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Abstract

In this paper we consider a structural form credit risk model with jumps. We investigate the
credit spread, the price, and the fair premium of the zero-coupon bond for the proposed
model. The price and the fair premium of the bond are associated with the Laplace
transform of default time and the firm’s expected present market value at default. We
give sufficient conditions under which the Laplace transform and the expected present
market value of a firm at default are twice continuously differentiable. We derive closed-
form expressions for them when the jumps have a hyperexponential distribution. Using
the closed-form expressions, we obtain numerical solutions for the default probability,
the credit spread, and the fair premium of the bond.
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1. Introduction

Defaultable zero-coupon bond and credit default swap (CDS) are important credit deriva-
tives. The fair premium of the bond is associated with its CDS. It is of special interest to
price these derivatives in credit risk theory. The structural form model, initially proposed in
Black and Scholes (1973), Merton (1974), and Black and Cox (1976), could give an intuitive
understanding for the credit risk by specifying a firm’s value process. A commonly used method
for investigating the credit risk in structural form models is the first passage time approach,
which specifies the default as the first time that the firm’s value falls below a threshold level.
See, for example, Black and Cox (1976), Longstaff and Schwartz (1995), Collin-Dufresne and
Goldstein (2001).

In some earlier structural form models, the firm’s market value process is assumed to follow
a diffusion process. This assumption leads to zero limiting credit spreads, which contradicts the
empirical observation that credit spreads do not vanish as maturity decreases to 0. To overcome
this shortcoming, many authors consider structural form credit risk models in which the firm’s
market value process contains jumps. See, for example, Zhou (2001), Hilberink and Rogers
(2002), and Le Courtois and Quittard-Pinon (2006). Following the idea of these papers, we
also consider a structural form model with jumps. Using the first passage time approach, we
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investigate the credit spread, the price, and the fair premium of the bond under the proposed
model.

All random variables considered in this paper are defined on the filtered complete probability
space {�,�, {�t },P}. We assume that the total market value of a firm under the pricing
probability measure P is given by

V (t) = V0 exp

[
µt + σW(t)+

N(t)∑
i=0

Zi

]
(1.1)

for t ≥ 0, where µ, σ , and V0 are positive constants, and V0 represents the initial market value
of the firm; {W(t)} is a standard Brownian motion; {N(t)} is a Poisson process with parameter
λ > 0; and the random variables {Zi} are independent and identically distributed with common
distribution F . It is assumed that {W(t)}, {N(t)}, and {Zi} are independent. This means that∑N(t)
i=0 Zi is a compound Poisson process with intensity λ > 0 and jump size distribution F .
For simplicity, we let the constant K > 0 denote the debt of the firm. Set u = −ln(K/V0).

Following Longstaff and Schwartz (1995) we define the default time as

τu = inf{t : V (t) ≤ K}
with τu = ∞ if V (t) > K for all t ≥ 0. We call the constant K the default threshold level.
As in Black and Cox (1976), we let the default threshold level K be an exponential function
of time t . However, this choice does not bring any essential extension of mathematics in the
following discussions.

Consider the jump diffusion process defined by

X(t) = u+ µt + σW(t)+
N(t)∑
i=0

Zi, t ≥ 0. (1.2)

Then, we have
τu = inf{t : X(t) ≤ 0}

with τu = ∞ if X(t) > 0 for all t ≥ 0. Given T > 0, the default probability of the firm in
[0, T ] is defined as �(u, T ) = P(τu ≤ T ).

IfF(0) = 1, the processX(t) given in (1.2) reduces to the classical risk process perturbed by
diffusion introduced in Gerber (1970) in insurance mathematics. In this case, u ≥ 0 is the initial
surplus of the insurer and the default time τu above is, in fact, the time of ruin; see Dufresne
and Gerber (1991). Ruin theory for Gerber’s classical risk process perturbed by diffusion has
been extensively studied in risk theory. See, for example, Dufresne and Gerber (1991), Furrer
and Schmidli (1994), Gerber and Shiu (1998), Wang and Wu (2000), Tsai and Willmot (2002),
and Chiu and Yin (2003).

Using similar processes to models (1.1) and (1.2), Chen and Panjer (2009) investigated
connections between ruin theory and credit risk for a structural form credit risk process with
jumps, so that the results developed in ruin theory can be used to develop analogous results in
credit risk. Zhou (2001) considered a structural credit risk model with jumps, and provided a
simple Monte Carlo algorithm to evaluate bond prices and credit spread when the jumps have
normal distribution. Kou and Wang (2003) and Le Courtois and Quittard-Pinon (2006) derived
closed-form solutions for the Laplace transform of the first passage times that is associated with
the jump diffusion process (1.2) when the jumps are double-exponentially distributed by using
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the memoryless property of the exponential distribution. Ramezani and Zeng (2007) considered
an asset process similar to process (1.1). Using a maximum likelihood estimation procedure,
they found that the asset process for both individual stocks and the indexes of the S&P-500 and
the NASDAQ with jumps having double-exponential distribution performs better than the case
with normally distributed jumps or without jumps. There are a number of works that study
the double-exponential jump diffusion model; see Kou (2002), Kou and Wang (2003), (2004),
Huang and Huang (2003), and Huang and Zhou (2008), to name only a few. Intuitively, jumps of
the firm’s value process are triggered if unexpected information or events are revealed, and there
might be a variety of information. Motivated by the work of Lindskog and McNeil (2003), we
assume that different varieties of unexpected information or events arrive as independent Poisson
processes, and that the jump sizes caused by the same type of information are independent and
have a common distribution. Hence, the jump components of the firm’s value process caused
by unexpected information or events can be seen to be a sum of some independent compound
Poisson-distributed random variables, and, therefore, itself compound Poisson distributed. If
all types of jump size follow double-exponential distributions, then the firm’s value process is a
hyperexponential jump diffusion model, which is a generalization of double-exponential jump
diffusion model. In fact, the credit risk process (1.1) with jumps having a hyperexponential
distribution may be more flexible, and it can well approximate many heavy-tailed distributions,
including exponential-tail and power-tail distributions. Hence, it can be used to incorporate the
uncertainty of the heaviness of the asset return tails.

The aim of this paper is to provide a method to value the price and the fair premium of the zero-
coupon bond under credit risk process (1.1). Specifically, we present closed-form expressions
for them when the jumps have a hyperexponential distribution. The rest of this paper is organized
as follows. In Section 2 we present the connections between the price and the fair premium of
the zero-coupon bond, the Laplace transform of default time, and the firm’s expected present
value at default. In Section 3 we give sufficient conditions under which the Laplace transform
and the firm’s expected present value at default are twice continuously differentiable and derive
closed-form expressions for them when the jumps have a hyperexponential distribution. Using
the closed-form expressions, we obtain numerical solutions for the credit spread, the default
probability, and the fair premium of the bond in Section 4. Section 5 provides some conclusions.

2. The price and the fair premium of the zero-coupon bond

Let δ > 0. The Laplace transform of τu is defined as L(u) = E[e−δτu ]. We have

L(u) = 1 for u ≤ 0. (2.1)

The density of the default time τu can be obtained by inverting its Laplace transform L(u).
Let φ(u) = E[V (τu)e−δτu 1(τu < ∞)] denote the expected presented market value of a firm

at default time, where δ > 0 is the discounted factor. It is easy to see that

φ(u) = V0 for u ≤ 0. (2.2)

Some exact expressions forφ(u) are obtained when the jumps in the credit risk process (1.1) have
a double-exponential distribution or when the jump diffusion process X(t) of (1.2) is replaced
by a Lévy process with no upward jumps, a so-called spectrally negative Lévy process. See Le
Courtois and Quittard-Pinon (2006) and Hilberink and Rogers (2002).

The price and the fair premium of a defaultable zero-coupon bond are associated with the
functions L(u) and φ(u). Given a short constant rate of interest r > 0, the fair price B(0, T )
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of a defaultable zero-coupon bond at time 0 with maturity T and unit face value is given by

B(0, T ) = e−rT P(τu > T )+ R E[e−rτuV (τu) 1(τu ≤ T )]
K

, (2.3)

whereR ∈ [0, 1] is a constant. The first term on the right-hand side of (2.3) is the present value
of the bond if there is no default occurring before time T . The second term is the expected
present value of what the bondholders receive upon default (if this happens before maturity).
The bondholder receives the fraction RV (τu)/K of the face value in case of a default. We can
interpret 1 − R as the fraction of the liquidity cost of the firm when default occurs.

The credit spread corresponding toB(0, T ) is denoted as ηT ; it is the solution to the equation
B(0, T ) = e−(r+ηT )T . Hence, we have

ηT = − ln(B(0, T ))

T
− r. (2.4)

Given B(0, T ), we can obtain ηT from (2.4).
In a credit default swap (CDS) contract written on the firm’s zero-coupon bond, we assume

that the insurance seller will continuously receive the premium at rate c until the firm goes
bankrupt and will cover the loss of the insurance buyer in the event of credit default. This
means that the price CDS(0, T ) of the contract with notional value 1, continuous premium rate
payments c, and maturity T is

CDS(0, T ) = E

[(
1 − RV (τu)

K

)
e−rτu 1(τu ≤ T )

]
− E

[∫ T

0
ce−rt 1(τu > t) dt

]
. (2.5)

The first term on the right-hand side of (2.5) is the expected present value of the loss of the
bond. The second term is the expected present value of the premium paid by the bondholder
till default occurs. The fair premium rate CT should make the value of CDS(0, T ) 0. Hence,
from (2.5) we obtain

CT = E[(1 − RV (τu)/K)e−rτu 1(τ ≤ T )]
E[∫ T0 e−rt 1(τu > t) dt]

=: A1(u, T )

A2(u, T )
.

Since there are no exact results for the price of the bond and for the fair premium under credit
risk process (1.1), following Hilberink and Rogers (2002) and Le Courtois and Quittard-Pinon
(2006), we consider the Laplace transforms of the price B(0, T ) and the Laplace transforms
of A1(u, T ) and A2(u, T ). By inverting these Laplace transforms we could obtain the price of
the bond and the fair premium.

The Laplace transform of B(0, T ) is given by

B̂(γ ) =
∫ ∞

0
e−γ T B(0, T ) dT

=
∫ ∞

0
e−γ T E[e−rT 1(τu > T )] dT +

∫ ∞

0

R E[e−rτu−γ T V (τu) 1(τu ≤ T )]
K

dT .

(2.6)

Using Fubini’s theorem, we can rewrite (2.6) as

B̂(γ ) = E

[∫ τu

0
e−(γ+r)T dT

]
+ E

[∫ ∞

τu

Re−rτu−γ T V (τu) 1(τu < ∞)

K

]
dT

= 1 − E[e−(γ+r)τu ]
γ + r

+ R E[e−(r+γ )τuV (τu) 1(τu < ∞)]
Kγ

. (2.7)
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Similarly, the Laplace transforms of A1(u, T ) and A2(u, T ) are given by

Â1(γ ) =
∫ ∞

0
e−γ T A1(u, T ) dT = E[e−(r+γ )τu(1 − RV (τu)/K) 1(τu < ∞)]

γ
(2.8)

and

Â2(γ ) =
∫ ∞

0
e−γ T A2(u, T ) dT

= E

[∫ ∞

0

∫ ∞

t

e−γ T−rt 1(τu > t) dT dt

]

= E

[∫ τu

0

e−(γ+r)t

γ
dt

]

= 1 − E[e−(γ+r)τu ]
γ (γ + r)

. (2.9)

It is easy to see that the Laplace transforms in (2.7), (2.8), and (2.9) rely on the Laplace transform
of τu and the expectation E[e−(r+γ )τuV (τu) 1(τu < ∞)]. Thus, it is helpful to derive some
exact results available for the latter two.

3. Main results

Let Y be a random variable measurable with respect to the σ -algebra σ {X(s), 0 ≤ s < ∞}.
We use the superscript u in the conditional expectation Eu[Y ] = E[Y | X(0) = u] to indicate
that the real-valued Markov process {X(t)} starts from X(0) = u with probability 1. To unify
the study, following Gerber and Shiu (1998), we consider the function


(u) = Eu[e−δτu+ξX(τu) 1(τu < ∞)] for ξ ≥ 0.

Theorem 3.1. Assume that the jump size distribution F is absolutely continuous. Then,
the function 
(u) is twice continuously differentiable on (0,∞) and it satisfies the integro-
differential equation

1

2
σ 2
′′(u)+µ
′(u)−(λ+δ)
(u) = −λ

[∫ −u

−∞
e(u+z)ξ dF(z)+

∫ ∞

−u

(u+z) dF(z)

]
. (3.1)

Proof. Let u > 0. Note that the process {X(t)} is a homogeneous strong Markov process
on (−∞,∞). The killed version of the process {X(t)} at default time τu is

X̄(t) =
{
X(t) if t < τu,

∂ if t ≥ τu,

where ∂ denotes the death state for the process {X(t)}. The twice killing process for the process
{X(t)} is

Z(t) =
{
X̄(t) if t < ζ,

∂ if t ≥ ζ,

where ζ is an exponential random variable with parameter δ, independent of the process
{X(t), t ≥ 0}. The process {Z(t), t ≥ 0} is also a homogeneous strong Markov process
in (0,∞). See, for example, Blumenthal and Getoor (1968, Chapter 3).
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LetA denote the weak infinitesimal generator of the process {Z(t)}, and letD(A) denote its
domain. Since σ > 0 in credit risk process (1.1), each function in D(A) is defined on (0,∞)

and is twice continuously differentiable. Using Itô’s formula, we can find the infinitesimal
generator

Ag(u) := lim
h↓0

Eu[g(Z(h))] − g(u)

h

= σ 2

2
g′′(u)+ µg′(u)+ λ

∫ ∞

−u
g(u+ z) dF(z)− (δ + λ)g(u), (3.2)

where g ∈ D(A).
Similar to Yuen et al. (2009), to prove the theorem, it is sufficient to show that the function


(u) on (0,∞) is in D(A). To show this, from Dynkin (1965, Chapter 1), we need to only
prove that limh↓0 Eu[
(Z(h))] = 
(u) for each u ∈ (0,∞) and that, as a function of variable
u on (0,∞), the limit

lim
h↓0

Eu[
(Z(h))] −
(u)

h

is bounded and continuous.
For t ≥ 0, let θt denote the shift operator from � to itself defined by X(s, ω) ◦ θt =

X(s, θtω) = X(s+ t, ω). We refer the reader to Revuz andYor (1991, pp. 34, 97) for a detailed
definition.

It is easy to see that

Eu[
(Z(h))] = Eu[1(h < τu < ∞) 1(ζ > h)
(X(h))]
= e−δh Eu[1(h < τu < ∞)
(X(h))], (3.3)

where, by convention, 
(∂) = 0. Conditioning on {h < τu < ∞}, we have τu = h+ τu ◦ θh.
A standard use of the homogeneous Markov property of the process X(t) gives

Eu[1(h < τu < ∞)
(X(h))] = Eu[1(h < τu < ∞)Eu[e−δτu+ξX(τu) ◦ θh | �h]]
= Eu[Eu[1(h < τu < ∞)e−δτu+ξX(τu) ◦ θh | �h]]
= Eu[1(h < τu < ∞)e−δτu◦θh+ξX(τu◦θh+h)]
= Eu[1(h < τu < ∞)eδh−δτu+ξX(τu)]
= eδh
(u)− eδh Eu[1(τu ≤ h)e−δτu+ξX(τu)]. (3.4)

Hence, from (3.3) and (3.4) we obtain

Eu[
(Z(h))] = 
(u)− Eu[1(τu ≤ h)e−δτu+ξX(τu)]. (3.5)

Equation (3.5) implies that

lim
h↓0

Eu[
(Z(h))] −
(u)

h
= − lim

h↓0

Eu[1(τu ≤ h)e−δτu+ξX(τu)]
h

.

Note that P(N(h) ≥ 2) = o(h) and P(inf0≤s≤h(µs + σW(s)) + u ≤ 0) = o(h) for each
u > 0. Given N(h) = 1, let ε(h) denote the jump time of the Poisson process {N(t)} in [0, h].
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Conditioning on the number of the jump times of the Poisson process {N(t)} in [0, h] and using
the independence assumptions, we obtain

lim
h↓0

Eu[1(τu ≤ h)e−δτu+ξX(τu)]
h

= lim
h↓0

1

h
[Eu[1(τu ≤ h) 1(N(h) = 0)e−δτu+ξX(τu)]
+ Eu[1(τu ≤ h) 1(N(h) = 1)e−δτu+ξX(τu)]
+ Eu[1(τu ≤ h) 1(N(h) ≥ 2)e−δτu+ξX(τu)]]

= lim
h↓0

1

h

[
e−λh Eu

[
1
(

inf
0≤s≤h(µs + σW(s))+ u ≤ 0

)
1(τu ≤ h)e−δτu+ξX(τu)

]
+ λhe−λh Eu

[
1
(

inf
0≤s≤h(µs + σW(s)+ 1(s ≥ ε(h))Z1)+ u ≤ 0

)
× e−δε(h)+ξX(ε(h))] + o(h)

]
= lim

h↓0
λe−λh Eu

[
1
(

inf
0≤s≤h(µs + σW(s)+ 1(s ≥ ε(h))Z1)+ u ≤ 0

)
e−δε(h)+ξX(ε(h))]

= λ

∫ −u

−∞
e(u+z)ξ dF(z).

Therefore, we have

lim
h↓0

Eu[
(Z(h))] −
(u)

h
= −λ

∫ −u

−∞
e(u+z)ξ dF(z). (3.6)

By assumption, F is absolutely continuous. Hence, the integral
∫ −u
−∞ e(u+z)ξ dF(z) is bounded

and continuous in u on (0,∞), given ξ ≥ 0. This means that limh↓0 Eu[
(Z(h))] = 
(u) for
each u ∈ (0,∞). Therefore, the function 
(u) on (0,∞) is in D(A) and, hence, it is twice
continuously differentiable on (0,∞). Replacing the function g by the function
 in (3.2) and
then using (3.6), we obtain (3.1). This completes the proof.

It is easy to see that L(u) = 
(u)|ξ=0 and φ(u) = K
(u)|ξ=1 on (0,∞). Hence, we have
the following two corollaries.

Corollary 3.1. Assume that the jump size distribution F is absolutely continuous. Then, the
Laplace transform L(u) is twice continuously differentiable on (0,∞) and it satisfies the
integro-differential equation

1

2
σ 2L′′(u)+µL′(u)−(λ+δ)L(u) = −λ

[
F(−u)+

∫ ∞

−u
L(u+z) dF(z)

]
, u > 0. (3.7)

Corollary 3.2. Assume that the jump size distribution F is absolutely continuous. Then, the
expected present market value φ(u) at the default time is twice continuously differentiable on
(0,∞) and it satisfies the integro-differential equation

1

2
σ 2φ′′(u)+µφ′(u)− (λ+δ)φ(u) = −λ

[∫ −u

−∞
Keu+z dF(z)+

∫ ∞

−u
φ(u+z) dF(z)

]
. (3.8)
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Remark 3.1. Denote by µZ the mean of Zi . Assume that µ̄ = µ+ λµZ > 0, so that we have
V (t) → ∞ as t → ∞ and limu→∞ τu = ∞ almost surely. In this case, we have

lim
u→∞L(u) = 0. (3.9)

Thus, we could obtain the Laplace transform L(u) by solving the boundary value prob-
lems (2.1), (3.7), and (3.9). In the case where µ̄ < 0, the boundary condition (3.9) does
not hold any more and we cannot in general obtain the Laplace transform L(u) by solving
only the boundary value problems (2.1) and (3.7). However, using the boundedness of the
Laplace transform and by solving the boundary value problems (2.1) and (3.7), we can obtain
a closed-form expression for the Laplace transform L(u) when the jump size distribution F is
a hyperexponential distribution. Similar arguments also hold for the function φ(u).

Example 3.1. We now assume that the jump size distribution F is a hyperexponential distri-
bution, that is, its density function, denoted by f , can be expressed as

f (z) =
{
p1α1e−α1z + p2α2e−α2z + · · · + pnαne−αnz, z ≥ 0,

q1β1eβ1z + q2β2eβ2z + · · · + qnβneβnz, z < 0,
(3.10)

with 0 < α1 < α2 < · · · < αn, 0 < β1 < β2 < · · · < βn, 0 ≤ pi, qi ≤ 1, i = 1, . . . , n, and∑n
i=1(pi + qi) = 1.
Though the density function f (z) given in (3.10) may not be continuous at z = 0, the hyper-

exponential distributionF is absolutely continuous. Hence, by Theorem 3.1, the corresponding
Laplace transform L(u) in this example is twice continuously differentiable on (0,∞) and it
satisfies (3.7).

Let I denote the identity operator, and let D denote the differential operator. Define the
differential operator polynomial

h2(D) = 1
2σ

2
D

2 + µD − (λ+ δ)I,

where, by convention, D
2L(u) = D(DL(u)). Similarly, we define h2(x) = 1

2σ
2x2 + µx −

(λ+ δ). Inserting (3.10) into (3.7) gives

h2(D)L(u) = −λ
[ n∑
i=1

qie
−βiu +

∫ u

0
L(s)

n∑
i=1

qiβie
βi(s−u) ds

+
∫ ∞

u

L(s)

n∑
i=1

piαie
−αi(s−u) ds

]
. (3.11)

Similar to Gerber and Shiu (2005) and Wang and Wu (2008), applying the differential operator
polynomial

∏n
i=1[(D + βiI)(D − αiI)] to the both sides of (3.11) yields the differential equation( n∏

i=1

[(D + βiI)(D − αiI)]
)
h2(D)L(u),

= λ

n∑
i=1

piαi

(
(D + βiI)

n∏
j=1, j 
=i

[(D + βj I)(D − αj I)]
)
L(u)

− λ

n∑
i=1

qiβi

(
(D − αiI)

n∏
j=1, j 
=i

[(D + βj I)(D − αj I)]
)
L(u). (3.12)
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y = g(x)
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ρn�10

y

y = δ

x

Figure 1: The roots of (3.15).

The characteristic equation of (3.12) is( n∏
i=1

[(x + βi)(x − αi)]
)
h2(x)

= λ

n∑
i=1

piαi

n∏
j=1

(x + βj )(x − αj )

x − αi
− λ

n∑
i=1

qiβi

n∏
j=1

(x + βj )(x − αj )

x + βi
. (3.13)

By partial fraction decomposition we can rewrite (3.13) as

h2(x) = λ

n∑
i=1

(
piαi

x − αi
− qiβi

x + βi

)
. (3.14)

Define

g(x) = 1

2
σ 2x2 + µx − λ+ λ

n∑
i=1

(
qiβi

x + βi
− piαi

x − αi

)
.

Then, (3.14) can be rewritten as
g(x) = δ. (3.15)

Note that (3.13) has 2n+ 2 roots and it has the same roots as (3.15). We can verify that (3.15)
has 2n+ 2 distinct roots ri, ρi, i = 1, 2, . . . , n+ 1, with

rn+1 < −βn < rn < −βn−1 < · · · < −β1 < r1 < 0,

0 < ρ1 < α1 < ρ2 < α2 < · · · < αn < ρn+1

(see Figure 1). Hence, the Laplace transform L(u) has the form

L(u) =
n+1∑
i=1

cie
riu +

n+1∑
i=1

die
ρiu, u ≥ 0,

where the cis and dis are arbitrary constants. From the boundedness of the Laplace transform
and boundary condition (2.1), we see that

di = 0, i = 1, . . . , n+ 1,
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and
n+1∑
i=1

ci = 1. (3.16)

It follows that

L(u) =
n+1∑
i=1

cie
riu, u ≥ 0. (3.17)

Substituting L(u) given in (3.17) into (3.11) and equating the coefficients of e−βiu yields

n+1∑
j=1

cjβi

βi + rj
= 1, i = 1, . . . , n. (3.18)

Let A denote the (n + 1) × (n + 1) coefficient matrix of the linear system (3.16) and (3.18).
We have

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1
β1

β1 + r1
· · · β1

β1 + rn+1
...

. . .
...

βn

βn + r1
· · · βn

βn + rn+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Denote the determinant of the matrix A by det A. We can verify that det A 
= 0. Let Ak denote
the matrix obtained from A by replacing its kth column by the (n + 1)-dimensional column
vector W = (1, 1, . . . , 1)�, k = 1, 2, . . . , n+ 1. Thus, we have

ck = (det A)−1 det Ak, k = 1, 2, . . . , n+ 1. (3.19)

Hence, (3.17) and (3.19) give the closed-form expression for the Laplace transform L(u).
For n = 2, we have

L(u) = c1er1u + c2er2u + c3er3u,

where r1, r2, and r3 with r3 < −β2 < r2 < −β1 < r1 < 0 are the three roots of the equation

h2(x)+ λ

(
q1β1

x + β1
+ q2β2

x + β2
+ p1α1

α1 − x
+ p2α2

α2 − x

)
= 0, (3.20)

and
c1 = r2r3(r1 + β1)(r1 + β2)

(r1 − r2)(r1 − r3)β1β2
, (3.21a)

c2 = r1r3(r2 + β1)(r2 + β2)

(r2 − r1)(r2 − r3)β1β2
, (3.21b)

c3 = r1r2(r3 + β1)(r3 + β2)

(r3 − r1)(r3 − r2)β1β2
. (3.21c)

Similarly, for n = 1, we have

L(u) = c1er1u + c2er2u,

https://doi.org/10.1239/jap/1308662635 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1308662635


414 Y. DONG ET AL.

where r1 and r2 with r2 < −β1 < r1 < 0 are the two roots of the equation

h2(x)+ λ

(
q1β1

x + β1
+ p1α1

α1 − x

)
= 0 (3.22)

and

c1 = r2(r1 + β1)

β1(r2 − r1)
, c2 = r1(r2 + β1)

β1(r1 − r2)
.

Example 3.2. Under the assumptions of Example 3.1, we can obtain a closed-form expression
for φ(u) by solving (3.8) with boundary conditions (2.2).

Using boundary conditions (2.2) and following the same arguments as used to derive (3.17)
and (3.19), we obtain

φ(u) =
n+1∑
i=1

Kηie
riu,

where the ηis solve the system
Aη = Q,

with

η = (η1, . . . , ηn+1)
� and Q =

(
1,

β1

(β1 + 1)
, . . . ,

βn

(βn + 1)

)�

being two (n+ 1)-dimensional column vectors, and the ris are the roots of (3.14).
For n = 2, we have

φ(u) = K(η1er1u + η2er2u + η3er3u), (3.23)

where r1, r2, and r3 are the three roots of (3.20), and

η1 = (r1 + β1)(r1 + β2)(r2 − 1)(r3 − 1)

(r1 − r2)(r1 − r3)(1 + β1)(1 + β2)
, (3.24a)

η2 = (r2 + β1)(r2 + β2)(r1 − 1)(r3 − 1)

(r2 − r1)(r2 − r3)(1 + β1)(1 + β2)
, (3.24b)

η3 = (r3 + β1)(r3 + β2)(r1 − 1)(r2 − 1)

(r3 − r1)(r3 − r2)(1 + β1)(1 + β2)
. (3.24c)

Similarly, for n = 1, we have

φ(u) = K(η1er1u + η2er2u),

where r1 and r2 are the two roots of (3.22), and

η1 = (r1 + β1)(1 − r2)

(r1 − r2)(1 + β1)
, η2 = (r2 + β1)(r1 − 1)

(r1 − r2)(1 + β1)
.

4. Numerical solutions

In this section we present some numerical results on the fair premium rate of the zero-coupon
bond, the default probability, and the credit spread when the jumps have a hyperexponential
distribution. We first introduce the Gaver–Stehfest algorithm for inverting the Laplace transform
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which was used in Kou and Wang (2003). For a nonnegative function f (t), we denote by F̂ its
Laplace transform, that is,

F̂ (δ) =
∫ ∞

0
e−δtf (t) dt, (4.1)

where δ > 0. Using (4.1), and Equations (5.1) and (5.2) of Kou and Wang (2003), we obtain

f (t) = lim
m→∞

m∑
k=1

�(k,m)F̄k(t), (4.2)

where

�(k,m) = (−1)m−k km

k! (m− k)! , (4.3)

F̄m(t) = ln(2)

t

(2m)!
m! (m− 1)!

m∑
k=0

(−1)k
(
m

k

)
F̂

(
(m+ k)

ln(2)

t

)
, (4.4)

and m is a positive integer. As pointed out in Section 5 of Kou and Wang (2003), we can
increase the numerical stability by replacing F̄k(t) in (4.2) by F̄k+2(t), that is, we can use the
approximation formula

f (t) �
m∑
k=1

�(k,m)F̄k+2(t), (4.5)

where � and F̄ are given by (4.3) and (4.4), respectively. The algorithm quickly converges
and it typically converges nicely even for m between 5 and 10.

Let ψ̂(u, δ) denote the Laplace transform of�(u, t) = P(τu ≤ t). Similar to Kou and Wang
(2003), we have

ψ̂(u, δ) =
∫ ∞

0
e−δt P(τu ≤ t) dt = 1

δ

∫ ∞

0
e−δt dP(τu ≤ t) = 1

δ
L(u).

For simplicity, we choose n = 2 in Example 3.1. Thus, from (3.17) we have

ψ̂(u, δ) = 1

δ
(c1er1u + c2er2u + c3er3u), (4.6)

where c1, c2, and c3 are given in (3.21a)–(3.21c), and r1, r2, and r3 are the roots of (3.20) with
δ being replaced by γ + r in h(x). Similarly, from (3.17) and (3.23), we obtain

B̂(γ ) = 1

γ + r
+

(
Rη1

γ
− c1

γ + r

)
er1u +

(
Rη2

γ
− c2

γ + r

)
er2u +

(
Rη3

γ
− c3

γ + r

)
er3u,

(4.7)

Â1(γ ) = (c1 − Rη1)er1u + (c2 − Rη2)er2u + (c1 − Rη3)er3u

γ
, (4.8)

Â2(γ ) = 1 − c1er1u − c2er2u − c3er3u

γ (γ + r)
, (4.9)

where η1, η2, and η3 are given in (3.24a)–(3.24c).
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It is easy to see that

var(X(t)) =
[
σ 2 + 2λ

(
p1

α2
1

+ p2

α2
2

+ q1

β2
1

+ q2

β2
2

)]
t =: σ 2

Xt.

To investigate the impact of jumps on the default probability, the fare premium, and the credit
spread, following Zhou (2001) and Le Courtois and Quittard-Pinon (2006), we keepσ 2

X constant,
so that the variations in the default probability, the fare premium, and the credit spread are mainly
caused by the jump component rather than by the changes of the whole value of σ 2

X. Fix the
parameters r = 0.03, R = 0.8, p1 = p2 = q1 = q2 = 1

4 , µ = 0.02, σX = 0.2, V0/K = 2,
and, hence, u = 0.7. A purely diffusion process corresponds to λ = 0 and, therefore, σX =
σ = 0.2. For jump size parameters, we consider two different cases.

Case A. α1 = β1 = 5, α2 = β2 = 10,

Case B. α1 = β1 = 10, α2 = β2 = 20.

It is obvious that the variation of the jump size in case A is larger than that in case B.
We choose m = 9 in (4.5). Applying (2.4), (4.5), and (4.6)–(4.9), we obtain numerical

solutions for the default probability, the fair premium, and the credit spread. Some numerical
results for the impact of jumps on the default probability are shown in Figure 2. As can be seen
from the figure the defaults are caused mainly by jumps rather than by the diffusion part over
a relatively short interval of time at the beginning. Then, the diffusion part contributes more
to the default probability than the jump for relatively larger times t . We can also see that the
default probability of credit risk process (1.1) with jumps is larger than that with no jumps over
a short interval at the beginning. This fact was also noted in Zhou (2001), Le Courtois and
Quittard-Pinon (2006), and Ramezani and Zeng (2007).

Figure 2(a) shows that the default probability is an increasing function of the jump intensity λ
over a short interval at the beginning and a decreasing function of λ for relatively larger times t .
This is because increasing the value of λ means diminishing σ , owing to the facts that σX is
assumed to be a constant and a higher value of λ corresponds to a smaller σ for fixed jump
sizes.

Given the jump intensity, Figure 2(b) shows that a firm with larger jump sizes (case A) is
more likely to default over a relatively short interval of time at the beginning and the reverse
relationship holds for relatively large times t .

In Figure 2(c), we assumed that the variation of the compound Poisson process in pro-
cess (1.1) for case A is equal to that for case B. From Figure 2(c) we see that the default
probability with larger intensity value λ and smaller jump sizes is closer to that for a purely dif-
fusive process. This is intuitively clear because the compound Poisson process in process (1.1)
for case A is closer to a purely diffusive process than for case B.

In Figure 3 we present the influence of jumps on the credit spread. From Figure 3(a) we see
that a larger variation of jump size corresponds to a higher value of credit spread over a short
interval at the beginning, given the intensity λ.

For a given jump size, Figure 3(b) indicates that the credit spread increases in intensity λ
over a short interval at the beginning.

In Figure 4 we present the influence of jumps on the fair premium of the zero-coupon bond.
From Figure 4(a) we see that a jump size with larger variation corresponds to a higher fair
premium rate, given the intensity λ. For the same jump size, Figure 4(b) shows that the fair
premium rate is an increasing function of the intensity λ.
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Figure 2: Relations between the default probability and (a) the jump intensity, (b) the variation of the
jump size, and (c) the total jump component.
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Figure 3: Relations between the credit spread and (a) the jump size and (b) the jump intensity.
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Figure 4: Relations between the fair premium rate and (a) the variation of the jump size and (b) the jump
intensity.

5. Conclusions

In this paper we have considered a structural form credit risk model with jumps and provided
ways to value the price and the fair premium of the zero-coupon bond. Both the price and the
fair premium of the zero-coupon bond rely on the Laplace transforms of the default time and
on the firm’s expected present market value at default. We derived sufficient conditions under
which the firm’s expected present market value at default is twice continuously differentiable
using a probabilistic method. Closed-form expressions for the Laplace transform of the default
time and for the firm’s expected present market value at default were obtained by solving
certain integro-differential equations when the jumps have a hyperexponential distribution. We
presented numerical illustrations to show how the jumps in the model impact on the default
probability, the fair premium, and the credit spread.

Since the hyperexponential distribution is rich enough to approximate many other distribu-
tions, including some heavy-tailed distributions, in the sense of weak convergence, we may
use credit risk process (1.1) with jumps having a hyperexponential distribution to approximate
some models with jumps that are generally two-sided distributed when evaluating the credit
risk for the proposed model. The jump magnitudes in credit risk process (1.1) need not be
hyperexponentially distributed. Hence, another important topic for further research is the
pricing of the zero-coupon bond under a general jump size distribution.
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