑

j=1

pj −
n∑

i=1

qi

⎞
⎠

×

⎧⎨
⎩

m∏
j=1

(1 + f (pj))
n∏

i=1

f (qi) −
n∏

i=1

(1 + f (qi))
m∏
j=1

f (pj)

⎫⎬
⎭ (12.86)

In equilibrium, each (n,m) term vanishes independently. We assume the cross-
sections are invariant under permutations of the reactants and products, sep-
arately. For reasons made clear below, we are interested in collision integrals
which do not conserve particle number, meaning∫

Dp1 Icol [p1] �= 0 (12.87)

Explicitly, this says

∑
n>m

∫ n∏
i=1

Dqi

m∏
j=1

Dpj
[
σ2
n,m [q,p] − σ2

m,n [p,q]
]
δ

⎛
⎝ m∑

j=1

pj −
n∑

i=1

qi

⎞
⎠

⎧⎨
⎩

m∏
j=1

(1 + f (pj))
n∏

i=1

f (qi) −
n∏

i=1

(1 + f (qi))
m∏
j=1

f (pj)

⎫⎬
⎭ �= 0 (12.88)

so in general we request σ2
n,m [q,p] �= σ2

m,n [p,q] if n �= m. In an explicit pertur-
bative calculation, we find that, to order λ2, only σ2

2,2 is not zero, yielding the
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usual Boltzmann collision integral. To order λ4, both σ2
2,4 and σ2

4,2 are activated,
and the inequality may be explicitly verified (in fact, σ2

2,4 ∼ 2σ2
4,2).

12.3.2 The linearized transport equation

Writing f = f0 + f1,

f1 = f0 (1 + f0)χ; K̃ [f1] = �f0p (1 + f0p)K [χ] (12.89)

Dβp = Dp f0p (1 + f0p) (12.90)

we obtain

K [χ] = −
∑
n,m

∫ n∏
i=1

Dβqi

m∏
j=2

Dβpj σ
2
n,m [q,p] δ

⎛
⎝ m∑

j=1

pj −
n∑

i=1

qi

⎞
⎠

× {χ (p1) + (m− 1)χ (p2) − nχ (q1)}∏n
i=1 (1 + f0 (qi))

∏m
j=1 f0 (pj)

(12.91)

Thus far we have reduced our problem to that of solving the linear integral
equation

K [χ] =
1
T
pμpνH

μν − 1
T

{
(p · u)2

[
c2s −

1
3

]
+

M2

3
− c2s

2
TM2

,T

}
uλ
,λ ≡ R

(12.92)
Let us write K = KB + K1, where the former is the lowest order (Boltzmann’s)

collision operator. KB is a Hermitian operator in the space of functions defined
on the positive energy mass shell with inner product

〈ς | χ〉 =
∫

Dβp ς∗ (p)χ (p) ; 〈χ〉 ≡ 〈1 | χ〉 (12.93)

and 〈χ〉 agrees with the expectation value introduced earlier (12.69).
K1 will not be symmetric, in general. There is a basis of eigenvectors |χn〉

of KB, with eigenvalues an. Four eigenvectors correspond to the functions pμ,
with eigenvalue zero. Because of momentum conservation, these are also eigen-
vectors of the full collision operator. KB admits a fifth null eigenvector, namely
a constant: this follows from particle number conservation in Boltzmann’s the-
ory. Let us call |χ0〉 this (normalized) eigenvector (in conventional notation,
|χ0〉= 〈1〉−1/2). We observe that the inhomogeneous term R in the linearized
transport equation (12.92) is orthogonal to the null eigenvectors pμ (not to |χ0〉).
We shall ignore the former, that is, we shall restrict our considerations to the
orthogonal space to the pμ’s.

Writing the unknown χ in Dirac’s notation as |χ〉 =
∑ |χn〉 〈χn | χ〉, we get

〈χ0 | K1 | χ0〉 〈χ0 | χ〉 +
∑
n≥1

〈χ0 | K1 | χn〉 〈χn | χ〉 = 〈χ0 | R〉 (12.94)

∑
m

(anδnm + 〈χn |K1|χm〉) 〈χm | χ〉 = 〈χn | R〉 (12.95)
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if n ≥ 1. From the second equation, we see that 〈χm | χ〉 ∼ O(λ−2) for m �= 0;
instead, the first equation suggests that 〈χ0 | χ〉 is much larger (O(λ−4)). We are
therefore led to the approximation

〈χ0 | χ〉 =
〈χ0 | R〉

〈χ0 |K1|χ0〉
; 〈χn | χ〉 =

1
an

〈χn | R〉 (12.96)

As a matter of fact, R may be split into a term Rs proportional to the shear tensor
Hμν and a term Rb proportional to uλ

,λ, and therefore so will the solution. Actu-
ally, 〈χ0 | Rs〉 = 0, so solving the “shear” problem involves only the Boltzmann
collision operator. The eigenvalues of this operator are of order T/τrel, where
τrel is the mean free time, and so the shear linear correction to the distribution
function is χs ∼

(
−τrel/T

2
)
pμpνH

μν .

The mean free time may be identified by writing the Boltzmann equation
in the collision time approximation, where f ∼ feq + δf and δḟ ∼ −δf/τrel. On
power counting and dimensional arguments, we find τrel ∼ 1/λ2T.

On the other hand, 〈χ0 | Rb〉 is not zero. It follows that the component of the
“bulk” solution in the direction of |χ0〉 is much larger than in any other direction,
and we may approximate

|χb〉 =
|χ0〉 〈χ0 | Rb〉
〈χ0 |K1|χ0〉

=
〈Rb〉

〈K1 [1]〉 = constant (12.97)

Expanding in the rest frame

χb ≡ c0 =
−1

T 〈K1 [1]〉

{〈
ω2
〉 [

c2s −
1
3

]
+ 〈1〉

[
M2

3
− c2s

2
TM2

,T

]}
uλ
,λ (12.98)

12.3.3 The temperature shift and the bulk stress

As we have seen, the correction to the distribution function has two components.
The one associated with the Hμν tensor contributes to the shear stress, but it
does not induce a change in the energy density. Therefore it is compatible with
the Landau–Lifshitz matching conditions. The constant shift of χ by c0, on the
other hand, affects in principle both the energy density and the thermal mass MT .
So, to enforce the Landau–Lifshitz conditions, it must be partially compensated
by a temperature shift. Concretely, if we call T the temperature of the fiducial
equilibrium state, such that ρ (T ) is equal to the energy density in the nonequilib-
rium state, then the temperature appearing in the local equilibrium distribution
function f0 must be T0 = T + δT. The effect of this temperature shift is the same
as adding another term proportional to ω in the first-order correction χ.

The distribution function and temperature shifts in turn produce a shift δM2

in the physical mass, which likewise does not affect the transport equation. How-
ever, both δT and δM2 enter in the consideration of the bulk stress. Observe
that there is no shift in the four velocity uμ.

The three displacements c0 (12.98), δT and δM2 are related by the con-
straints that the gap equation must hold, and the total energy density in the
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nonequilibrium state must be the same as in the local equilibrium state. Writing
the gap equation as in (12.52), the linearized equation then reads[

1 − ϕ′ − �λ

2
∂M2

T

∂M2

]
δM2 =

�λ

2

[
∂M2

T

∂T
δT + c0 〈1〉

]
(12.99)

In fact, ∂M2
T /∂T = � 〈ω〉 /T 2, so δM2 = M2

,T δT + M2
,cc0, where M2

,c =
T 2M2

,T 〈1〉 /� 〈ω〉. Since the gap equation is enforced, we can look at the (cosmo-
logical) constant Λ as a function of M2, so δΛf = −�M2

T δM
2/2. Then

δρ =
dρ

dT
δT +

[
∂ρT
∂M2

− �

2
M2

T

]
M2

,cc0 + �
〈
ω2
〉
c0 (12.100)

Actually
∂ρT
∂M2

=
�

2
M2

T − �
2 〈ω〉

2T
(12.101)

so

δρ =
dρ

dT
δT +

[〈
ω2
〉
− 〈1〉

2
TM2

,T

]
�c0 (12.102)

And, since the total energy remains the same,

dρ

dT
δT = −�c0

[〈
ω2
〉
− 〈1〉

2
TM2

,T

]
(12.103)

Let us apply the same reasoning to the bulk stress, which results from both the
deviation of the pressure from p (T ) and the direct contribution from the new
terms in the distribution function

τ = c2s
dρ

dT
δT +

[
∂pT
∂M2

+
�

2
M2

T

]
M2

,cc0 +
1
3
[〈
ω2
〉
−M2 〈1〉

]
�c0 (12.104)

Now ∂pT /∂M
2 = −�M2

T /2, so

τ = −�c0

{[
c2s −

1
3

] 〈
ω2
〉

+
[
M2

3
− c2s

2
TM2

,T

]
〈1〉
}

(12.105)

Using (12.98) and the expressions for 〈ω〉 and
〈
ω3
〉

from the last section, we get

τ = −
�

5uλ
,λ

[
M2 − 1

2TM
2
,T

]2
9T 5

(
dρ
dT

)2

{〈
ω3
〉
〈1〉 −

〈
ω2
〉
〈ω〉
}2

|〈K [1]〉| (12.106)

where we have used the fact that an explicit calculation shows that 〈K [1]〉 < 0
to lowest nontrivial order.

12.3.4 Shear stress and bulk viscosity

The shear stress can be read off directly from the new terms in Tμν
T . In the rest

frame, we get χs =
(
−τrel/T

2
)
pμpνH

μν

τ ij =
−�τrel
T 2

Hkl
〈
pipjpkpl

〉
∼ −�τrel

T 2
Hij

〈
p4
〉

(12.107)
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from where we can read out the shear viscosity η. To estimate η, it is enough to
keep only the leading (binary scattering) contributions, so η ∼ λ−2. On dimen-
sional grounds, we recover the usual result, η ∼ T 3/λ2.

As expected, things are not so simple with the bulk viscosity. We can read it
off from equation (12.106). However, in evaluating it we must consider that 〈1〉
is logarithmically divergent in the massless limit, so we must correct the sheer
dimensional estimate to 〈1〉 ∼ T 2 ln (M/T ). As for the size of |〈K [1]〉|, observe
that the integral is dominated by the Rayleigh–Jeans tail, where f0 ∼ T/ω � 1.
Thus |〈K [1]〉| ∼ �

3λ4T 6F
(
M2
)
. Since the overall units are [mass]4, it must be

that |〈K [1]〉| ∼ T 6/M2. For the remaining elements we may use the conventional
estimates

〈
ω3
〉
∼ T 5, ρ ∼ �T 4, and thus obtain

ζ ∼ M2

λ4T 3

[
M2 − 1

2
TM2

,T

]2
ln2 (M/T ) (12.108)

which is the folk result. In the limit in which the bare mass vanishes, or equiva-
lently in the T → ∞ limit, we may write on dimensional grounds

M2 − 1
2
TM2

,T ≡ 1
2
μM2

,μ ∼ λM2 (12.109)

and since M2 ∼ λT 2 itself, equation (12.108) reduces to ζ ∼ λT 3 ln2 (λ).

12.3.5 Transport functions for non-abelian plasmas

Although the calculation of transport coefficients in field theories follows the
general strategy we have exemplified with a self-interacting scalar field, it is
important to keep in mind the particularities of specific theories when aiming for
a derivation of those coefficients good enough for a sensible comparison against
experimental data.

In this sense, the most important scenario where an estimate of transport
coefficients is of crucial relevance is the physics of relativistic heavy ion collisions
(RHICs) [Ris98, BaRoWi06a, BaRoWi06b] (which we shall discuss in greater
detail in Chapter 14), and correspondingly great effort has been devoted to the
derivation of transport functions for hot non-abelian plasmas.

While we shall be content to refer the reader to the comprehensive set of
papers by Arnold, Moore and Yaffe on this subject [ArMoYa00, ArMoYa03a,
ArMoYa03b, ArDoMo06], we also wish to point out some aspects where the
derivation of transport functions for non-abelian plasma differs from the equiv-
alent study in scalar field theory.

First, there is the issue of momentum-dependent interactions and small denom-
inator effects. Because of these, the actual weight of a given diagram may be very
different from naive power-counting estimates. We have already encountered this
phenomenon in Chapter 10, in our discussion of hard thermal loop resummation
for a toy model scalar field.
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366 Hydrodynamics and thermalization

As in the scalar field case, particle number-changing interactions play a central
role in the derivation of the bulk viscosity coefficient [ArDoMo06]. However, the
relevant processes are different. In particular, for a hot gluon field the most
important contributions to bulk viscosity come from “2 to 1” processes, namely
gluon splitting and joining.

In a conformally invariant theory, such as classical pure Yang–Mills theory, the
bulk viscosity vanishes. We can see this in two related ways [ArDoMo06]. First,
bulk viscosity is related to the departure of the trace part of the stress tensor
from its equilibrium value upon isotropic expansion. In a conformally invariant
theory, such expansion does not drive the system out of equilibrium – for the
Maxwell case, see [Pla59] – so there is no departure. Second, in a conformally
invariant theory the energy–momentum tensor must be traceless. This leaves no
room for deviations of the trace part of the stress tensor from the value prescribed
by the equilibrium equation of state p = ρ/3.

Therefore, the bulk viscosity in Yang–Mills theory is linked to the trace
anomaly of the energy–momentum tensor [Fuj80]. In non-abelian gauge theo-
ries the trace anomaly is proportional to the β function which describes the
running with scale of the gauge coupling [CoDuJo77]. Arnold, Dogan and Moore
[ArDoMo06] observe that, since in principle the β function can have either sign
(in a theory with matter fields included), while the bulk viscosity must be posi-
tive because of the second law, the bulk viscosity must be related to the square

of the β function.
We must also mention the Landau–Pomeranchuk–Migdal (LPM) effect

[LanPom53a, LanPom53b, Mig56, BaiKAt03]. This effect concerns the suppres-
sion of the emission probability for low-frequency photons, and correspondingly
the suppression of exchange interactions in the low-frequency sector. It also
affects gluon emission at both low and high frequency.

It is crucial that the kinetic equation one takes as take-off point be consistent
with the LPM effect. Consistency can be achieved by an explicit calculation
of the relevant cross-sections in the collision integral [ArMoYa00, ArMoYa03a,
ArMoYa03b]. For an estimate of transport coefficients one does not often require
a detailed knowledge of the cross-sections, but rather of certain integrals of them,
for which there exist sum rules [AuGeZa02]. In such a case, it is enough to
incorporate the LPM effect through the relevant sum rules [BBGM06].

An exciting new development is the possibility of an absolute lower bound
for the ratio of shear viscosity to entropy density [KoSoSt05]. A low value for
this ratio is usually an indication of a strongly coupled theory (compare with
(12.107)). If this “viscosity bound conjecture” is confirmed, it would open up
new avenues for the investigation of transport coefficients in a variety of strongly
coupled systems, ranging from RHICs to cold atomic gases [Coh07].

More generally, the method of AdS/CFT correspondence [Mal99] is a new
tool which is playing an increasing role in the study of strongly coupled
gauge theories. A crucial step is the generalization of the correspondence for
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the computation of Schwinger–Keldysh (as opposed to Euclidean) propagators
[HerSon03]. Similar tools have been used to study the hydrodynamic limit
of M theory [Her02, Her03]. Since this field is growing exponentially at the
time of writing we cannot even aim to provide a comprehensive list of refer-
ences. However, see [PoSoSt02a, PoSoSt02b, KoSoSt05, HelJan07] for some key
developments.

This concludes our study of the hydrodynamic limit from the kinetic field
theory. There are several interesting directions to extend these results, such as
including higher order effects [CaDeKo01]. We shall discuss some of these devel-
opments in later chapters in the context of applications to concrete problems.

To gain a broader perspective it is instructive to show the derivation of the
transport coefficients from a different approach, namely, that of linear response
theory, which we now turn to.

12.4 Transport functions from linear response theory

Linear response theory aims to provide exact representations for the transport
functions as equilibrium expectation values of current correlations. The actual
evaluation of these expressions may be technically rather subtle. The reader
should consult the literature for details. However, the fact that one has, in prin-
ciple, a rigorous definition of the transport functions opens up the possibility of
implementing nonperturbative techniques, such as extracting the relevant cor-
relations from numerical simulations [AarBer01, AarMar02]. Moreover, the fact
that the linear response theory program may be carried through is a beauti-
ful illustration of the deep connection between equilibrium and near-equilibrium
dynamics such as embodied in the fluctuation–dissipation theorem, as well as in
the stochastic approach to NEqQFT discussed in Chapter 8.

In the literature, there are several equivalent derivations of the linear
response expressions for the transport functions. With some over-simplification,
they can be traced back to the work of Mori [Mor58, HorSch87], Zubarev
[Zub74, HoSata84] and Kadanoff and Martin [KadMar63]. The work of Jeon
[Jeo93, Jeo95] and Jeon and Yaffe [JeoYaf96] is also of substantive value. For
later developments, see [WaHeZh96, CaDeKo00, WanHei99, WRSG03, Koi07].

Following the presentation of Kadanoff and Martin [KadMar63], we shall first
demonstrate this approach with the simpler case of the spin diffusion coefficient
for an Ising-like model of a ferromagnetic material, and then derive the linear
response theory expressions for the viscosity coefficients η and ζ.

12.4.1 The spin diffusion coefficient

We consider a model of some ferromagnetic material where the spin density is
described by a continuous scalar quantum field m (t,x). (Here we use bold face
to denote quantum fields – not for a vector field – with light face for classical
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368 Hydrodynamics and thermalization

fields.) The model is nonrelativistic, and for brevity we consider the symmetric
phase only. Since the total magnetization is conserved, the Heisenberg equation
of motion for the spin density takes the form of a continuity equation

∂

∂t
m (t,x) + ∇J (t,x) = 0 (12.110)

As we have seen in Chapter 8, it is possible to introduce a classical stochastic
field m (t,x) such that

〈m (t,x)m (0,y)〉s =
1
2
〈{m (t,x) ,m (0,y)}〉 (12.111)

where we have a stochastic average on the left-hand side, and a quantum average
on the right. m satisfies a Langevin equation

∂

∂t
m (t,x) + ∇J (t,x) = Hs (t,x) (12.112)

To linear order in m, for slowly varying fields, with consideration of Galilei
invariance, we must have

J (t,x) = −D∇m (t,x) + . . . (12.113)

where D is the spin diffusion coefficient we want to determine.
Since in this approximation the dynamics is linear and space translation invari-

ant, it is convenient to introduce Fourier transforms

m (t,x) =
∫

d3k

(2π)3
eikxmk (t) (12.114)

If the value of the amplitude at t = 0 is mk (0) , then for t > 0

mk (t) = mk (0) e−Dk2t + mS
k (t) (12.115)

where mS
k (t) depends on the noise between 0 and t. If the noise and mk (0) are

uncorrelated, then

〈mk (t)mk′ (0)〉s = e−Dk2t 〈mk (0)mk′ (0)〉s (t > 0) (12.116)

From Onsager’s principle of microscopic reversibility [LaLiPi80a], we know that
the correlation is even in t, so this equation determines its value for t < 0 as well,
namely,

〈mk (t)mk′ (0)〉s = e−Dk2|t| 〈mk (0)mk′ (0)〉s (12.117)

We now compute the inverse Fourier transform

mk (ω) =
∫

dt eiωtmk (t) (12.118)

2Dk2

ω2 + (Dk2)2
〈mk (0)mk′ (0)〉s =

1
2

∫
dt eiωt 〈{mk (t) ,mk′ (0)}〉 (12.119)
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To obtain a prediction for D from this formula, we take the limits k → 0 and
ω → 0 in this order [KuToHa91] to get

D 〈mk (0)mk′ (0)〉s =
ω2

4k2

∫
dt eiωt 〈{mk (t) ,mk′ (0)}〉 (12.120)

Since the equilibrium correlation on the right-hand side is time-translation invari-
ant, we may write

ω2

∫
dt eiωt 〈{mk (t) ,mk′ (0)}〉 =

∫
dt eiωt

〈{
∂

∂t
mk (t) ,

∂

∂t
mk′ (0)

}〉

= −
∫

dt eiωtkik
′
j

〈{
Ji
k (t) ,Jj

k′ (0)
}〉

(12.121)

It only remains to compute 〈mk (0)mk′ (0)〉s . As k → 0,

mk (t) → M (t) =
∫

d3x m (t,x) (12.122)

where M is the total magnetization of the sample. Recall that if we turn on an
external magnetic field H, then the Hamiltonian H acquires a new term −HM.

Therefore, at constant temperature

M = − ∂F

∂H

∣∣∣∣
T

(12.123)

where F is the free energy

e−βF = Tr e−βH (12.124)

Taking two derivatives we get〈
M2
〉

= −kBT
∂2F

∂H2

∣∣∣∣
T

= kBTV χ (12.125)

where χ is the susceptibility

χ =
1
V

∂M

∂H

∣∣∣∣
T

(12.126)

(where V is the volume of the sample). We get

Dχ =
−1

4V kBT

∫
dt eiωt

kik
′
j

k2

〈{
Ji
k (t) ,Jj

k′ (0)
}〉

(k, k′, ω → 0) (12.127)

By using the symmetries of the correlator, we may simplify this expression to
obtain

Dχ =
1

4kBT

∫
d3x

∫
dt ei(ωt−kx) kikj

k2

〈{
Ji (t,x) ,Jj (0, 0)

}〉
(k, ω → 0)

(12.128)
We may also use the KMS theorem to express the anticommutator in terms of a
commutator.

We shall now use this calculation as a model for the derivation of the viscosity
coefficients.
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12.4.2 The bulk and shear viscosity coefficients

We return to the calculation of the viscosity coefficients in scalar quantum field
theory. We wish to write them in terms of equilibrium correlations of Heisenberg
operators. Observe that in the Landau–Lifshitz prescription there is no heat flux,
and for real scalar field theory there is no particle number conservation law. So we
have no heat conductivity or particle number diffusion constants. The transport
functions to be determined are the shear and bulk viscosities η and ζ.

In this subsection we shall not use different types for q or c number quantities.
The basic dynamical law, both in the fundamental quantum field theory and in
the stochastic field theory formulation, is the conservation of energy–momentum

Tμν
;ν = 0 (12.129)

Decomposing the energy–momentum tensor as in equation (12.20), we get

ρ̇ + (ρ + p)uλ
;λ − τμνuμ;ν = 0 (12.130)

(ρ + p) u̇μ + Δμν
(
p,ν + τλν;λ

)
= 0 (12.131)

In the local rest frame of the fluid, when terms of second order in deviations
from equilibrium are neglected, they reduce to

∂ρ

∂t
+ (ρ + p)ui,i = 0 (12.132)

(ρ + p)
∂ui

∂t
+ p,i + τij,j = 0 (12.133)

They have the form of continuity equations with currents J i
ρ = (ρ + p)ui and(

Jui

)j = pδji + τ ji .

Let us now consider the stochastic description. As in the spin diffusion case,
the noise terms will not affect the final result, so we will not consider them. We
may now parameterize

τij = −η (ui,j + uj,i) −
(
ζ − 2

3
η

)
δijus,s (12.134)

The second conservation equation becomes

(ρ + p)
∂ui

∂t
+ p,i − ηui,jj −

(
ζ +

1
3
η

)
(uj,j) ,i = 0 (12.135)

We may decompose the velocity field u = uL + uT , where ∇× uL = ∇uT = 0.
The transverse part decouples from the energy fluctuations, and obeys the simple
heat equation

(ρ + p)
∂uT

i

∂t
− ηuT

i,jj = 0 (12.136)

This is the same as in the spin diffusion case, with D there replaced by DT
u =
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η/ (ρ + p) here. We therefore write

η

(ρ + p)
〈
uT
ik (0)uT

jk′ (0)
〉
s
=

ω2

4k2

∫
dt eiωt

〈{
uT
ik (t) , uT

jk′ (0)
}〉

(k, k′, ω → 0)

(12.137)
For the longitudinal part, observe that uL

i,jj =
(
uL
j,j

)
,i. So we may write

∂ρ

∂t
+ (ρ + p)uL

i,i = 0 (12.138)

(ρ + p)
∂ui

∂t
+ p,i −

(
ζ +

4
3
η

)
uL
i,jj = 0 (12.139)

Introduce the velocity potential uL = −∇φ, the sound speed p,i = c2sρ,i, and
Fourier transform

∂ρk

∂t
+ (ρ + p) k2φk = 0 (12.140)

(ρ + p)
∂φk

∂t
− c2sρk +

(
ζ +

4
3
η

)
k2φk = 0 (12.141)

These are the equations of a damped harmonic oscillator
∂2φk

∂t2
+ k2c2sφk + 2Γk2 ∂φk

∂t
= 0 (12.142)

where

Γ =

(
ζ + 4

3η
)

2 (ρ + p)
(12.143)

The secular equation

ω2 − k2c2s − 2iΓk2ω = 0 (12.144)

has solutions

ω± = iΓk2 ±
√
k2c2s − Γ2k4 (12.145)

If Γ2k2 � c2s , we may expand

ω± = ±kcs + iΓk2 + O
(
k3
)

(12.146)

so the general solution is

φk (t) = e−Γk2t [φk (0) cos (kcst) + Ak sin (kcst)] (t > 0) (12.147)

At t = 0, we find
∂φk

∂t
= kcsAk − Γk2φk (0) (12.148)

so

(ρ + p) kcsAk − c2sρk (0) +
(
ζ +

4
3
η

)
k2

2
φk (0) = 0 (12.149)

Ak =
c2sρk (0)

(ρ + p) kcs
− Γk

cs
φk (0) (12.150)
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Assuming that the equal-time potential and energy fluctuations are uncorre-
lated (see below), we get

〈φk (t)φk′ (0)〉 = e−Γk2|t|
[
cos (kcst) −

Γk
cs

sin (kcs |t|)
]
〈φk (0)φk′ (0)〉 (12.151)

Upon Fourier transforming(
ζ + 4

3η
)

(ρ + p)
〈
uL
ik (0)uL

jk′ (0)
〉
s
=

ω2

4k2

∫
dt eiωt

〈{
uL
ik (t) , uL

jk′ (0)
}〉

(12.152)

(k, k′, ω → 0). From symmetry considerations, we expect〈{
uL
ik (t) , uT

jk′ (0)
}〉

= 0 (12.153)

and so we may combine the longitudinal and transverse correlations into a single
expression

η
〈
uT
ik (0)uT

jk′ (0)
〉
s
+
(
ζ +

4
3
η

)〈
uL
ik (0)uL

jk′ (0)
〉
s

= (ρ + p)
ω2

4k2

∫
dt eiωt 〈{uik (t) , ujk′ (0)}〉 (12.154)

(k, k′, ω → 0). We now have to compute the equal-time averages on the left-hand
side. Let us begin by computing the velocity–velocity correlation. Recall that if
the center of mass of the system is moving with velocity V, then in the statistical
operator we must add a new term −VP to the Hamiltonian H, where P is the
total momentum. Therefore

〈Pi〉 = − ∂F

∂Vi
(12.155)

and

〈PiPj〉 = kBT
∂ 〈Pi〉
∂Vj

(12.156)

To transform this into velocity correlations, we simply observe that from the
equilibrium energy–momentum tensor

〈Pi〉 = V (ρ + p)Vi (12.157)

so

〈ViVj〉 =
kBT

V (ρ + p)
δij (12.158)

The longitudinal part of the velocity may be obtained from the total velocity by
projection

uL
ik (0) =

kik
j

k2
ujk (0) (12.159)

We do likewise for uL
jk′ , observe that the correlation must be proportional to

δ (k + k′) by translation invariance, and that in the limit k → 0, uik → V Vi,

https://doi.org/10.1017/9781009290036.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.017


12.4 Transport functions from linear response theory 373

we get 〈
uL
ik (0)uL

jk′ (0)
〉
s
=

kikj
k2

V kBT

(ρ + p)
(k, k′ → 0) (12.160)

which also implies〈
uT
ik (0)uT

jk′ (0)
〉
s
=
[
δij −

kikj
k2

]
V kBT

(ρ + p)
(k, k′ → 0) (12.161)

Thereby we find

η

[
δij +

1
3
kikj
k2

]
+ ζ

kikj
k2

=
(ρ + p)2

V kBT

ω2

4k2

∫
dt eiωt 〈{uik (t) , ujk′ (0)}〉 (12.162)

(k, k′, ω → 0). As in the previous case of the spin diffusion coefficient, this may be
reduced to an expression involving correlations of the energy–momentum tensor
alone. First, use the expressions for T 0i and the conservation laws to write this
as

η

[
δij +

1
3
kikj

k2

]
+ ζ

kikj

k2

=
1

V kBT

kmkn
4k2

∫
dt eiωt

〈{
T im
k (t) , T jn

k′ (0)
}〉

(k, k′, ω → 0) (12.163)

Next, separate T im
k into scalar and traceless components

T im
k = Pkδ

im + τ imk ; τ iki = 0 (12.164)

In the limit k → 0, the tensor structure of the correlations can be expressed in
terms of the isotropic tensor δij alone. By symmetry, we must have〈{

P0, τ
im
0

}〉
= 0 (12.165)

1
V

〈{
τ im0 (t) , τ im0 (0)

}〉
= A (t) δimδjn + B (t)

(
δijδmn + δinδmj

)
(12.166)

This last expression must be traceless with respect to (im) , so 3A + 2B = 0, and

1
V

〈{
τ im0 (t) , τ im0 (0)

}〉
= A (t)

[
δijδmn + δinδmj − 2

3
δimδjn

]
(12.167)

Contracting (ij) and (mn) we get

σ2 (t) ≡ 1
V

〈{
τ im0 (t) , τ im0 (0)

}〉
= 10A (t) (12.168)

Substituting this back in equation (12.163) we get

η =
1

40kBT

∫
dt eiωtσ2 (t) (ω → 0) (12.169)

ζ =
1

4kBT

∫
dt eiωt 〈{P0 (t) ,P0 (0)}〉 (ω → 0) (12.170)

which are the familiar expressions [Jeo95].
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12.5 Thermalization

Perhaps the single most important demand on a theory of nonequilibrium
quantum fields is that it should describe the means by which equilibrium is
reached and sustained by those systems. The process of thermalization plays
an important role in all the applications of the theory, such as the behavior of
order-parameter fluctuations after a quench (Chapter 9), the dynamics of Bose–
Einstein condensates and their associated noncondensed atomic clouds (Chapter
13), the early stages of relativistic heavy ion collisions (Chapter 14) and the
physics of reheating after inflation (Chapter 15). In this chapter, we will deploy
the knowledge gained so far in the physics of nonequilibrium fields to describe
some general features of the thermalization process; then we will discuss some
of these applications indicated above.

In spite of this ubiquity, the thermalization process is very hard to access
experimentally. Usually all one can actually observe are relics superposed on the
equilibrated thermal background, such as topological defects after a nonequi-
librium phase transition or the ratios between different particle species after
hadronization of the quark–gluon liquid. For this reason, a good deal of our
understanding of the thermalization process comes from large-scale numerical
simulations. We shall not discuss these simulations per se, but will point out
below the key entry points to the literature.

Before we proceed, a word is in order about what thermalization is. Quan-
tum field theory is unitary; quantum field theoretic evolution in a closed system
cannot create entropy, and so a quantum field starting from a pure state, say,
cannot thermalize in the strict thermodynamic sense (unless, e.g. it is coupled
to a heat bath, see next section). By thermalization we mean that a restricted
set of observables (correlation functions, hydrodynamics variables such as energy
density and pressure, equation of state, field configurations over regions of space
small compared to the total available volume) evolve in time towards stable,
near-stationary values which are robust against changes in the initial condi-
tions and may be approximated by thermal distributions with suitable intensive
parameters (temperature, chemical potentials, etc.) [BoDeVe04].

If we talk about thermalization in the context of quantum field theories, the
problem becomes slightly academic because nobody has ever solved the full uni-
tary evolution (unless in trivial cases, which do not thermalize). One solves
instead the equations of motion for the correlation functions derived, e.g. by
some n-PI effective action functional with a finite n, which are not time-reversal
invariant [IvKnVo99]. However, for classical field theories one can, in princi-
ple, actually solve the field equations. Then thermalization in the strict sense is
impossible. For example, in a thermal state one should be able to observe arbi-
trarily high values of the total energy in the field (though large values will be
very unlikely); in a numerically correct calculation, one should never see energy
values outside the range defined by the initial conditions. Nevertheless, in the
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thermodynamic limit the behavior of local observables becomes indistinguishable
from equilibrium. This means that thermalization is obtained “for all practical
purposes” (FAPP) in the sense defined above. In this chapter, we shall adhere
to this use of the term thermalization.

12.5.1 A toy model of thermalization

Although our goal is to describe thermalization (FAPP) in an isolated quantum
field, it is instructive to consider first the case in which the field is thermalized
(strictu sensu) by bringing it in contact with a heat bath. This problem was
analyzed by Schwinger [Sch61]. The reservoir may be described by one or several
quantum fields, and the action will be expanded by adding the action describing
these fields, plus the new term describing the system–bath interaction. Probably
the most mysterious empirical fact about thermodynamics is that the long-term
equilibrium state, if achieved, is totally independent of the details of the bath
dynamics and interaction. Therefore we shall leave open the details of the bath,
and simply write an interaction term of the form gϕAΨA, where Ψ is some (gen-
erally composite) bath operator and g is a coupling constant. We shall assume
the usual set-up where system and bath are brought into contact at some ini-
tial time t = 0. We also assume the initial condition is spatially homogeneous,
which, neglecting the system’s self-interactions, allows us to decompose it into
independent spatial modes. We consider the thermalization of each mode, and
in so doing reduce the original theory to a 1 + 0 field theory.

As we have seen in Chapter 11, the equations for the (system) Jordan and
Hadamard propagators are determined by the dissipation and noise kernels in
the 1PI CTPEA for the system field. To lowest order in the system–bath coupling
constant g, they are

D (t− t′) = ig2
�
−1θ (t− t′) 〈[Ψ (t) ,Ψ (t′)]〉

N (t− t′) =
1
2
g2

�
−1 〈{Ψ (t) ,Ψ (t′)}〉 (12.171)

Here, a common or implicit assumption is that the bath is always kept in equi-
librium at some temperature T , and that any back-reaction from the system is
negligible. So, writing

〈[Ψ (t) ,Ψ (t′)]〉 = �

∫
dω

2π
e−iω(t−t′)sign (ω)R (ω) (12.172)

where R (ω) must be even and positive, and following the analysis in Chapter
11, the imaginary part of the retarded propagator becomes

Im G−1
ret =

(−g2

2

)
sign (ω)R (ω) (12.173)
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The full equation is determined by causality[
ω2 −m2

b − g2

∫ ∞

0

dσ2

2π
R (σ)

(ω + iε)2 − σ2

]
Gret = −1 (12.174)

where mb is the bare mass of the system field.
If ω2 = ξ + iη, the inverse propagator develops an imaginary part

η

[
1 + g2

∫ ∞

0

dσ2

2π
R (σ)

(ξ − σ2)2 + η2

]
(12.175)

The expression in brackets is positive, so any (first sheet) zero must have η = 0.
But on the real axis, the inverse propagator has a cut, with a discontinuity
g2R (ξ) in the imaginary part. So, unless R (σ) vanishes below some threshold,
the inverse propagator cannot be zero. We shall assume this is the case, which
means that all excitations of the system are unstable against decay into the
bath.

Besides damping, the bath also provides screening. The Debye mass is defined
as the closest thing to a zero of the inverse propagator, namely a zero of the real
part of the inverse propagator. Therefore

M2
D −m2

b − g2PV

[∫ ∞

0

dσ2

2π
R (σ)

M2
D − σ2

]
= 0 (12.176)

We shall assume the physically reasonable condition that M2
D ≥ 0. A sufficient

condition for this is that the left-hand side of the gap equation changes sign as
we go from MD = 0 to ∞. If R (σ) is well behaved (which may require that we
perform a subtraction beforehand) the left-hand side is dominated by the first
term M2

D when this is large, and so it is positive. The sufficient condition for
screening (as opposed to anti-screening) boils down to

m2
b ≥ g2PV

[∫ ∞

0

dσ2

2π
R (σ)
σ2

]
(12.177)

We may now write the equation for the retarded propagator as{(
ω2 −M2

D

) [
1 + g2PV

∫ ∞

0

dσ2

2π
R (σ)

(ω2 − σ2) (M2
D − σ2)

]

+
ig2

2
ω

|ω|R (ω)
}
Gret = −1 (12.178)

The nice thing about this expression is that it makes it easy to identify the mean
life of a field excitation. Indeed, the inverse propagator has a near Ornstein-
Zernike structure [

ω2 −M2
D + 2iγω

]
Gret = −1 (12.179)

where γ ∼ g2R (MD) /4MD is the damping constant, and so we may conclude
that the decay of an excitation will be nearly exponential (at very long times it
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may turn to power law, depending on the behavior of R (ω) as ω → 0). Inciden-
tally, this equation also fixes the field density of states

D (ω) = π−1 |ImGret| =
(
g2

2π

)
|Gret|2 R (ω) (12.180)

In particular, the Ornstein-Zernike approximation for the retarded propagator
implies a corresponding approximation for the density of states

D (ω) ∼ 1
π

2γ |ω|
(ω2 −M2

D)2 + 4γ2ω2
(12.181)

So far we have analyzed how the interaction with the heat bath affects the
system dynamics, but we have not addressed thermalization per se. To do this,
it is not efficient to look at the retarded propagator, because this propagator
is very robust against thermal corrections. We look instead at the Hadamard
propagator, which obeys the equation

G−1
retG1 = 2�NGadv (12.182)

We have arrived at the crucial point. The inhomogeneous equation (12.182)
admits a particular solution G1 = 2�N |Gret|2 and also homogeneous solutions
which carry the information about the initial conditions. But the homogeneous
solutions decay, so after a time long compared to the mean life γ−1, only the
particular solution remains. Now, the bath propagators are subject to the KMS
theorem (it being insensitive to whether the field Ψ is fundamental or composite)

N =
g2

2
[1 + 2f0 (ω)]R (ω) (12.183)

Therefore the asymptotic Hadamard propagator obeys

G1 = 2π� [1 + 2f0 (ω)]D (ω) (12.184)

This is just the KMS theorem for the field (as opposed to the bath) Hadamard
propagator.

In conclusion, the essential elements of the thermalization process are that
there must be a heat bath, capable of transmitting the KMS condition to the
system, and at the same time a damping mechanism so that the field initial
conditions may be forgotten in time. Of course, damping does not cease when
equilibrium is finally reached, but at late times it is exactly compensated by
the inhomogeneous term in the equation for the Hadamard propagator. Thus we
arrive at yet another perspective on the KMS theorem, now as a detailed balance
condition which enforces the stability of the thermal state.

It is remarkable that when we come to view (12.184) as a relationship between
the field Hadamard propagator and density of states, any direct reference to the
bath has disappeared. The bath is necessary to validate the KMS theorem on the
system, but once this task is accomplished, it can go free. In fact, any bath can
perform this function (although the relaxation times will be different) as long as
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it is a good bath, meaning that it is able to sustain a constant temperature in
the face of back-reaction, and that it provides efficient dissipation in all scales.
Of course, this is precisely the condition for thermodynamics to prevail.

12.5.2 Thermalization of isolated fields

Let us now turn our attention to isolated fields, and examine whether in any
sense they fulfill the two conditions above. The answer is yes in both cases. The
KMS theorem is built in the Kadanoff–Baym equations, because field configu-
rations consistent with the KMS theorem have slower dynamics, and eventually
outlive those that do not. As for dissipation, beware that by restricting ourselves
to thermalization in the FAPP sense, we are de facto turning the problem into
an effectively open system. The interaction between the relevant system and
irrelevant sectors (the environment, with its large capacity) brings dissipation
and decoherence (or its classical analog, dephasing) to the system, by which the
memory of initial conditions is lost. These mechanisms work either for quan-
tum or classical field theories, although we expect them to be more efficient in
the quantum case. For example, quantum particle creation may emanate from
the vacuum, while classical parametric amplification can only work from a pre-
existing seed; thus pumping energy from a heat bath or a classical background
into an unpopulated region of the spectrum is easier in quantum theories (for
Fermi systems, of course, we have to take Pauli blocking into consideration).

By now, there is a mounting body of (numerical) evidence in support of these
statements. Numerical work has focused mostly on scalar field theories with quar-
tic self-interactions, with either one single field or else N fields with O (N) sym-
metry in the large N limit. Numerical investigations of the equations of motion
as derived from the Kadanoff–Baym equations were pioneered by Danielewicz
[Dan84a, Dan84b].

As we mentioned in the Introduction, it is not our aim to discuss numerical
approaches in detail. However, it is important to know what has been achieved.
To this end, it is useful to classify the mounting literature on the subject into the
four basic categories of quantum mechanical, classical, semiclassical and quantum
field models.

Quantum mechanical models

The complexity of the field theoretic equations led to the search for simpler
systems where at least the basic approximations could be tested. One possible
simplification is to consider a field theory in 0 + 1 dimensions, namely quantum
mechanics. For example, Cooper et al. [CDHR98] showed that while the evo-
lution of the coefficients in the quantum mechanical Hartree and leading order
(LO) large N approximations may be described as a chaotic Hamiltonian sys-
tem, in truth chaos is an artifact of the approximation. Another work using
quantum mechanical systems as a testing ground is [BetWet98]. [MACDH00]
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matches Hartree, LO and next-to-LO (NLO) large N against numerical solu-
tions of the Schrödinger equation. [MiDaCo01] analyzes the so-called bare-vertex
and dynamic Debye screening approximations. [Hab04] shows that the Gaussian
approximation in a closed system leads to the same dynamics for the Wigner
and the distribution functions, irrespective of whether the system is quantum or
classical.

Classical field models

Another direction in which the theory may be simplified is by taking the classi-
cal limit. Thermalization in classical φ4 theory was investigated in [AaBoWe00b,
Aar01, BoDeVe04]. Oftentimes a classical field theory arises from a mean field
approximation to a quantum problem. In particular, the nonequilibrium dynam-
ics of Bose–Einstein condensates has been thoroughly investigated as described
by the Gross–Pitaevskii equation [GaFrTo01, SanShl02, UedSai03, BajaMa04,
Adh04].

Both classical field theories and the time-dependent Ginzburg–Landau equa-
tion have been investigated as models of defect formation after an instanta-
neous quench [AntBet97, DzLaZu99, Ste00]. Adding a U(1) gauge field leads
to the Gorkov equations for a type II superconductor [YatZur98, IbaCal99,
StBeZu02]. To simulate a quench at a finite rate, it is possible to introduce
interaction with a heat bath by adding ohmic dissipation and white noise
[Kib80, Kib88, Zur85, Zur96, Riv01, RiKaKa00, LagZur97, LagZur98, YatZur98,
AnBeZu99, BeHaLy99, HabLyt00, BeAnZu00, FASA05, AGRS06]. There have
also been analyses of classical theories in expanding universes, motivated by the
problem of reheating; see [KhlTka96, KoLiSt97, FelTka00, FeKoLi01, FelKof01,
FGGKLT01, MicTka04, PFKP06].

Classical field has been extensively used as a test bench for different approx-
imations, for example, the use of a scalar field in 1+1 to compare the Hartree,
LO and NLO large N approximations in [AaBoWe00a].

Semiclassical field models

One step up in the ladder of increasing complexity we find semiclassical mod-
els, often arising from Hartree or leading order 1/N approximations to the full
quantum field models [BVHLS95].

This category also includes external field problems beyond the test field
approximation (cf. Chapter 4). Among these, the most studied have been electro-
magnetic and gravitational backgrounds. [KESCM92] compares the semiclassical
evolution to a quantum Vlasov equation incorporating Schwinger’s pair creation
from the electric field. [CEKMS93] generalizes the above by including the effect
of an expanding background geometry. [CHKMPA94] investigates a symmetric
scalar O (N) theory and QED with N fermion fields. See also [KlMoEi98] and
[AarSmi99], which deals with the abelian Higgs model with fermions in 1+1
dimensions.
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Fully numerical solution of semiclassical cosmological models presents enor-
mous difficulties, not only because of the intrinsic complexity of general rela-
tivity but also because most schemes lead to wildly unstable dynamical equa-
tions [ParSim93]. Some questions have been investigated, though, most notably
the back-reaction effect of trace anomalies of quantum fields and particle cre-
ation leading to avoidance of cosmological singularity and anisotropy damping
[FiHaHu79, HarHu79, HarHu80, Har80, Har81].

Another source of semiclassical problems has been the development of spinodal
decomposition [CHKM97]. [BBHKP98] considers initial conditions relevant to
a relativistic heavy ion collision. See also [BVHS99a, SCHR99]. In particular,
the possibility of actually observing disoriented chiral condensates in relativistic
heavy ion collisions has focused much attention on the specifics of this problem
[CKMP95, LaDaCo96, CoKlMo96, BeRaSt01].

The problem of reheating after inflation combines aspects of both semiclassi-
cal theory on curved spacetime backgrounds and spinodal instability. [BoVeHo94]
formulates the Hartree and one-loop approximations in an expanding background
within the test field approximation. [BVHS96] discusses the effect of anhar-
monicity on the background field dynamics and the structure of resonances.
[RamHu97a, RamHu97b] incorporate fully the back-reaction of quantum fluc-
tuations on the dynamics of the inflaton field as well as the dynamics of the
expanding background spacetime. See also [ZiBrSc01].

The problem of condensate collapse within the Hartree–Fock–Bogoliubov
approximation has been studied in [WuHoSa05].

Full quantum field models

At the top of the complexity ladder we find the full quantum field models. Of
course, the field theoretic Heisenberg equations being unassailable, some kind of
perturbative scheme is necessary. Much of our present understanding of nonequi-
librium quantum fields comes from the analysis of O(N) scalar fields to NLO in
the large N approximation [Ber02, AarBer02, BerSer03a] in 1 + 1 dimensions.
This work is reviewed in [Ber04b, BerSer03b, BerSer04, BerBol06].

The λΦ4 theory to two loops and beyond leads to a similar phenomenology. It
has been investigated in one [AarBer01], two [JuCaGr04] and three space dimen-
sions [ArSmTr05]. Going beyond scalar fields, [BeBoSe03] studies the abelian
Higgs model in 3+1 dimensions at two loops. Other approximation schemes have
been explored [BaaHei03a, BaaHei03b]. A radical new approach to numerical
nonequilibrium field theory has been proposed in [BerSta05, BBSS06]. Nonequi-
librium Bose–Einstein condensates have been analyzed from a 2PI perspective
both in a large N expansion and to second order in the interaction strength
[RHCRC04, GBSS05].

The fields of lattice QCD and hydrodynamical and kinetic models of relativis-
tic collisions targeting the hadronization process are beyond the scope of this
book. See [Shu88, Cse94, Wan97, Ris98, BaRoWi06a, BaRoWi06b, TeLaSh01,
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HKHRV01, KolRap03, HirTsu02, HirNar04, HeiKol02b]. There is also some
numerical work on processes which may speed up thermalization in the early
stages of the collision [ArMoYa05, ArnMoo05, Moo05, RomVen06].

By way of summary

This brisk enumeration should convince the reader that by now a wide variety
of cases has been studied, with a matching diversity of means. The important
point is that a coherent picture emerges, since the phenomenology observed in
the different cases is consistent. In the remainder of this chapter, we shall tell
the prototype thermalization story, by combining the insights gained from these
numerical experiments, supporting it whenever possible by analytical arguments.
In the remaining chapters of the book we shall contrast this theory with the
findings and demands of concrete applications.

12.5.3 The stages of thermalization

Summarizing the results of both numerical and analytical work, we may say that
typically the thermalization process in an isolated quantum field goes through
three distinctive stages [Son96]:

(a) early stage;
(b) intermediate stage;
(c) late stage.

The early stage: Preheating and prethermalization

Description of the earliest stage of thermalization varies a lot from one model to
another. It is generally characterized by an explosive pumping of energy into the
field, usually because of instabilities. For example, in a quench from a stable to
an unstable phase (cf. Chapters 4 and 9), the infrared modes become unstable
and begin to grow explosively. A similar phenomenon marks the growth of fluc-
tuations around a collapsing condensate, or the growth of large-scale magnetic
fields from an anisotropic distribution of hard gluons after a relativistic heavy
ion collision (RHIC). Without involving an actual instability, parametric ampli-
fication by a dynamical background is also an efficient way to transfer energy to
the field; this occurs in the so-called preheating stage in reheating after inflation.

It is possible to reach an analytic understanding of the early phase if a set of
modes may be identified as a linear field on an evolving background. In this case,
the early stage may be analyzed within a one-loop or Hartree type approximation.
One generic phenomenon is that of decoherence (or dephasing) brought about
through quantum diffusion [HKMP96]. As a result, quantities involving contri-
butions from many modes (like the energy density or the pressure) quickly lose
memory about the initial conditions, and the equation of state stabilizes to its
near-thermal form. This is the phenomenon of pre-thermalization [BeBoWe04].
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One basic difficulty in formulating a model of this early stage is accounting
for the system–environment interaction which is what drives the system out of
equilibrium to begin with. This is usually done by assuming an ad hoc time
dependence in the field parameters, and/or adding dissipation and noise to the
equations of motion. However this procedure is hard to justify on a first principle
basis.

There is however an environment which is easy to include into the equations
and can bring about the desired effect – a dynamical background spacetime. In
an expanding universe only conformally invariant fields may hold on to thermal
equilibrium. Once conformal invariance is broken, field modes are relentlessly
red-shifted by the expansion, bringing about an effective (in both senses of the
word) cooling. We have analyzed this problem in Chapter 4.

The initial stage concludes at the point the infrared peak becomes nonlinear.
After a period of parametric amplification, the end result is a nonthermal spec-
trum with a narrow band of highly populated modes. In the next stage, this
far-from-equilibrium spectrum evolves into a Planck distribution through the
process of turbulent thermalization.

Intermediate stage: Turbulent thermalization and kinetic equilibration

The second stage of the thermalization process is characterized by nonlinear
interactions among quantum modes, bringing about an effective thermalization
in the energy spectrum, as measured from the Fourier transform of the two-point
functions.

As we have seen, the early stage may be described as a theory of linear fields
evolving on a classical background. However, as the quantum field amplitude
grows, there is a point where a linear model ceases to make sense. We emphasize
that the breakdown of linear models beyond a certain point goes over and above
formal problems, such as the existence of secular terms [Ber04b, BerSer03b,
BerSer04]. If that were the case, it would be enough to resum those terms,
for example, by using dynamical renormalization group techniques [BVHS99b,
KunTsu06]. The point is that the model of linear fields on a background misses
an essential part of the physics, for which there is no formal remedy.

To estimate the point at which the linear approximation is no longer valid, we
could for example consider the case of a Bose–Einstein condensate. The Heisen-
berg operator ψ (x) which destroys a noncondensate atom at point x may be
regarded as a nonrelativistic scalar field theory with a quartic self-interaction.
There is a scattering length a = UM/4π�

2 pertaining to the strength U of the
self-interaction and the mass of the atom M . The cross-section for scattering
between noncondensate atoms is σ ∼ a2. If we split the density into its con-
densate and noncondensate (or anomalous) parts n = Φ2 + ñ, then the mean
free path for a noncondensate atom is λ ∼ 1/ñσ. On the other hand, let L be
a characteristic length of the problem. It could be the distance over which the
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condensate varies, or the size of a causal horizon as measured from the start
of the nonequilibrium evolution. Once λ ≤ L, self-interactions can no longer be
ignored, which yields

ñ ≥
(
4π�

2
)2

U2M2L
(12.185)

This may come about because ñ gets large or L gets large, for example, if L

grows linearly in time. We observe that for a self-interacting field, there is a
nonzero anomalous density even at zero temperature.
λ ≤ L is also the condition for the validity of the quantum kinetic theory

approach, since we expect λ to set the scale for the decay of correlations with
respect to the relative variable, and L to describe the dependence of the correla-
tions on the center-of-mass variable. This affords an enormous simplification of
the problem.

Observe, however, that in the same way that it is wrong to apply a linear
model in the intermediate stage, it would be wrong to apply a quantum kinetic
theory scheme in the early stage [BerBol06, BeBoWe05]. The simplest kinetic
theories assume, besides λ ≤ L, that all initial non-Gaussian correlations have
decayed, and that effectively the initial time may be chosen as in the asymp-
totic distant past. These restrictions are removed in more complex approaches,
but they also set limits to the applicability of quantum kinetic theory at early
times.

In a typical problem, the early stage concludes with most of the energy in
the field concentrated in a narrow set of modes, and the intermediate stage
sees the spread of energy over the full spectrum. There is an initial stage
where a cascade is formed between the initial scale k0 and a moving front
kmax (t) . Within these limits, there is a constant energy current towards higher
wavenumbers. This phenomenon closely resembles Kolmogorov’s 1941 scenario
for fully developed turbulence, and hence the name of turbulent thermalization
[Fri95, McC94, LanLif59, Hin75, Bat59, ZaLvFa92].

Turbulent thermalization ends with a self-similar particle number spectrum (as
defined by the Fourier transform of the Hadamard propagator, see Chapter 11)
f (k) ∼ k−α, with α > 1. The following stage, or kinetic equilibration, sees the
evolution of the spectrum towards the Rayleigh–Jeans form f (k) ∼ (kBT ) k−1.

We are assuming of course a high-temperature, weakly coupled scalar field, with
high occupation numbers.

The basic features of turbulent thermalization may be understood in terms
of a simple quantum kinetic theory model [ZaLvFa92, FelKof01, MicTka04,
MuShWo07]. Assume a kinetic equation

ωk
∂f

∂t
(t, k) = Icol (12.186)
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For the collision kernel, write

Icol =
∫ m∏

i=1

ddpi
2ωi

σ2
m,j

⎧⎨
⎩

j∏
l=0

(1 + f (pl))
m∏

l′=j+1

f (pl′)

−
j∏

l=0

f (pl)
m∏

l′=j+1

(1 + f (pl′))

⎫⎬
⎭ δ(d+1)

⎡
⎣ j∑

l=0

pl −
m∑

l′=j+1

pl′

⎤
⎦ (12.187)

where d is the number of spatial dimensions and p0 = k. For example, for elas-
tic 2 → 2 scattering we have m = 3, j = 1. For large occupation numbers, this
simplifies to

Icol =
∫ m∏

i=1

ddpi
2ωi

σ2
m,j

[
m∏
l=0

f (pl)

]⎡⎣ j∑
l=0

f−1 (pl) −
m∑

l′=j+1

f−1 (pl′)

⎤
⎦

× δ

⎡
⎣ j∑

l=0

pl −
m∑

l′=j+1

pl′

⎤
⎦ (12.188)

Observe that ωkf (t, k) is also the energy density in wavenumber space, and so
the energy current JE obeys

∇kJE = −Icol (12.189)

Let us assume an isotropic situation JE = JE k̂. The total energy flux through a
shell of radius k is KE = rkd−1JE , where r is a constant pure number. Therefore,
if Icol scales as k−β , then JE scales as k1−β and KE ∼ kd−β . It follows that
turbulent thermalization requires β = d.

On the other hand, if f (k) ∼ k−α then from equation (12.188) we get (assum-
ing σ2

m,j does not scale)

β = (d + 1) + m (α + 1 − d) (12.190)

and finally

α = d− 1 − 1
m

(12.191)

The numerical result for d = 3 is α = 3/2, which corresponds to m = 2
[MicTka04]. This is obtained for a gφ3 theory or for a λφ4 theory in the presence
of a background field. Observe that for d = 1 we get α < 0 whatever the value of
m. Therefore there are no turbulent UV cascades in 1 + 1, also consistent with
numerical results. The observed cascade has the Rayleigh–Jeans spectrum α = 1
corresponding to KE = 0 (cf. equation (12.188)).

The evolution of the wave front kmax (t) depends upon further details such
as whether the total energy (or else the total particle number) contained in the
cascade may be considered constant.
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As the spectrum spreads it also loses amplitude, and at some point the typ-
ical occupation numbers are no longer large. At this point turbulent thermal-
ization ceases. The subsequent relaxation to Rayleigh–Jeans equilibrium may
be described by nonequilibrium renormalization group methods. The time-scale
for kinetic equilibration may be estimated from a simple Boltzmann equation
approach as τrel ∼ 1/λ2T .

Late stage: chemical equilibration

The latest stage concerns chemical, rather than kinetic, equilibration. This means
that the energy and particle number spectra already have (local) equilibrium
forms, and now the issue is the equilibration among different species. For a
real scalar field theory, the two species involved (particles and antiparticles)
are identical, and chemical equilibration means the vanishing of the chemical
potential.

As in the earlier stages, the basic problem is to find the right tool for the
right job. For example, the simplest Boltzmann equation with 2 → 2 scattering
may be successfully used to describe kinetic equilibration. Nevertheless, it fails
to describe chemical equilibration, because it has a spurious particle number
conservation law built in. To describe chemical equilibration we must go beyond
this lowest order kinetic equation, either by considering a more general den-
sity of states (as opposed to a sharp mass-shell) or/and by considering higher
order terms in the loop or 1/N expansions [CaHuRa00, Wei05b, FiGaJe06]. The
relevant terms have been analyzed earlier in this chapter.

Concrete applications may demand other departures from the simple Boltz-
mann approach. For example, in dealing with a quark–gluon plasma, the relevant
kinetic equation is not Boltzmann’s, but rather a Landau-type kinetic equa-
tion incorporating the effects of grazing collisions [ChaCow39, Lib98, LifPit81,
Mue00a, Mue00b, BjoVen01]. Also we must take into account the color degree
of freedom, for example, by analyzing the Wong equations [LitMan02].

Another possibility is to go over directly to a hydrodynamic description. Since
the underlying quantum field theory is obviously causal, one expects that the
correct hydrodynamic theory would not be a first-order theory (in the classifica-
tion of Hiscock and Lindblom) but rather a Israel–Stewart or a divergence type
theory [CalThi00, CalThi03].

As a concrete example, let us analyze the regression towards zero of the chem-
ical potential in a self-interacting scalar field theory. We assume we are close
enough to equilibrium that the chemical potential may be regarded as a linear
perturbation, and use the kinetic equation with higher order terms already dis-
cussed in this chapter. Assuming the chemical potential is a function of time only,
for simplicity, we may write the equation in the spatially translation-invariant
case, namely [

ω
∂

∂t
− 1

2

(
dM2

dt

)
∂

∂ω

]
f = Icol

[
f,M2

]
(12.192)
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The mass is given by the gap equation

M2 − ϕ
(
M2, μ2

)
=

λ

2
M2

T (12.193)

where

M2
T =

∫
d4p

(2π)3
δ
(
p2 + M2

)
f (X, p) (12.194)

Now write

f = f0 + f0 (1 + f0)χ (12.195)

M2 = M2
0 + δM2 (12.196)

Icol
[
f,M2

]
= f0 (1 + f0)K [χ] (12.197)

ω
∂χ

∂t
+

β

2
dδM2

dt
= K [χ] (12.198)[

1 − ϕ′ − λ

2
∂M2

T

∂M2

]
δM2 = λ 〈χ〉 (12.199)

The perturbation χ may be expanded in eigenfunctions of the linearized Boltz-
mann collision operator

χ = β

[
μ +

δT

T
ω + χ̄

]
(12.200)

χ̄ =
∑
n=1

cnχn (12.201)

so

δM2 = 2ω0

[
μ +

〈ω〉
〈1〉

δT

T

]
(12.202)

[ω + ω0]
dμ

dt
+

1
T

[
ω2 +

〈ω〉
〈1〉 ω0

]
dδT

dt
+ ω

∂χ̄

∂t
= μK [1] + K [χ̄] (12.203)

ω0 =
λβ 〈1〉

2
[
1 − ϕ′ − λ

2

∂M2
T

∂M2

] (12.204)

Since we know that μ = constant is a solution if we keep only the lowest order
Boltzmann collision term, we expect μ to decay on time-scales of the order of
λ−4 at least. χ̄ will have a slow part, that will track μ, and a fast part, that will
decay on time-scales of the order of ω−1. Clearly only the slow part is relevant
to our discussion, and so we may neglect the ∂χ̄/∂t term.

Observe that now we have an equation of the form

K [χ̄] = Aω2 + Bω + C (12.205)

If we look at the right-hand side as a function of ω, then the dominant term
is the first. The solution is χ̄ ∼ − (τrel/T )Aω2 + νω + ν′, where the linear and
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constant terms enforce the constraints 〈χ̄〉 = 〈ωχ̄〉 = 0. In other words, the effect
of the K [χ̄] term in equation (12.203) is to compensate the dδT/dt one. Canceling
those two, we get the regression equation for μ as the average of equation (12.203)
(recall that 〈K [1]〉 < 0)

[〈ω〉 + ω0 〈1〉]
dμ

dt
= −μ |〈K [1]〉| (12.206)

From the estimates in this chapter, we conclude that the characteristic time-scale
for chemical equilibration is τchem ∼ M2/λ4T 3, parametrically larger than τrel.

12.5.4 Coda

In this section we have painted a broad outline of the thermalization process,
going as far as possible without invoking the specifics of modeling or features of
concrete applications. We have seen that a general picture indeed emerges, and
that it reveals the communion between quantum field theory and other parts of
physics, represented in this chapter by fluid and wave turbulence theory. As all
portraits of its kind, it emphasizes more the generalities than the specifics, and
so case by case considerations are still useful. In the remainder of this book we
shall do just that, at least for the most conspicuous and developed applications
of nonequilibrium quantum field theory.
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