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Abstract
For any 𝑛 > 1 we determine the uniform and nonuniform lattices of the smallest covolume in the Lie group
Sp(𝑛, 1). We explicitly describe them in terms of the ring of Hurwitz integers in the nonuniform case with n even,
respectively, of the icosian ring in the uniform case for all 𝑛 > 1.

1. Introduction

1.1. The problem

The purpose of this article is to determine the lattices in the Lie group 𝐺 = PSp(𝑛, 1) of minimal
covolume for any integer 𝑛 > 1. For other rank one real simple Lie groups (namely 𝐺 = PO(𝑛, 1), and
𝐺 = PU(𝑛, 1)), this problem has been addressed in several different papers (see, for instance, [12, 14,
3, 11]). The result in the case 𝐺 = PGL2 (R) is a classical theorem of Siegel [34]. Many of the results
mentioned above are restricted to the class of arithmetic lattices: This allows the use of Prasad’s volume
formula [28] along with techniques from Borel–Prasad [4] as the main ingredient in the proof, and we
shall adopt the same strategy in this paper. A significant advantage when treating the case 𝐺 = PSp(𝑛, 1)
is that all lattices are arithmetic (since superrigidity holds) so that the results obtained below solve the
problem in this Lie group.

It will be more convenient to work with lattices in the group Sp(𝑛, 1), which is a double cover of
PSp(𝑛, 1) = Sp(𝑛, 1)/{±𝐼}. Let H denote the Hamiltonian quaternions. By definition, Sp(𝑛, 1) is the
unitary group U(𝑉R, ℎ) of H-linear automorphisms of 𝑉R = H𝑛+1 preserving the Hermitian form

ℎ(𝑥, 𝑦) = −𝑥0𝑦0 + 𝑥1𝑦1 + · · · + 𝑥𝑛𝑦𝑛. (1.1)

In Section 1.5, we explain how our results translate back into the original problem in PSp(𝑛, 1), and we
discuss their geometric meaning in terms of quaternionic hyperbolic orbifolds.

We will use the Euler–Poincaré characteristic 𝜒 (defined in the sense of C.T.C. Wall) as a mea-
sure of the covolume: There exists a normalization 𝜇EP of the Haar measure on Sp(𝑛, 1) such that
𝜇EP (Γ\Sp(𝑛, 1)) = 𝜒(Γ) for any lattice Γ ⊂ Sp(𝑛, 1); see Section 4.2. The problem is then to find the
lattices Γ ⊂ Sp(𝑛, 1) with minimal value for 𝜒(Γ). It is usual (and natural) to separate the problem into
the subcases of Γ uniform (i.e., the quotient Γ\Sp(𝑛, 1) being compact), respectively, Γ nonuniform.
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1.2. The nonuniform case

Denote by ℋ ⊂ H the ring of Hurwitz integers, which consists of elements of the form 𝛼0 + 𝛼1𝑖 + 𝛼2 𝑗 +
𝛼3𝑘 ∈ H with either all 𝛼𝑖 ∈ Z or all 𝛼𝑖 ∈ Z + 1

2 . Let Sp(𝑛, 1,ℋ) be the subgroup U(𝐿, ℎ) ⊂ U(𝑉R, ℎ)
stabilizing the lattice 𝐿 = ℋ𝑛+1 ⊂ 𝑉R. In matrix notation, it corresponds to the set of elements of
Sp(𝑛, 1) with coefficients in ℋ, whence the notation. The group Sp(𝑛, 1,ℋ) is a nonuniform lattice of
Sp(𝑛, 1) (see Section 2.3). It is easily checked that it is normalized by the scalar matrix 𝑔 = 𝐼 (1+ 𝑖)/

√
2,

for which 𝑔2 ∈ Sp(𝑛, 1,ℋ) holds. We denote by Γ0
𝑛 the subgroup extension of Sp(𝑛, 1,ℋ) by g. Thus,

Γ0
𝑛 contains Sp(𝑛, 1,ℋ) as a subgroup of index 2. For 𝑛 = 2, this lattice has been considered in [15,

Prop. 5.8]. We will compute the following (see Corollary 5.8):

𝜒(Γ0
𝑛) =

(𝑛 + 1)
2

𝑛+1∏
𝑗=1

2 𝑗 + (−1) 𝑗
4 𝑗

|𝐵2 𝑗 |, (1.2)

where 𝐵𝑚 is the m-th Bernoulli number. For the reader’s convenience, we list the first few values for
𝜒(Γ0

𝑛) in Table 1. Note the few distinct prime factors (namely, 𝑝 = 2, 3) appearing for 𝑛 = 2; this
compares with 𝜒(SL2(Z)) = −1/12.

Theorem 1. For any n even, the lattice Γ0
𝑛 realizes the smallest covolume among nonuniform lattices in

Sp(𝑛, 1). Up to conjugacy, it is the unique lattice with this property.

At this point, we would like to stress the relative simplicity of the description of the lattice Γ0
𝑛. In

comparison, the results of [2, 3, 11] concerning PO(𝑛, 1) and PU(𝑛, 1) describe the minimal covolume
lattices as normalizers of principal arithmetic subgroups, i.e., by using a local-to-global (adelic) de-
scription that heavily depends on Bruhat–Tits theory (see Section 4). A more concrete description in
those cases is only available in low dimensions (in the form of Coxeter groups) or in a few special cases
(see, for instance, [8, 9]). Another situation where satisfactory descriptions are available is the case of
a split Lie group G (see, for instance, [35] and [18, 31] in the positive characteristic case).

The adelic description of arithmetic subgroups is the setting needed to apply Prasad’s formula, and in
this respect, the proof of Theorem 1 (and Theorem 3 below) follows the same strategy as in those previous
articles. The improvement in the present case is stated in Theorem 5.7, where we have been able to
express a large class of stabilizers of Hermitian lattices—including Sp(𝑛, 1,ℋ)—as principal arithmetic
subgroups, in particular permitting the computation of their covolumes. This makes these subgroups
more tractable to geometric or algebraic investigation; for instance, the reflectivity of Sp(𝑛, 1,ℋ) has
already been studied by Allcock in [1].

For n odd, there is a nonuniform lattice of covolume smaller than Γ0
𝑛:

Theorem 2. Let 𝑛 > 1 be odd. There exists a unique (up to conjugacy) nonuniform lattice Γ1
𝑛 ⊂ Sp(𝑛, 1)

of minimal covolume. It is commensurable with Γ0
𝑛, and

𝜒(Γ1
𝑛) =

(𝑛 + 1)
2

𝑛+1∏
𝑗=1

22 𝑗 − 1
4 𝑗

|𝐵2 𝑗 |
𝑛+1

2∏
𝑗=1

1
24 𝑗 − 1

. (1.3)

Table 1. Some explicit values for 𝑛 ≤ 5..

𝑛 = 2 3 4 5

𝜒 (Γ0
𝑛)

1
211 · 33

17
214 · 35 · 5

17 · 31
219 · 36 · 11

17 · 31 · 691
222 · 37 · 5 · 7 · 11

𝜒 (Γ1
𝑛)

1
214 · 32 · 52

31 · 691
222 · 33 · 53 · 7 · 13

𝜒 (Δ𝑛)
67

210 · 33 · 53 · 7
192 · 67

213 · 35 · 54 · 7
192 · 67 · 191 · 2161
218 · 36 · 55 · 7 · 11
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Table 2. Some approximate values..

𝑛 𝜒 (Γ𝑠
𝑛) 𝜒 (Δ𝑛)

2 1.808 × 10−5 2.769 × 10−6

3 2.712 × 10−7 2.777 × 10−6

4 1.253 × 10−7 2.171 × 10−4

5 1.662 × 10−8 3.162
10 1.736 × 108 5.771 × 1064

15 8.624 × 1055 3.510 × 10218

20 1.654 × 10151 1.833 × 10478

For the lattice Γ1
𝑛, we did not manage to find an alternative to the construction relying on principal

arithmetic subgroups. Thus, a possible improvement of our result would be to obtain a more concrete
description for it.

Remark 1.1. The notation has been chosen so that Γ𝑠𝑛 denotes the nonuniform lattice of the smallest
covolume for any n when setting 𝑠 = (𝑛 mod 2) ∈ {0, 1}.

1.3. The uniform case

Let 𝑘 = Q(
√

5), and let ℐ denote the icosian ring, i.e., ℐ is the unique (up to conjugacy) maximal order
in the quaternion k-algebra

(
−1,−1
𝑘

)
(see [5, Sect. 8.2] or [38, p.141]). We have an inclusion ℐ ⊂ H.

The following Hermitian form restricts to the standard ℐ-lattice ℐ𝑛+1 in 𝑉R = H𝑛+1:

ℎ(𝑥, 𝑦) = 1−
√

5
2 𝑥0𝑦0 + 𝑥1𝑦1 + · · · + 𝑥𝑛𝑦𝑛. (1.4)

The stabilizer U(ℐ𝑛+1, ℎ) is a uniform lattice in Sp(𝑛, 1) (see Section 2.3), which we will denote by the
symbol Δ𝑛 in the following.

Theorem 3. For any 𝑛 > 1, the lattice Δ𝑛 realizes the smallest covolume among uniform lattices in
Sp(𝑛, 1). Up to conjugacy, it is the unique lattice with this property. Its Euler characteristic is given by

𝜒(Δ𝑛) = (𝑛 + 1)
𝑛+1∏
𝑗=1

𝜁𝑘 (1 − 2 𝑗)
4

, (1.5)

where 𝜁𝑘 denotes the Dedekind zeta function of 𝑘 = Q(
√

5).

Remark 1.2. The special values 𝜁𝑘 (1 − 2 𝑗) appearing in equation (1.5) are known to be rational by the
Klingen–Siegel theorem (more generally, for any totally real k), and they can be precisely evaluated (see
[33, Sect. 3.7]). A list for 𝑗 = 1, . . . , 5 is given, for instance, in [10, Table 2], from which we obtain the
explicit values for 𝜒(Δ𝑛) listed in Table 1. We omit 𝑛 = 5 for reason of space.

1.4. Numerical values, growth

We can now compare the nonuniform and uniform lattices and study the asymptotic of their covolumes
with respect to the dimension. We give a few numerical values in Table 2. One sees that 𝜒(Γ𝑠𝑛) and
𝜒(Δ𝑛) are very close for 𝑛 = 2, but then 𝜒(Δ𝑛) starts growing much faster than 𝜒(Γ𝑠𝑛) (which also
grows with 𝑛 > 5). More precisely, we can state the following result, which essentially follows from
Theorems 1–3; see Section 6.5 for the discussion of the proof.

Corollary 1. Each of the sequences 𝜒(Γ𝑠𝑛), 𝜒(Δ𝑛), and 𝜒(Δ𝑛)/𝜒(Γ𝑠𝑛) grows superexponentially as
𝑛 → ∞.
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Geometric lower bounds—by means of embedded balls—for the volume of quaternionic hyperbolic
manifolds have been obtained by Philippe in her thesis (see [26, Cor. 5.2]), and in [15, Cor. 5.3] for
noncompact manifolds. In contrast to Corollary 1, these bounds decrease fast with the dimension.

It is clear from Corollary 1 that the proof of the next result now follows by inspecting a finite number
of values.

Corollary 2. For 𝑛 = 2, the lattice of the smallest covolume in Sp(𝑛, 1) is uniform. For any 𝑛 > 2, this
lattice is nonuniform. The smallest Euler characteristic of a lattice in Sp(𝑛, 1) (with 𝑛 > 1 arbitrary) is
given by 𝜒(Γ1

5 ).

1.5. Quaternionic hyperbolic orbifolds

Let 𝜋 : Sp(𝑛, 1) → PSp(𝑛, 1) denote the projection. Any lattice Γ′ ⊂ PSp(𝑛, 1) is the image of a
lattice Γ = 𝜋−1 (Γ′) that contains the center {±𝐼}. Then we have 𝜒(Γ′) = 2𝜒(Γ). It follows that Γ′ is of
minimal covolume in PSp(𝑛, 1) if and only if so is Γ in Sp(𝑛, 1) (note that a lattice of minimal covolume
in Sp(𝑛, 1) necessarily contains the center {±𝐼}).

The group PSp(𝑛, 1) identifies with the isometries of the quaternionic hyperbolic n-space H𝑛
H

. For
any lattice Γ′ ⊂ PSp(𝑛, 1), we consider the finite-volume quaternionic hyperbolic orbifold 𝑀 = Γ′\H𝑛

H
.

Alternatively, we may write M as the quotient 𝑀 = Γ\H𝑛
H

, where Γ = 𝜋−1 (Γ′). Then the orbifold
Euler–Poincaré characteristic of M is given by 𝜒(𝑀) = 𝜒(Γ′) = 2𝜒(Γ). In case Γ′ is torsion-free,
M is a quaternionic hyperbolic manifold, and 𝜒(𝑀) corresponds to the usual (i.e., topological) Euler
characteristic. The volume of the orbifold M is proportional to 𝜒(𝑀) (see below). Thus, Theorems 1–3
determine the quaternionic hyperbolic orbifolds (compact or noncompact) of the smallest volume.

The choice of a normalization of the volume form on H𝑛
H

induces a volume form on its compact dual,
i.e., on the quaternionic projective space H𝑃𝑛. For the induced volume on a quotient 𝑀 = Γ′\H𝑛

H
, we

have

vol(𝑀) = vol(H𝑃𝑛)
𝑛 + 1

𝜒(𝑀), (1.6)

where 𝑛 + 1 appears as the Euler characteristic of H𝑃𝑛.

1.6. Outline

The classification of arithmetic subgroups in Sp(𝑛, 1) is discussed in Section 2. In Section 3, we recall
some materials from Bruhat–Tits theory, in particular to prepare the discussion of Prasad’s volume
formula in Section 4. Section 5 deals with lattices that are defined as stabilizers of Hermitian modules.
The proofs of the results stated in the introduction are contained in Section 6, with the exception of the
uniqueness, which is proved in Section 7.

2. Arithmetic subgroups in Sp(𝑛, 1)

2.1. Admissible groups

Let k be a number field, and consider an absolutely simple algebraic k-group G such that

G(𝑘 ⊗Q R) � Sp(𝑛, 1) × 𝐾 (2.1)

for some compact group K. Then G is simply connected of type C𝑛+1, and k is totally real. Moreover,
we can fix an embedding 𝑘 ⊂ R so that G(R) identifies with Sp(𝑛, 1). It follows from the classification
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of simple algebraic group (see [36] and Remark 2.2 below) that G is isomorphic over k to some unitary
group U(𝑉, ℎ), where

◦ D is a quaternion algebra over k, with the standard involution 𝑥 ↦→ 𝑥.
◦ V is a right D-vector space.
◦ h is a nondegenerate hermitian form on V (sesquilinear with respect to the standard involution).

Such a k-group G = U(𝑉, ℎ) satisfying equation (2.1) will be called admissible, and in this case, we shall
use the same terminology for the Hermitian space (𝑉, ℎ). We call D the defining algebra of G. Facts
concerning quaternion algebras will be recalled along the lines; we refer to [38] or [19, Ch. 2 and 6].

Remark 2.1. For any field extension 𝐾/𝑘 , we have by definition G(𝐾) = U(𝑉𝐾 , ℎ), where𝑉𝐾 = 𝑉 ⊗𝑘𝐾 .
The latter is seen as a 𝐷𝐾 -module for 𝐷𝐾 = 𝐷 ⊗𝑘 𝐾 . In particular, we can use the notation U(𝑉𝑘 , ℎ) to
denote the k-points G(𝑘).

Remark 2.2. In [36, p. 56] Tits describes the classification in terms of the special unitary group SU;
however, in our case SU = U since symplectic transformations have determinant 1.

2.2. Admissible defining algebras

We denote by V𝑘 = V∞
𝑘 ∪ V f

𝑘 the set of (infinite or finite) places of k, and, for any 𝑣 ∈ V𝑘 , by 𝐷𝑣 the
quaternion algebra 𝐷𝑘𝑣 = 𝐷 ⊗𝑘 𝑘𝑣 . The algebra D is completely determined by the set of places 𝑣 ∈ V𝑘
where it ramifies (i.e., for which 𝐷𝑣 is a division algebra), and the set of such places is of even (finite)
cardinality. There is no other obstruction to the existence of a quaternion algebra D with prescribed
localizations {𝐷𝑣 | 𝑣 ∈ 𝑉}; see [19, Sect. 7.3].

Let G = U(𝑉, ℎ) as above, with V over D. The following (well-known) result appears as a special
case of Lemma 5.2 below. Recall that 𝐷𝑣 is said split if it is isomorphic to 𝑀2 (𝑘𝑣 ), and this happens
exactly when 𝐷𝑣 is not ramified.

Lemma 2.3. Let 𝑣 ∈ V𝑘 . The algebraic group G𝑘𝑣 (obtained by scalars extension) splits if and only if
𝐷𝑣 splits (i.e., is not ramified).

Proof. It follows from the classification in [36, p. 56] that G𝑘𝑣 has relative rank less than 𝑛 + 1 if 𝐷𝑣

is a division algebra; thus, in this case, G𝑘𝑣 is not split. If 𝐷𝑣 splits the fact that G𝑘𝑣 splits will follow
from Lemma 5.2 below with 𝑅 = 𝑘𝑣 . �

Corollary 2.4. The k-isomorphism class of G determines its defining algebra D uniquely up to k-
isomorphism.

Proof. This is now clear since D is determined by the set of places where it splits. �

Corollary 2.5. In order for the Hermitian space (𝑉, ℎ) over D to be admissible, it is necessary that D
ramifies at any 𝑣 ∈ V∞

𝑘 , i.e., 𝐷𝑣 � H for any 𝑣 ∈ V∞
𝑘 .

Proof. By the admissibility condition, for any 𝑣 ∈ V∞
𝑘 the group G(𝑘𝑣 ) is either Sp(𝑛, 1) or Sp(𝑛+1) =

Sp(𝑛 + 1, 0). For 𝑛 > 1, these groups are not split. It follows from Lemma 2.3 that D ramifies at each
𝑣 ∈ V∞

𝑘 so that 𝐷𝑣 � H (see [19, Sect. 2.5]). �

A pair (𝑘, 𝐷) with 𝑘 ⊂ R a totally real number field and D a quaternion algebra over k will be
called admissible if D satisfies the necessary condition of Corollary 2.5. More simply, we say that ‘D is
admissible’.

Proposition 2.6. Let (𝑉, ℎ) and (𝑉 ′, ℎ′) be two admissible Hermitian spaces of the same dimension
over the same quaternion k-algebra D. Then U(𝑉, ℎ) is k-isomorphic to U(𝑉 ′, ℎ′).

Proof. Being admissible, the two Hermitian spaces (𝑉, ℎ) and (𝑉 ′, ℎ′) have the same signature over 𝑘𝑣
for any 𝑣 ∈ V∞

𝑘 , and it follows from [32, 10.1.8 (iii)] that (𝑉, ℎ) � (𝑉 ′, ℎ′). �
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Remark 2.7. There is actually a bijection between the set of admissible pairs (𝑘, 𝐷) for 𝑘 ⊂ R totally
real and the set of algebraic groups that are admissible for Sp(𝑛, 1); see [21, Sect. 4]. We will not need
this fact in its full generality.

2.3. The classification of lattices

Let G be an admissible k-group, and let O𝑘 denote the ring of integers in k. By the Theorem of
Borel and Harish-Chandra, any subgroup Γ ⊂ G(R) that is commensurable with G(O𝑘 ) (for some
embedding G ⊂ GL𝑁 ) is a lattice in Sp(𝑛, 1). Such a subgroup is called arithmetic. The work of
Margulis [20] has shown that superrigidity for Sp(𝑛, 1) (later proved by Gromov and Schoen [13] in
the non-Archimedean case and Corlette [6] in the Archimedean) implies the arithmeticity of any lattice
in Sp(𝑛, 1), i.e., any lattice in Sp(𝑛, 1) can be constructed as an arithmetic subgroup, as above. A pair
(𝑘, G) with G admissible determines exactly one commensurability class of lattices in Sp(𝑛, 1) (up to
conjugacy); see [29, Prop. 2.5]. We will say that the lattices Γ in such a commensurability class are
defined over k. Moreover, with Corollary 2.4, we see that the defining k-algebra D of G is an invariant
of the commensurability class. We take over the terminology and say that that D is the defining algebra
of Γ. Conversely, by Proposition 2.6, the pair (𝑘, 𝐷) uniquely determines the commensurability class.

Proposition 2.8 (Compactness criterion). A lattice Γ ⊂ Sp(𝑛, 1) is nonuniform if and only if it is defined
over Q.

Proof. This is specialization of Godement’s compactness criterion, which asserts that an arithmetic
subgroup of G semisimple is nonuniform in G(𝑘 ⊗Q R) if and only if G is k-isotropic. If 𝑘 ≠ Q, an
admissible k-group G has a compact factor G(𝑘𝑣 ) for some 𝑣 ∈ V∞

𝑘 so that G cannot be isotropic. Let
𝑘 = Q, and let G = U(𝑉, ℎ) admissible defined over Q. Then G is isotropic when (𝑉, ℎ) is, and by
[32, Theorem 10.1.1], this happens exactly when its trace form 𝑞ℎ (which is a quadratic form over Q in
4(𝑛 + 1) variables) is isotropic. Then G is isotropic by [32, Cor. 5.7.3 (iii)]. �

We will describe in Section 5 a concrete way to construct arithmetic subgroups in Sp(𝑛, 1).

3. Parahoric subgroups and Galois cohomology

We collect in this section some notions of the Bruhat–Tits theory; we refer to [37]. Section 3.1 and 3.2
are needed for the volume computation in Section 4. The content of Section 3.3 will appear later, in
Section 6.3, and the reader might want to skip it until they reach this point.

In this section, G denotes an admissible k-group. For any finite place 𝑣 ∈ V f
𝑘 , we denote by 𝔬𝑣 the

valuation ring in 𝑘𝑣 .

3.1. Parahoric subgroups

For any 𝑣 ∈ V f
𝑘 , the group G(𝑘𝑣 ) acts on its associated Bruhat–Tits building 𝑋𝑣 . A parahoric subgroup

𝑃𝑣 ⊂ G(𝑘𝑣 ) is by definition a stabilizer of a facet of 𝑋𝑣 (note that we are working with G simply
connected). Maximal parahoric subgroups correspond to stabilizers of vertices on 𝑋𝑣 . If Δ 𝑣 denotes
the affine root system of G(𝑘𝑣 ), then the conjugacy classes of parahoric subgroups 𝑃𝑣 ⊂ G(𝑘𝑣 ) are
in correspondence with the subsets Θ𝑣 � Δ 𝑣 ; then Θ𝑣 is called the type of 𝑃𝑣 . The correspondence
preserves the inclusion, and thus, maximal subgroups have types that omit exactly one element in Δ 𝑣 .

Assume first that G𝑘𝑣 is split. Then its affine root system is given by the following local Dynkin
diagram:

hs hs. (3.1)
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Table 3. Local indices for the type 2C𝑛+1..

𝑛 = 2𝑚 𝑛 = 2𝑚 − 1

22 2 2 23
ss

α0

22 2 2 2
ss

α0
α1

The parahoric subgroups of maximal volume in G(𝑘𝑣 ) are those that are hyperspecial, i.e., of type
Δ 𝑣 \ {𝛼}, where 𝛼 is any of the two hyperspecial vertices (labelled ‘hs’ in equation (3.1)).

There is exactly one nonsplit form of G𝑘𝑣 of type C𝑛+1, and it splits over the maximal unramified
extension �̂�𝑣/𝑘𝑣 . If G𝑘𝑣 is not split, it corresponds to the local type named 2C𝑛+1 in [37, Sect. 4.3]; we
have reproduced in Table 3 the corresponding local indices (their description depends on the parity of
n). It is a general fact, proved in [4, App. A], that parahoric subgroups of maximal volume in G(𝑘𝑣 )
are those of type Δ 𝑣 \ {𝛼}, where 𝛼 is very special (see loc. cit. for the definition). In our case, the very
special vertex in Δ 𝑣 is 𝛼0 for n even, respectively, 𝛼1 for n odd (as shown in Table 3; note that 𝛼1 is
defined only for n odd). Thus, for 𝑠 = 𝑛 mod 2, a parahoric subgroup of G(𝑘𝑣 ) is of maximal volume
exactly when it is of type Θ𝑣 = Δ 𝑣 \ {𝛼𝑠}.

3.2. The group scheme structure

Let G(𝑘𝑣 ) as above, split or not. Each parahoric subgroup 𝑃𝑣 ⊂ G(𝑘𝑣 ) can be written as 𝑃𝑣 = 𝒢(𝔬𝑣 )
for some canonical smooth group scheme 𝒢 over 𝔬𝑣 . Let 𝔣𝑣 be the residue field of 𝑘𝑣 . For a fixed 𝑃𝑣 ,
following the notation of [28], we denote by M𝑣 the maximal reductive quotient of the 𝔣𝑣 -group 𝒢𝑓𝑣

obtained from 𝒢 by base change; M𝑣 is connected. The structure of M𝑣 can be obtained from the type
of 𝑃𝑣 by using the procedure explained in [37, Sect. 3.5.2]. If G𝑘𝑣 is split, then 𝑃𝑣 is hyperspecial if and
only if M𝑣 is simple of type C𝑛+1 (i.e., of the same type as G𝑘𝑣 ). In this case, we will write M𝑣 = ℳ𝑣 .

3.3. The Galois cohomology action

For G admissible over k, we let C denote its center and G = G/C its adjoint quotient. For any field
extension 𝐾/𝑘 , the group G(𝐾) identifies with the group of inner K-automorphisms of G. We denote
by 𝛿 the connecting map in the Galois cohomology exact sequence:

1 → C(𝐾) → G(𝐾) 𝜋→ G(𝐾) 𝛿→ 𝐻1(𝐾, C) → 𝐻1(𝐾, G). (3.2)

For 𝐾 = 𝑘𝑣 non-Archimedean, this provides an action of 𝐻1(𝑘𝑣 , C) on the local Dynkin diagram Δ 𝑣
(see [4, Sect. 2.8]); the action respects the symmetries of Δ 𝑣 so that 𝐻1(𝑘𝑣 , C) → Aut(Δ 𝑣 ). Note in
particular that, for G𝑘𝑣 nonsplit of type C𝑛+1, we have Aut(Δ 𝑣 ) = 1. In the split case, there is exactly
one nontrivial symmetry. We denote by 𝜉 the induced ‘global’ map 𝐻1(𝑘, C) →

∏
𝑣 ∈V f

𝑘
Aut(Δ 𝑣 ) (the

image actually lies in the direct product).
Of particular interest to us is the subgroup 𝛿(G(𝑘))′ = 𝛿(G(𝑘) ∩ 𝜋(G(R))) (the notation follows [4,

Sect. 2.8]; recall that we have fixed an inclusion 𝑘 ⊂ R). We will make use of the following alternative
description.
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Lemma 3.1. The group 𝛿(G(𝑘))′ coincides with the kernel of the diagonal map

𝐻1 (𝑘, C) →
∏
𝑣 ∈V∞

𝑘

𝐻1 (𝑘𝑣 , C).

Proof. For 𝑥 ∈ 𝐻1(𝑘, C), we denote by (𝑥𝑣 )𝑣 ∈V∞
𝑘

its image in
∏
𝑣 ∈V∞

𝑘
𝐻1(𝑘𝑣 , C). Let us first assume 𝑥 ∈

𝛿(G(𝑘))′. Then for the place 𝑣 = id corresponding to the inclusion 𝑘 ⊂ R, we have 𝑥𝑣 ∈ (𝛿 ◦ 𝜋) (G(R)),
which by exactness of equation (3.2) (with 𝐾 = R) is equivalent to 𝑥𝑣 = 1. For 𝑣 ≠ id, the group G(𝑘𝑣 ) is
compact, and in this case, it is known that 𝜋 : G(𝑘𝑣 ) → G(𝑘𝑣 ) is surjective (see [27, Sect. 3.2: Cor. 3]).
Since 𝑥𝑣 ∈ 𝛿(G(𝑘𝑣 )), we thus have 𝑥𝑣 = 1 again by the exactness of equation (3.2). Conversely, suppose
that x has trivial image in

∏
𝑣 ∈V∞

𝑘
𝐻1 (𝑘𝑣 , C). Then (𝑥𝑣 ) has certainly trivial image in

∏
𝑣 ∈V∞

𝑘
𝐻1(𝑘𝑣 , G).

But for G simply connected the latter identifies with 𝐻1(𝑘, G) by the Hasse principle (see [27, Theorem
6.6]). By exactness of equation (3.2) with 𝐾 = 𝑘 , it follows that 𝑥 ∈ 𝛿(G(𝑘))′. �

Remark 3.2. We will see in Lemma 7.1 that actually G(𝑘𝑣 ) → G(𝑘𝑣 ) is surjective for 𝑣 = id as
well, which slightly simplifies the proof. We have preferred giving the above proof, which works quite
generally when G is simply connected; it appears in [7, Sect. 12.2].

4. Principal arithmetic subgroups and volumes

4.1. Principal arithmetic subgroups

For G an admissible k-group, we will denote by 𝑃 = (𝑃𝑣 )𝑣 ∈V f
𝑘

a collection of parahoric subgroups
𝑃𝑣 ⊂ G(𝑘𝑣 ) (𝑣 ∈ V f

𝑘 ). Such a collection is called coherent if the product
∏
𝑣 ∈V f

𝑘
𝑃𝑣 is open in the group

G(Af), where Af denotes the finite adèles of k. This condition implies that 𝑃𝑣 is hyperspecial for all but
finitely many 𝑣 ∈ V f

𝑘 . Moreover, one has that the subgroup Λ𝑃 = G(𝑘) ∩
∏
𝑣 ∈V f

𝑘
𝑃𝑣 is an arithmetic

subgroup of G(𝑘), called principal.

4.2. The normalized Haar measure

The covolume of the principal arithmetic subgroup Λ𝑃 ⊂ G(𝑘) can be computed with Prasad’s volume
formula [28] in terms of the volumes of the parahoric subgroups 𝑃𝑣 (𝑣 ∈ V f

𝑘 ). In the notation of loc. cit.,
our situation corresponds to the case G𝑆 = G(R) (i.e., S contains a single infinite place corresponding
to the inclusion 𝑘 ⊂ R). We write 𝜇 = 𝜇𝑆 for the normalization of the Haar measure on G(R) used in
[28, Sect. 3.6]. Then for the Euler–Poincaré characteristic (in the sense of C.T.C. Wall) of Γ ⊂ G(R),
one has |𝜒(Γ) | = |𝜒(𝑋𝑢) | 𝜇(Γ\G(R)), where 𝑋𝑢 is the compact dual symmetric space associated with
H𝑛
H

(see [4, §4]). Explicitly, 𝑋𝑢 = Sp(𝑛 + 1)/(Sp(𝑛) × Sp(1)) is the quaternionic projective space H𝑃𝑛,
for which 𝜒(𝑋𝑢) = 𝑛 + 1. Moreover, since the symmetric space of Sp(𝑛, 1) has dimension 4𝑛, it follows
from [33, Prop. 23] that 𝜒(Γ) is positive. Thus,

𝜒(Γ) = (𝑛 + 1) · 𝜇(Γ\G(R)). (4.1)

4.3. Prasad’s volume formula

To state the volume formula for Λ𝑃 ⊂ G(𝑘) in an explicit way, we need to introduce some notation;
we mostly follow [28]. The symbol 𝒟𝑘 denotes the absolute value of the discriminant of k, and we
write 𝑑 = [𝑘 : Q] for the degree. For each 𝑣 ∈ V f

𝑘 , let 𝔣𝑣 be the residue field of 𝑘𝑣 , and let 𝑞𝑣 be the
cardinality of 𝔣𝑣 . For each parahoric subgroup 𝑃𝑣 , the reductive 𝔣𝑣 -group M𝑣 is defined in Section 3.2.
The reductive 𝔣𝑣 -group corresponding to a hyperspecial parahoric subgroup in the split form of G is
denoted by ℳ𝑣 . For all but finitely many 𝑣 ∈ V f

𝑘 , we have that 𝑃𝑣 is hyperspecial and thus M𝑣 � ℳ𝑣 .
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In our situation, Prasad’s volume formula [28, Theorem 3.7] takes the following form (note that in our
case ℓ = 𝑘 since G is of type C and thus has no outer symmetries):

𝜇(Λ𝑃\G(R)) = 𝒟
dim G/2
𝑘

��	
𝑛+1∏
𝑗=1

(2 𝑗 − 1)!
(2𝜋)2 𝑗


��
𝑑

ℰ(𝑃), (4.2)

where the ‘Euler product’ ℰ(𝑃) is given by

ℰ(𝑃) =
∏
𝑣 ∈V f

𝑘

𝑞 (dim M𝑣+dimℳ𝑣 )/2
𝑣

|M𝑣 (𝔣𝑣 ) |
. (4.3)

4.4. The Euler product and zeta functions

Let T be the finite set of places 𝑣 ∈ V f
𝑘 such that 𝑃𝑣 is not hyperspecial. For 𝑣 ∉ 𝑇 , we have that

M𝑣 �ℳ𝑣 , which is an 𝔣𝑣 -split simple group of type C𝑛+1, for which |ℳ𝑣 (𝔣𝑣 ) | = 𝑞 (𝑛+1)2

𝑣
∏𝑛+1
𝑗=1 (𝑞

2 𝑗
𝑣 − 1)

(see [24, Tab. 1]), and dimℳ𝑣 = dim G = (𝑛 + 1) (2𝑛 + 3). By a direct computation, we may rewrite
ℰ(𝑃) as the following:

ℰ(𝑃) =
∏
𝑣 ∈𝑇

𝑒′(𝑃𝑣 )
∏
𝑣 ∈V f

𝑘

𝑞dimℳ𝑣
𝑣

|ℳ𝑣 (𝔣𝑣 ) |

=
∏
𝑣 ∈𝑇

𝑒′(𝑃𝑣 )
∏
𝑣 ∈V f

𝑘

𝑛+1∏
𝑗=1

1
1 − 𝑞

−2 𝑗
𝑣

=
∏
𝑣 ∈𝑇

𝑒′(𝑃𝑣 )
𝑛+1∏
𝑗=1

𝜁𝑘 (2 𝑗), (4.4)

where 𝜁𝑘 is the Dedekind zeta function of k, and the correcting factors 𝑒′(𝑃𝑣 ) (so called ‘lambda factors’
in [3]) are given by

𝑒′(𝑃𝑣 ) = 𝑞 (dim M𝑣−dimℳ𝑣 )/2
𝑣

|ℳ𝑣 (𝔣𝑣 ) |
|M𝑣 (𝔣𝑣 ) |

. (4.5)

Putting together equations (4.1), (4.2) and (4.4), we can finally write (where the second line is obtained
from the functional equation of 𝜁𝑘 ; see [22, Ch.VII (5.11)]):

𝜒(Λ𝑃) = (𝑛 + 1)𝒟dim G/2
𝑘

∏
𝑣 ∈𝑇

𝑒′(𝑃𝑣 )
𝑛+1∏
𝑗=1

(
(2 𝑗 − 1)!
(2𝜋)2 𝑗

)𝑑
𝜁𝑘 (2 𝑗) (4.6)

= (𝑛 + 1)
∏
𝑣 ∈𝑇

𝑒′(𝑃𝑣 )
𝑛+1∏
𝑗=1

2−𝑑 |𝜁𝑘 (1 − 2 𝑗) |. (4.7)

4.5. The nonsplit local factors

We compute in the following lemma the local factors 𝑒′(𝑃𝑣 ) of interest to us.
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Lemma 4.1. Suppose that G𝑘𝑣 is nonsplit, and let 𝑃𝑡𝑣 ⊂ G(𝑘𝑣 ) be a special parahoric subgroup of type
Δ 𝑣 \ {𝛼𝑡 } (assuming n odd if 𝑡 = 1). Then

𝑒′(𝑃0
𝑣 ) =

𝑛+1∏
𝑗=1

(𝑞 𝑗𝑣 + (−1) 𝑗 ); (4.8)

𝑒′(𝑃1
𝑣 ) =

∏2𝑚
𝑗=1 (𝑞

2 𝑗
𝑣 − 1)∏𝑚

𝑗=1 (𝑞
4 𝑗
𝑣 − 1)

, (4.9)

where 𝑛 + 1 = 2𝑚 in the latter.

Remark 4.2. Note that 𝑒′(𝑃1
𝑣 ) is clearly an integer. The fact that 𝑃1

𝑣 has larger volume than 𝑃0
𝑣 (see

Section 3.1) is reflected by the fact that 𝑒′(𝑃1
𝑣 ) is smaller than 𝑒′(𝑃0

𝑣 ); this inequality can be checked
empirically (and probably rigorously with some effort) from the formulas in Lemma 4.1. One may
notice that, as polynomials in 𝑞𝑣 , these two local factors have quite similar order of magnitude though.

Proof. The definition of 𝑒′(𝑃𝑡𝑣 ) is given in equation (4.5). The dimension and order for ℳ𝑣 are given
in Section 4.4. We obtain the description of M𝑣 (see Section 3.2) in each case by [37, Sec. 3.5.2]. We
refer to [24, Tab. 1] for the order of the classical finite simple groups. For 𝑃0

𝑣 , we have that M𝑣 is
given as an almost direct product M𝑣 = 𝑇 · 𝐻, where T is a nonsplit one-dimensional torus, and H is a
simple of type 2A𝑛. In particular, dim M𝑣 = (𝑛 + 1)2, and |𝑇 (𝔣𝑣 ) | = 𝑞𝑣 + 1. By Lang’s isogeny theorem,
we have |M𝑣 (𝔣𝑣 ) | = (𝑞𝑣 + 1) |𝐻 (𝔣𝑣 ) |, and the formula for 𝑒′(𝑃0

𝑣 ) now follows from a straightforward
computation. Note that, for 𝑛 = 2, the local index 2C3 needs to be listed separately (see [37, p.63]);
however, the description for M𝑣 is similar, and the formula remains the same.

For 𝑃1
𝑣 with 𝑛 + 1 = 2𝑚, we have that M𝑣 is obtained by Weil restriction of scalars as M𝑣 =

Res𝔨𝑣/𝔣𝑣 (𝐻), where H is simple of type C𝑚 and 𝔨𝑣/𝔣𝑣 is quadratic (i.e., 𝔨𝑣 has cardinality 𝑞2
𝑣 ). Thus,

M𝑣 has twice the dimension of H, which is 𝑚(2𝑚 + 1), and |M𝑣 (𝔣𝑣 ) | = |𝐻 (𝔨𝑣 ) |. The result for 𝑒′(𝑃1
𝑣 )

follows directly. �

5. Stabilizers of Hermitian lattices

In this section, we obtain the covolume of the lattices Γ0
𝑛 andΔ𝑛 in Sp(𝑛, 1) as a consequence of Theorem

5.4. To prove the latter, we first need to study the structure of the stabilizers of Hermitian lattices; this
is done in Section 5.1 and 5.2. In those sections, R will denote an integral domain containing the ring
of integers O𝑘 , and K will be the field of fractions of R.

5.1. Hermitian lattices over orders

Let us fix an order O𝐷 in an admissible quaternion k-algebra D, and consider the right O𝐷-module
𝐿 = O𝑛+1

𝐷 . We set O𝐷,𝑅 = O𝐷 ⊗O𝑘 𝑅. Then 𝐿𝑅 = 𝐿 ⊗O𝑘 𝑅 is a right O𝐷,𝑅-module. Consider a
Hermitian form h on L, described as follows:

ℎ(𝑥, 𝑦) =
𝑛∑
𝑖=0

𝑎𝑖𝑥𝑖𝑦𝑖 , (5.1)

where the coefficients 𝑎𝑖 are taken in O𝑘 . Note that the standard involution on D restricts to O𝐷 (use
the trace) so that (𝐿, ℎ) is indeed a Hermitian module in the sense of [32, Ch. 7] (and so is (𝐿𝑅, ℎ) for
any ring extension R of O𝑘 ). We write 𝑉 = 𝐿𝑘 = 𝐷𝑛+1, and we will assume that (𝑉, ℎ) is admissible.
We say in this case that the module (𝐿, ℎ) itself is admissible.

Recall that by definition the Hermitian module (𝐿𝑅, ℎ) is regular (or nonsingular) if the map
𝜙ℎ : 𝑥 ↦→ ℎ(𝑥, ·) induces an isomorphism of O𝐷,𝑅-modules from 𝐿𝑅 onto its dual module (𝐿𝑅)∗, seen
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as a right module via 𝑓 𝛼 = 𝛼 𝑓 (see [32, Sect. 7.1]). When R is a field this is equivalent to (𝐿𝑅, ℎ) being
nondegenerate, i.e., (𝐿𝑅)⊥ = 0. For more general R, we will need the following result.
Lemma 5.1. If the coefficients of h are invertible in R (i.e., 𝑎𝑖 ∈ 𝑅× for 𝑖 = 0, . . . , 𝑛), then the Hermitian
module (𝐿𝑅, ℎ) is regular.
Proof. Let {e𝑖} be the standard basis of 𝐿𝑅 = O𝑛+1

𝐷,𝑅, and let
{
e∗𝑖

}
⊂ (𝐿𝑅)∗ be the associated dual basis.

We have 𝜙ℎ (e𝑖) = 𝑎𝑖e∗𝑖 = e∗𝑖 𝑎𝑖 (note that 𝑎𝑖 = 𝑎𝑖 since 𝑎𝑖 ∈ O𝑘 ). The map e∗𝑖 ↦→ e𝑖𝑎−1
𝑖 from (𝐿𝑅)∗ to

𝐿𝑅 is then inverse to 𝜙ℎ . �

5.2. A key lemma

For (𝐿, ℎ) and (𝑉, ℎ) as above, consider the stabilizer of L in G(𝑘) = U(𝑉, ℎ), i.e., the subgroup

U(𝐿, ℎ) = {𝑔 ∈ U(𝑉, ℎ) | 𝑔𝐿 = 𝐿}. (5.2)

This is an arithmetic subgroup of G(𝑘). More generally, we will denote by U(𝐿𝑅, ℎ) ⊂ G(𝐾) the
stabilizer of 𝐿𝑅 ⊂ 𝑉𝐾 . The following lemma is the key result that will be used in Section 5.3.
Lemma 5.2. Assume that the following conditions hold:
1. R is a principal ideal domain;
2. O𝐷,𝑅 splits, i.e., O𝐷,𝑅 � 𝑀2 (𝑅);
3. the hermitian module (𝐿𝑅, ℎ) is regular.
Then there is an isomorphism 𝜙 : U(𝑉𝐾 , ℎ) → Sp2𝑛+2(𝐾) such that 𝜙(U(𝐿𝑅, ℎ)) = Sp2𝑛+2(𝑅).
Proof. We adapt the discussion from [32, pp. 361-362] (which considers skew-Hermitian spaces, only
over fields) to our setting. First, we may fix an identification O𝐷,𝑅 = 𝑀2 (𝑅); the standard involution is
then given by (

𝑎 𝑏
𝑐 𝑑

)
=

(
𝑑 −𝑏
−𝑐 𝑎

)
. (5.3)

Let 𝑒1 =

(
1 0
0 0

)
and 𝑒2 =

(
0 0
0 1

)
so that 𝑉𝐾 has the following splitting: 𝑉𝐾 = 𝑉𝐾 𝑒1 ⊕ 𝑉𝐾 𝑒2. We set

𝑉1 = 𝑉𝐾 𝑒1. As for loc. cit., we obtain from h a bilinear form 𝑏ℎ on 𝑉1 determined by

ℎ(𝑥𝑒1, 𝑦𝑒1) =
(

0 0
𝑏ℎ (𝑥𝑒1, 𝑦𝑒1) 0

)
, (5.4)

and in our case, 𝑏ℎ is easily seen to be antisymmetric. Since (𝐿𝑅, ℎ) is a Hermitian module, the form
𝑏ℎ actually restricts to a bilinear (antisymmetric) form on the R-lattice 𝐿1 = 𝐿𝑅𝑒1 of 𝑉1. Note that 𝐿1
is free over R of rank 2𝑛 + 2. If 𝑓 ∈ 𝐿∗

1, then we can extend f to 𝐿𝑅 by setting for any 𝑥 ∈ 𝐿𝑅:

𝑓 (𝑥) = 𝑓 (𝑥𝑒1) + 𝑓 (𝑥𝑒𝑒1)𝑒, (5.5)

where 𝑒 =

(
0 1
1 0

)
. One computes that this is indeed an extension, which is actually O𝐷,𝑅-linear, i.e.,

𝑓 ∈ (𝐿𝑅)∗. In particular, we have that the symplectic module (𝐿1, 𝑏ℎ) is regular, as (𝐿𝑅, ℎ) itself is
assumed to be regular. Since by assumption R is a principal ideal domain (PID), we can now deduce
that (𝐿1, ℎ) is a orthogonal sum of hyperbolic modules (see, for instance, [16, Prop. 2.1]), and thus, its
isometry group is isomorphic to Sp2𝑛+2(𝑅).

An analogous formula to equation (5.5) can be used to extend any isometry 𝜎 of (𝐿1, ℎ) to an isometry
�̃� ∈ U(𝐿𝑅, ℎ) (see [32, p.362]). This shows that 𝑔 ↦→ 𝑔 |𝐿1 yields an isomorphism from U(𝐿𝑅, ℎ) to
Sp2𝑛+2 (𝑅). The same construction with 𝑅 = 𝐾 thus provides the isomorphism 𝜙 in the statement. �
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5.3. The local structure of lattice stabilizers

Let again (𝐿, ℎ) denote an admissible lattice over O𝐷 , with D defined over the number field k and
O𝐷 ⊂ 𝐷 an order. The following (nonstandard) terminology will be convenient for us.

Definition 5.3. We say that (𝐿, ℎ) is of maximal type if O𝐷 is maximal and (𝐿, ℎ) is regular.

Remark 5.4. Given D, the existence of an admissible (𝐿, ℎ) of maximal type does not seem to be
obvious (and we believe that it is wrong in general).

For each finite place 𝑣 ∈ V f
𝑘 , we shall abbreviate the notation from Section 5.1 (with 𝑅 = 𝔬𝑣 )

as follows: 𝐿𝑣 = 𝐿𝔬𝑣 . As above, R denotes the set of finite places 𝑣 ∈ V f
𝑘 , where 𝐷𝑣 ramifies, and

G = U(𝑉, ℎ).

Lemma 5.5. Assume that (𝐿, ℎ) is of maximal type, and let 𝑣 ∈ V f
𝑘 be a finite place with 𝑣 ∉ R. Then

U(𝐿𝑣 , ℎ) is a hyperspecial parahoric subgroup in G(𝑘𝑣 ) � Sp2𝑛+2 (𝑘𝑣 ).

Proof. The order O𝐷,𝔬𝑣 , being maximal in 𝐷𝑣 � 𝑀2 (𝑘𝑣 ), must be conjugate to 𝑀2 (𝔬𝑣 ) (see [19,
Ch. 6]). Thus, we can apply Lemma 5.2: It implies that U(𝐿𝑣 , ℎ) identifies with Sp2𝑛+2(𝔬𝑣 ), which is
hyperspecial parahoric by [37, Sect. 3.4.2]. �

We now turn our attention to the case of places where D ramifies.

Lemma 5.6. For (𝐿, ℎ) of maximal type and 𝑣 ∈ R, the subgroup U(𝐿𝑣 , ℎ) is a special parahoric
subgroup in G(𝑘𝑣 ) of type Δ 𝑣 \ {𝛼0}.

Proof. Let �̂�𝑣 be the maximal unramified extension of 𝑘𝑣 , with ring of integers �̂�𝑣 . Let O𝐷,𝑣 = O𝐷,𝔬𝑣

and Ô = O𝐷,𝑣 ⊗𝔬𝑣 �̂�𝑣 . The latter in an order in 𝐷𝑣 = 𝐷𝑣 ⊗ �̂�𝑣 , and we consider a maximal order
O′ ⊂ 𝐷𝑣 containing Ô. That is,

O𝐷,𝑣 ⊂ Ô ⊂ O′ . (5.6)

Thus O′ ∩ 𝐷𝑣 is an order in 𝐷𝑣 , which equals O𝐷,𝑣 since the latter is maximal. Note that 𝐷𝑣 is split
(see [19, Theorem 2.6.5]).

From the inclusions (5.6), we may interpret the subgroup 𝑃𝑣 = U(𝐿𝑣 , ℎ) � U(O𝑛+1
𝐷,𝑣 , ℎ) of G(𝑘𝑣 )

as a subgroup of the matrix group 𝑃′
𝑣 = U((O′)𝑛+1, ℎ). The latter is a hyperspecial parahoric of G( �̂�𝑣 )

by Lemma 5.5. From the equality O′ ∩ 𝐷𝑣 = O𝐷,𝑣 , we deduce 𝑃′
𝑣 ∩ G(𝑘𝑣 ) = 𝑃𝑣 . But in view of the

local indices in Table 3, this means that 𝑃𝑣 is a special parahoric subgroup of type Δ 𝑣 \ {𝛼0} (since 𝛼0
is the unique affine root in Δ 𝑣 that appears as the restriction of hyperspecial roots of G( �̂�𝑣 )). �

5.4. The volume formula for the maximal type

Lattices of maximal type are particularly interesting because of the following result. Recall that 𝑞𝑣
denotes the cardinality of the residue field of 𝑘𝑣 (for 𝑣 ∈ V f

𝑘 ). See Definition 5.3 for ‘maximal type’.

Theorem 5.7. Let (𝐿, ℎ) be an admissible Hermitian O𝐷-lattice of maximal type. Then U(𝐿, ℎ) is a
principal arithmetic subgroup of G(𝑘) = U(𝑉, ℎ), and

𝜒(U(𝐿, ℎ)) = (𝑛 + 1)
𝑛+1∏
𝑗=1

(
𝜁𝑘 (1 − 2 𝑗)

2[𝑘:Q]

∏
𝑣 ∈R

𝑞
𝑗
𝑣 + (−1) 𝑗

)
, (5.7)

where R is the set of finite places where D ramifies.
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Proof. We can write 𝐿 = 𝑉𝑘 ∩
∏
𝑣 ∈V f

𝑘
𝐿𝑣 , from which we obtain (for G(𝑘) diagonally embedded in∏

𝑣 G(𝑘𝑣 )):

U(𝐿, ℎ) = G(𝑘) ∩
∏
𝑣 ∈V f

𝑘

U(𝐿𝑣 , ℎ).

With Lemmas 5.5 and 5.6, this shows that U(𝐿, ℎ) is principal, and the formula for 𝜒(U(𝐿, ℎ)) is
deduced from equation (4.7) and Lemma 4.1. �

We emphasize the special case of the standard Hermitian form over the Hurwitz integers in the
next corollary. It implies the formula in equation (1.2) since we have 𝜒(Γ0

𝑛) = 𝜒(Sp(𝑛, 1,ℋ))/2 by
construction.

Corollary 5.8. The arithmetic subgroup Sp(𝑛, 1,ℋ) is principal, and

𝜒(Sp(𝑛, 1,ℋ)) = (𝑛 + 1)
𝑛+1∏
𝑗=1

2 𝑗 + (−1) 𝑗
4 𝑗

|𝐵2 𝑗 |, (5.8)

where 𝐵𝑚 is the m-th Bernoulli number.

Proof. We have that ℋ is a maximal order in 𝐷 = ℋ ⊗ Q =
(
−1,−1
Q

)
, and the latter is the quaternion

Q-algebra that ramifies exactly at 𝑝 = 2 and 𝑝 = ∞ (see [38, p.79]). By Lemma 5.1, it is clear that
(ℋ𝑛+1, ℎ), with h given in equation (1.1), is of maximal type. Thus, we can apply the theorem, and the
formula in equation (5.8) follows immediately from the known expression:

𝜁 (−𝑚) = (−1)𝑚 𝐵𝑚+1
𝑚 + 1

. �

5.5. The covolume of Δ𝑛
Let 𝐿 = ℐ𝑛+1, where ℐ is the icosian ring. The Hermitian form equation (1.4) has been chosen so that
(𝐿, ℎ) is of maximal type. By definition, Δ𝑛 = U(𝐿, ℎ). The formula in equation (1.5) for 𝜒(Δ𝑛) is thus
an immediate consequence of Theorem 5.7 since in this case R = ∅ (see [38, p.150]).

6. The minimality of 𝜒(Γ𝑠𝑛) and 𝜒(Δ𝑛)

6.1. Normalizers of minimal covolume

Let Γ ⊂ Sp(𝑛, 1) be a maximal lattice, i.e., maximal with respect to inclusion as in Section 2.3. We have
Γ ⊂ G(𝑘 ∩ R) for some admissible k-group G, but the stricter inclusion Γ ⊂ G(𝑘) does not hold in
general. By [4, Prop. 1.4], we have that Γ is a normalizer 𝑁G(R) (Λ𝑃), where Λ𝑃 ⊂ G(𝑘) is a principal
arithmetic subgroup.

Let 𝑃 = (𝑃𝑣 ) be a coherent collection such that any parahoric subgroup 𝑃𝑣 is of maximal volume.
Then Λ𝑃 is of minimal covolume among arithmetic lattices contained in G(𝑘). It is a priori not clear—
but turns out to be true—that the normalizer 𝑁G(R) (Λ𝑃) for such a choice of P is of minimal covolume
in its commensurability class in G(R). This can be proved in the same way as in [3, Sect. 4.3] (see also
[7, Sect. 12.3] for a more detailed exposition). We state the result in the following lemma. In the rest of
this section, R denotes the set of finite places where G does not split (equivalently, where its defining
algebra ramifies).

Lemma 6.1. The lattice Γ = 𝑁G(R) (Λ𝑃) is of minimal covolume in its commensurability class if and
only if the coherent collection 𝑃 = (𝑃𝑣 ) satisfies
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1. 𝑃𝑣 is hyperspecial for each 𝑣 ∉ R; and
2. 𝑃𝑣 is special of maximal volume for 𝑣 ∈ R.

Recall that for 𝑣 ∈ R a parahoric subgroup 𝑃𝑣 ⊂ G(𝑘𝑣 ) is special of maximal volume exactly when
it has type Δ 𝑣 \ {𝛼𝑠}, where 𝑠 = 𝑛 mod 2. Using Lemmas 5.5 and 5.6, we thus have:

Corollary 6.2. Let (𝐿, ℎ) be an admissible O𝐷-lattice of maximal type. If n is even or R = ∅, then the
lattice 𝑁Sp(𝑛,1) (U(𝐿, ℎ)) is of minimal covolume in its commensurability class.

6.2. The index computation

We will need to estimate the index [Γ : Λ𝑃] for Γ = 𝑁G(R) (Λ𝑃) of minimal covolume in its commensu-
rability class. For this, we state the following lemma, which considers a slightly more general situation.
The symbol ℎ𝑘 denotes the class number of k, and 𝑈𝑘 (respectively, 𝑈+

𝑘 ) are the units (respectively,
totally positive units) in O𝑘 .

Lemma 6.3. Let 𝑃 = (𝑃𝑣 ) such that 𝑃𝑣 is hyperspecial for any 𝑣 ∈ V f
𝑘 \R. Then

[Γ : Λ𝑃] ≤ 2#R · ℎ𝑘 · |𝑈+
𝑘/𝑈

2
𝑘 |.

Proof. We assume the notation of Section 3.3; in particular, C is the center of G. We set 𝐴 = 𝛿(G(𝑘))′.
Let Θ = (Θ𝑣 )𝑣 ∈V f

𝑘
be the type of the coherent collection P. From the assumption, it follows that none of

the types Θ𝑣 has symmetries, and thus, the stabilizer of Θ in A equals the kernel 𝐴𝜉 of 𝜉. By [4, Prop.
2.9], we thus have the exact sequence

1 → C(R)/(C(𝑘) ∩ Λ𝑃) → Γ/Λ𝑃 → 𝐴𝜉 → 1. (6.1)

In our case, C = 𝜇2, and it follows that the left part vanishes. Hence, [Γ : Λ𝑃] = |𝐴𝜉 |. We now use the
identification 𝐻1(𝑘, 𝜇2) = 𝑘×/(𝑘×)2. For 𝑆 ⊂ V f

𝑘 any finite set of places, we define

𝑘2,𝑆 =
{
𝑥 ∈ 𝑘×

�� 𝑣(𝑥) ∈ 2Z ∀𝑣 ∈ V f
𝑘 \ 𝑆

}
,

and 𝑘2 = 𝑘2,∅. Since Aut(Δ 𝑣 ) is trivial for any 𝑣 ∈ R, it follows from [4, Prop. 2.7] that 𝐻1(𝑘, C)𝜉 =
𝑘2,R/(𝑘×)2. See [4] for the definitions. For 𝑘+2,𝑆 ⊂ 𝑘2,𝑆 denoting the subgroup consisting of totally
positive elements, we conclude from Lemma 3.1 that 𝐴𝜉 = 𝑘+2,R/(𝑘×)2. This group contains 𝑘+2/(𝑘

×)2

with index at most 2#R, and the order of the latter can be bounded by ℎ𝑘 · |𝑈+
𝑘/𝑈

2
𝑘 | by using the same

argument as in the proof of [4, Prop. 0.12]. �

The following is obtained as a corollary of the proof.

Corollary 6.4. Let 𝑘 = Q and #R = 1, and assume P as above. Then [Γ : Λ𝑃] = 2.

Proof. Let R = {𝑝}, with 𝑝 > 0. Lemma 6.3 shows [Γ : Λ𝑃] ≤ 2, but on the other hand, p provides a
nontrivial element in Q+

2,R/(Q×)2. �

6.3. The nonuniform lattices Γ𝑠𝑛
By definition, Γ0

𝑛 = 〈𝑔, Sp(𝑛, 1,ℋ)〉 with g of order 2 that normalizes Sp(𝑛, 1,ℋ). Let D be the
defining algebra of Γ0

𝑛 (i.e., 𝐷 = ℋ ⊗ Q). It ramifies precisely at 𝑝 = 2 and 𝑝 = ∞. Thus, we can apply
Corollary 6.4, and it follows that Γ0

𝑛 coincides with the normalizer of Sp(𝑛, 1,ℋ) in Sp(𝑛, 1). For n
even, Corollary 6.2 then shows that Γ0

𝑛 is of minimal covolume in its commensurability class. On the
other hand, Rohlfs’ criterion [30, Satz 3.5] shows that Γ0

𝑛 is maximal (w.r.t. inclusion) for any 𝑛 > 1.
For 𝑛 > 1 odd, we construct Γ1

𝑛 as follows. Let G be the Q-group that contains Sp(𝑛, 1,ℋ). We
choose a coherent collection 𝑃 = (𝑃𝑣 ) with 𝑃𝑣 hyperspecial for 𝑣 ≠ 2, and 𝑃𝑣 = 𝑃1

𝑣 of type Δ 𝑣 \ {𝛼1}
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for 𝑣 = 2. Let Γ1
𝑛 = 𝑁G(R) (Λ𝑃). By Lemma 6.1, it is of minimal covolume in its commensurability

class. Moreover, by Corollary 6.4, we have [Γ1
𝑛 : Λ𝑃] = 2. In particular,

𝜒(Γ1
𝑛) =

𝑒′(𝑃1
2)

𝑒′(𝑃0
2)

𝜒(Γ0
𝑛), (6.2)

from which we obtain the formula in equation (1.3) with Lemma 4.1.
The following proposition now implies—up to the uniqueness—Theorems 1 and 2.

Proposition 6.5. Let Γ ⊂ Sp(𝑛, 1) be a nonuniform lattice of minimal covolume, and let 𝑠 = (𝑛 mod 2).
Then Γ is commensurable to Γ𝑠𝑛, and they have the same covolume.

Proof. We have seen that Γ𝑠𝑛 is of minimal covolume in its commensurability class, so it suffices to
prove the commensurability. By Section 2, Γ nonuniform is constructed as an arithmetic subgroup of
G = U(𝑉, ℎ) for (𝑉, ℎ) admissible, and V a vector space over a quaternion Q-algebra D. Let R be the
set of places v such that 𝐷𝑣 ramifies. Being of minimal covolume, we may write Γ = 𝑁G(R) (Λ𝑃), with
𝑃𝑣 hyperspecial unless 𝑣 ∈ R (by Lemma 6.1). Moreover, for 𝑣 ∈ R the subgroup 𝑃𝑣 is of maximal
volume and thus of type Δ \ {𝛼𝑠} by Section 3.1. By Lemma 6.3 (with 𝑘 = Q), we have [Γ : Λ𝑃] ≤ 2#R.
Together with equation (4.7), this gives

𝜒(Γ) ≥ 𝜒(Λ𝑃)
[Γ : Λ𝑃]

≥ (𝑛 + 1)
∏
𝑣 ∈R

𝑒′(𝑃𝑣 )
2

𝑛+1∏
𝑗=1

𝜁 (1 − 2 𝑗)
2

. (6.3)

Only the middle factor in equation (6.3) depends on the choice of Λ𝑃 , and it takes the smallest possible
value for R = {2} (note that R = ∅ cannot appear here; see Section 2.2). But in that case, this lower
bound is precisely 𝜒(Γ𝑠𝑛), whence 𝜒(Γ) = 𝜒(Γ𝑠𝑛) (by minimality of 𝜒(Γ)). Since D is now ramified
exactly at 𝑝 = 2 and 𝑝 = ∞, it has same defining algebra as Γ0

𝑛, and the commensurability follows from
Section 2.3. �

6.4. The minimality of 𝜒(Δ𝑛)

We now discuss the uniform case. Recall that the covolume of Δ𝑛 has been discussed in Section 5.5.
Lemma 6.3 (with 𝑘 = Q(

√
5) and R = ∅) implies that Δ𝑛 coincides with its own normalizer in Sp(𝑛, 1).

Corollary 6.2 thus implies that Δ𝑛 is of minimal covolume in its commensurability class. The following
proposition proves the first statement in Theorem 3. In the proof, we omit details that should be clear
from the proof of Proposition 6.5.

Proposition 6.6. Let Γ ⊂ Sp(𝑛, 1) be a uniform lattice of minimal covolume. Then Γ is commensurable
to Δ𝑛, and they have the same covolume.

Proof. Let Γ be a uniform lattice of minimal covolume, and let k be its field of definition. Then k is
totally real, of degree 𝑑 ≥ 2. Assume first that 𝑘 = Q(

√
5), and let D be the defining algebra of Γ. It is

clear that any nontrivial local factor 𝑒′(𝑃𝑣 ) would contribute to increase the volume formula, and this
shows that D does not ramify at any finite place; this implies that Γ is commensurable to Δ𝑛. Thus, it
suffices to prove that 𝑘 = Q(

√
5), i.e., that 𝑑 = 2 and 𝒟𝑘 = 5 (recall that 𝒟𝑘 denotes the discriminant in

absolute value).
Let G be the algebraic k-group used to construct the arithmetic subgroup Γ, and let us write

Γ = 𝑁G(R) (Λ𝑃) with 𝑃 = (𝑃𝑣 ) a coherent collection of parahoric subgroups 𝑃𝑣 ⊂ G(𝑘𝑣 ) (of maximal
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volume). Combining equation (4.6) and Lemma 6.3, we find

𝜒(Γ) ≥
(𝑛 + 1)𝒟dim G/2

𝑘

2#R ℎ𝑘 |𝑈+
𝑘/𝑈

2
𝑘 |

𝐶 (𝑛)𝑑
∏
𝑣 ∈R

𝑒′(𝑃𝑣 )
𝑛+1∏
𝑗=1

𝜁𝑘 (2 𝑗),

with

𝐶 (𝑛) =
𝑛+1∏
𝑗=1

(2 𝑗 − 1)!
(2𝜋)2 𝑗 . (6.4)

We clearly have 𝜁𝑘 (2 𝑗) > 1, and |𝑈+
𝑘/𝑈

2
𝑘 | ≤ 2𝑑−1 (by Dirichlet’s unit theorem). Moreover, 𝑒′(𝑃𝑣 ) > 2

for any 𝑣 ∈ R, so that the factor 2−#R is compensated by the product of those local factors. We can use
the bound ℎ𝑘 ≤ 16(𝜋/12)𝑑𝒟𝑘 (see [3, Sect. 7.2]: the argument given there for a non-totally real field ℓ
provides the same bound for k; see [7, Sect. 15.2] for details). This gives

𝜒(Γ) ≥ (𝑛 + 1)
16 𝒟𝑘 2𝑑−1

(
12
𝜋

)𝑑
𝒟

dim G/2
𝑘 𝐶 (𝑛)𝑑 .

On the other hand, we have

𝜒(Δ𝑛) = (𝑛 + 1) 5dim G/2 𝐶 (𝑛)2
𝑛+1∏
𝑗=1

𝜁
Q(

√
5) (2 𝑗)

< 1.2 · (𝑛 + 1) 5dim G/2 𝐶 (𝑛)2.

Here we bound the product of zeta functions by the value 1.2 by adapting the proof in [2, p.760: proof
of (∗)] as follows (see loc. cit. for details):

𝑛+1∏
𝑗=1

𝜁
Q(

√
5) (2 𝑗) < 𝜁

Q(
√

5) (2) 𝜁Q(√5) (4) 𝜁Q(√5) (6)
∞∏
𝑗=4

(
1 + 2

22 𝑗

)2

< 𝜁
Q(

√
5) (2) 𝜁Q(√5) (4) 𝜁Q(√5) (6) 𝑒

1/48,

and we evaluate this last bound with Pari/GP [25].
For the quotient, this gives

𝜒(Γ)
𝜒(Δ𝑛)

>
1

39𝒟𝑘

(
12
𝜋

)𝑑 (
𝒟𝑘

5

) (𝑛+1) (2𝑛+3)
2

(
𝐶 (𝑛)

2

)𝑑−2
. (6.5)

Let us write 𝑓 (𝑛, 𝑑,𝒟𝑘 ) for the bound on the right-hand side. We have to show that 𝑓 (𝑛, 𝑑,𝒟𝑘 ) ≥ 1
unless 𝑑 = 2 and 𝒟𝑘 = 5.

The constant 𝐶 (𝑛)/2 is larger than 1 for 𝑛 ≥ 13, and grows monotone from that point. Thus,
𝑓 (𝑛, 𝑑,𝒟𝑘 ) ≥ 𝑓 (13, 𝑑,𝒟𝑘 ), and it suffices to consider the range 𝑛 ∈ {2, . . . , 13}. For 𝑑 = 2, the
smallest discriminant after 5 is 𝒟𝑘 = 8, and numerical evaluation shows that 𝑓 (𝑛, 2, 8) > 1 for all
𝑛 ≤ 13. This shows 𝑑 > 2. For k totally real of degree 𝑑 = 3, the lowest discriminant is 𝒟𝑘 = 49. Again,
we check that 𝑓 (𝑛, 3, 49) > 1. And similarly with 𝑑 = 4 and 𝒟𝑘 ≥ 725.

It remains to exclude 𝑑 ≥ 5. In that case, we use the following bound due to Odlyzko (see [23, Tab.
4]): 𝒟𝑘 > (6.5)𝑑 . Then equation (6.5) transforms into

𝜒(Γ)
𝜒(Δ𝑛)

>
1

39 · 5

(
12
𝜋

)2 ( (6.5)2

5

) 𝛿 (𝑛)
𝑎(𝑛)𝑑−2, (6.6)
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where 𝑎(𝑛) = (6/𝜋)𝐶 (𝑛) (6.5) 𝛿 (𝑛) and 𝛿(𝑛) = dim G/2 − 1. We check that 𝑎(𝑛) > 1 for all 𝑛 ∈
{2, . . . , 13}. The product preceding 𝑎(𝑛) in equation (6.6) is also easily seen to be (much) larger than
1. This finishes the proof. �

6.5. The proof of Corollary 1

We have that each of 𝜒(Δ𝑛), 𝜒(Γ𝑠𝑛) and their quotients contains a factor 𝐶 (𝑛) (which is given in (6.4));
see equation (4.6). For n large enough, it is easily seen that this factor grows faster than (say) (2𝑛+1)!, i.e.,
it grows superexponentially. This implies immediately that 𝜒(Δ𝑛) and 𝜒(Γ𝑠𝑛) grow superexponentially,
as their remaining factors also increase with n. Moreover, the other factors appearing in 𝜒(Γ𝑠𝑛) grow at
most exponentially so that the 𝜒(Δ𝑛)/𝜒(Γ𝑠𝑛) has a superexponentially growth as well.

7. Proof of the uniqueness

In this section, we complete the proof of Theorems 1–3 by showing the uniqueness statements.

7.1. The surjectivity of the adjoint map

We start by proving the following auxiliary result.

Lemma 7.1. For 𝑛 > 1 and G admissible for Sp(𝑛, 1), the map 𝜋 : G(R) → G(R) is surjective.

Proof. We have to show that 𝛿 : G(R) → 𝐻1(R, C) has trivial image; see (3.2). Recall that 𝐻1 (R, C) =
R×/(R×)2. Let G = U(𝑉, ℎ). By [17, Prop. 12.20 and Sect. 31.A], the image of 𝛿 corresponds (modulo
squares) to elements 𝛼 ∈ R× such that (𝑉, 𝛼ℎ) is isomorphic to (𝑉, ℎ). For h of signature (𝑛, 1) with
𝑛 > 1, this requires 𝛼 > 0, whence the result. �

7.2. Counting the conjugacy classes

Let Γ ⊂ Sp(𝑛, 1) be a nonuniform (respectively, uniform) lattice that realizes the smallest covolume.
Then by Section 6, we have Γ = 𝑁Sp(𝑛,1) (Λ𝑃), where 𝑃 = (𝑃𝑣 ) is a coherent collection of parahoric
subgroups 𝑃𝑣 ⊂ G(𝑘𝑣 ) of maximal volume for each 𝑣 ∈ V f

𝑘 , and G is precisely the admissible k-group
that determines Γ𝑠𝑛 (resp. Δ𝑛). For 𝑣 ∈ R, this determines the type Θ𝑣 of 𝑃𝑣 uniquely (see Lemma 6.1),
and for 𝑣 ∉ R we have that Θ𝑣 is one of the two conjugate hyperspecial types. These two hyperspecial
types are conjugate by G(𝑘𝑣 ). Up to G(𝑘)-conjugacy, the number of principal arithmetic subgroups Λ𝑃
with such a type Θ = (Θ𝑣 ) is given by the order of following class group (see, for instance, [3, Sect.
6.2]):

ℭ𝑃 =

∏′
𝑣 ∈V f

𝑘

𝐻1(𝑘𝑣 , C)

𝛿(G(𝑘))
∏
𝑣 ∈V f

𝑘
𝛿(𝑃𝑣 )

, (7.1)

where 𝑃𝑣 ⊂ G(𝑘𝑣 ) is the stabilizer of 𝑃𝑣 , and in the numerator,
∏′ denotes the restricted product with

respect to the collection of subgroups 𝛿(𝑃𝑣 ).
By Lemma 7.1, this order also gives an upper bound on the number of G(R)-conjugacy classes of

Λ𝑃 (note that 𝑘 ⊂ R). Thus, the uniqueness in Theorems 1–3 follows immediately from the following.

Proposition 7.2. For 𝑘 = Q(
√

5) (respectively, 𝑘 = Q), we have ℭ𝑃 = 1.

Proof. We have 𝐻1(𝑘𝑣 , C) = 𝑘×𝑣/(𝑘×𝑣 )2. The subgroup 𝛿(𝑃𝑣 ) ⊂ 𝐻1(𝑘𝑣 , C) equals the type stabilizer
𝐻1 (𝑘𝑣 , C)Θ𝑣 . If 𝑣 ∈ R, then Aut(Δ 𝑣 ) = 1 (see Table 3) so that this stabilizer is trivially the whole
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𝐻1 (𝑘𝑣 , C). For 𝑣 ∉ R, we have 𝛿(𝑃𝑣 ) = 𝔬×𝑣 (𝑘×𝑣 )2/(𝑘×𝑣 )2 by [4, Prop. 2.7]. Thus, ℭ𝑃 is a quotient of

ℭ′
𝑃 =

∏′
𝑣 ∈V f

𝑘

𝑘×𝑣/(𝑘×𝑣 )2

𝛿(G(𝑘))
∏
𝑣 ∈V f

𝑘
𝔬×𝑣 (𝑘×𝑣 )2/(𝑘×𝑣 )2

. (7.2)

Now by Lemma 7.1 and the proof of Lemma 3.1, we have that 𝛿(G(𝑘)) = 𝛿(G(𝑘))′ = 𝑘 (+)/(𝑘×)2,
where

𝑘 (+) =
{
𝑥 ∈ 𝑘× | 𝑥𝑣 > 0 ∀ 𝑣 ∈ V∞

𝑘

}
. (7.3)

From equation (7.2), we obtain an isomorphism

ℭ′
𝑃 � J𝑘/

(
𝑘 (+)J∞

𝑘 J 2
𝑘

)
,

where J𝑘 is the group of finite idèles of k, and J∞
𝑘 ⊂ J𝑘 its subgroup consisting of integral idèles. For

both 𝑘 = Q and 𝑘 = Q(
√

5), the unit group 𝑈𝑘 contains a representative of each class of 𝑘×/𝑘 (+) . Thus,

𝑘 (+)J∞
𝑘 = 𝑘 (+)𝑈𝑘J∞

𝑘

= 𝑘×J∞
𝑘

so that

ℭ′
𝑃 � J𝑘/

(
𝑘×J∞

𝑘 J 2
𝑘

)
.

But the latter is a quotient of the class group of k (see [27, Sect. 1.2.1]), which is trivial here. �
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