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Regime transitions in stratified shear flows: the
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We present the analytical solution for the two-dimensional velocity and density
fields within an approximation for laminar stratified inclined duct (SID) flows where
diffusion dominates over inertia in the along-channel momentum equation but is
negligible in the density transport equation. We refer to this approximation as the
hydrostatic/gravitational/viscous in momentum and advective in density (HGV-A)
approximation due to the leading balances in the governing equations. The analytical
solution is valid for laminar flows in a two-layer configuration in the limit of long ducts.
The non-dimensional volume flux within the HGV-A approximation is given by Fr∗ =
Reg/(AK), which is a control parameter with Reg the gravitational Reynolds number, A
the aspect ratio of the duct and K a geometrical parameter that depends on the tilt of the
duct and is obtained from the analytical solution. This analytical solution was validated
against results from laboratory experiments, and allows us to gain new insight into the
dynamics and properties of SID flows. Most importantly, constant values of Fr∗ describe,
in both horizontal and inclined ducts, the transitions between increasingly turbulent flow
regimes: from laminar flow, to interfacial waves, to intermittent turbulence and sustained
turbulence.

Key words: gravity currents, stratified flows

1. Introduction

The understanding and improved modelling of stratified turbulent flows is of the utmost
importance in several environmental situations. A particular flow configuration that
attracts a lot of attention is the stratified shear flow. The interest in this flow is twofold.
On the one hand, it is reminiscent of several flows occurring in the environment such
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Figure 1. Schematic representation of the side view of a SID experimental set-up. The duct of length L and
height H is inclined at an angle θ with respect to the horizontal. The duct connects two large tanks: one with
water with density ρ = ρ̄ + Δρ/2 and the other with density ρ = ρ̄ − Δρ/2. The internal angle of the duct is
α = arctan(H/L). The along-duct coordinate is x and the coordinate perpendicular to the bottom and top of the
duct is z. The origin O of the coordinate system is located at the centre of the duct.

as the estuarine gravitational circulation (Geyer & MacCready 2014), the lock exchange
flow (Härtel, Meiburg & Necker 2000; Ottolenghi et al. 2016) and the exchange flow
occurring in ocean straits (Gregg, Özsoy & Latif 1999). On the other hand, it presents
rich dynamics encompassing the emergence of instabilities (Kaminski, Caulfield & Taylor
2014; Ducimetière et al. 2021), Holmboe waves (Holmboe 1962; Salehipour, Caulfield &
Peltier 2016; Lefauve et al. 2018) and stratified turbulence (Salehipour, Peltier & Caulfield
2018; Lefauve & Linden 2020a; Smith, Caulfield & Taylor 2021; Lefauve & Linden
2022a,b).

The pre-eminent experimental set-up is the stratified inclined duct (SID) due to a
high degree of control to explore different flow regimes and phenomena, and to the
possibility of performing detailed measurements (Macagno & Rouse 1961; Meyer &
Linden 2014; Lefauve, Partridge & Linden 2019a; Lefauve & Linden 2020a, 2022a,b).
This set-up consists of two large tanks with fluid of different densities that are linked by
an inclined, long duct (see figure 1). In recent years there has been vast progress in the
understanding of the flow in SID experiments due to improved measurement capabilities
that allow for simultaneous detailed measurements of the three-dimensional (3-D) density
and velocity fields (Partridge, Lefauve & Dalziel 2019). A central research line has been
the transitions between flow regimes: from laminar to the emergence of interfacial waves,
to intermittently turbulent and to fully turbulent (Macagno & Rouse 1961; Meyer & Linden
2014; Lefauve et al. 2019a; Lefauve & Linden 2020a). Although these different regimes
have been observed for 60 years, explaining them over a wide range of parameter values
and determining the functional dependence of the regime transition on the governing
parameters remains an unsolved problem. In fact, one of the unanswered questions is:
‘How to explain flow regime transitions in horizontal ducts or ducts inclined at a slightly
negative angle?’ (Lefauve et al. 2019a).

Lefauve et al. (2019a) distinguished between two situations: lazy and forced flows.
To explain this distinction, it is necessary to define the internal angle of the duct α =
arctan(H/L), where H is the height of the duct and L its length. Lazy flows are defined as
those occurring when the inclination angle θ of the duct satisfies α � θ > −α, and forced
flows as those occurring when θ > α. Between lazy and forced flows, a smooth transition
occurs. The term forced refers to the increased importance of the gravitational forcing
due to the duct tilt. Meyer & Linden (2014) and Lefauve et al. (2019a) have proposed
two different criteria for the regime transitions in forced flows showing good agreement
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Transitions in stratified shear flows

with experimental data. However, the criterion proposed by Meyer & Linden (2014) is
not valid for θ ≤ 0, and the one proposed by Lefauve et al. (2019a) is not valid for lazy
flows.

The current paper proposes a new criterion for the regime transitions in SID
experiments that spans both lazy and forced flows (i.e. encompassing slightly negative
inclinations, horizontal ducts and positive inclinations). This criterion is based on a
formal perturbation analysis for long ducts and the analytical solution of the resulting
simplified set of equations. This work builds upon the recent description by Kaptein
et al. (2020) of what they called the high-advection/low-diffusion approximation for
laminar flows in horizontal ducts. In this approximation, viscous diffusion dominates
over inertia in the along-channel momentum equation while diffusion is negligible in
the density transport equation. In fact, the flow gets organized into two layers with a
sharp interface in between. For consistency with the work by Lefauve & Linden (2020a),
we will refer here to this approximation as the HGV-A approximation because of the
hydrostatic/gravitational/viscous (denoted by HGV) balance in the momentum equation
and the dominance of advection (denoted by A) in the density transport equation (a
detailed derivation is presented in § 3.1). This approximation is, in general, only possible
if the Schmidt number (the ratio between the kinematic viscosity of the fluid and the
diffusivity of the scalar responsible for the density differences) is much larger than
unity, for example, for salt-stratified flows. Kaptein (2021) proposed new curves based
on this approximation describing the regime transitions with a generalized Reynolds
number. These curves show an overall better agreement with experimental results for
salt-stratified flows than previously proposed criteria. However, they are based on an
assumption of the slope of the interface as a function of the ratio θ/α, which has not been
confirmed.

To provide a physical explanation for the transitions and propose the curves determining
them, we derive, in the current paper, a two-dimensional (2-D) analytical solution for
the velocity and density fields in the HGV-A approximation in both horizontal and
slightly inclined ducts. This analytical solution provides several new insights into SID
flows. In particular, it provides the non-dimensional parameter governing the regime
transition for SID flows for horizontal and inclined ducts. The new understanding of
SID flows should allow better targeted experimental campaigns to answer remaining
questions due to the clearer view of the parameter space. Furthermore, the tilt angle
in relatively small-scale, well-controlled SID experiments can be used to achieve more
turbulent flows than in horizontal ducts with the same values of the other governing
parameters. This means that understanding the link between horizontal and inclined
ducts can be fruitful to connect the results of SID turbulence (which is primarily
found in slightly inclined ducts) to larger-scale environmental flows (which are primarily
horizontal).

2. Description of the system and background

The SID set-up, mentioned earlier and sketched in figure 1, consists of two tanks with
fluid at densities ρ̄ ± Δρ/2 (due to differences in, for example, salt concentration or
temperature), joined by a duct. The duct has length L and height H, and it is inclined
at an angle θ with respect to the horizontal. The fluid is considered to have uniform and
constant viscosity ν. It is convenient to define the buoyancy velocity scale Ug ≡ √

g′H,
where g′ ≡ gΔρ/ρ̄ with g the gravitational acceleration. Besides the inclination angle of
the duct θ , the system can be described by three non-dimensional parameters: the aspect
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ratio of the duct A ≡ cot α = L/H, the gravitational Reynolds number

Reg ≡ HUg

2ν
= H

√
g′H

2ν
(2.1)

and the Schmidt number Sc ≡ ν/κ , with κ the diffusivity of salt (or heat, in which case the
Schmidt number is referred to as the Prandtl number). We consider long ducts (A � 1) for
which A−1 ≈ α. For ducts with finite width W, we must introduce an additional parameter
B ≡ W/H.

Meyer & Linden (2014) proposed an empirical criterion for the transition between
different flow regimes by defining the Grashof number as Gr ≡ 2ARe2

g sin θ , which
quantifies the ratio of the buoyancy force to the viscous force. They proposed the critical
value Gr = 4 × 107 for the transition between the intermittently turbulent and fully
turbulent regimes showing good agreement with experimental results. Lefauve et al.
(2019a) proposed that the transitions between different regimes for a SID set-up with
a given A value occur at constant θReg values. Lefauve & Linden (2020a) checked
the proposed transitions at constant θReg values against several experimental data sets
including those of Meyer & Linden (2014). They remarked particularly good agreement
with experiments for forced flows (θ > α) when, in addition, A−1Reg � 50. However, the
comparison was inconclusive for other values of θ and A−1Reg.

Both previously mentioned criteria (those proposed by Meyer & Linden 2014; Lefauve
et al. 2019a) have a crucial shortcoming: they are not valid for θ ≤ 0 because the proposed
governing parameters (Gr and θReg) are then equal or smaller than zero. This would mean
that, for θ ≤ 0, the flow does not transition away from laminar, which is in disagreement
with experimental results (see e.g. figure 4 by Lefauve & Linden 2020a). Moreover, it is
well known that the Grashof number defined as Gr = Re2

g is the governing parameter in the
case of a horizontal duct (see e.g. Härtel et al. 2000; Hogg, Ivey & Winters 2001). More
precisely, the governing parameter is GrA−2 = Re2

gA−2 according to Hogg et al. (2001).
Hence, the definition of Gr proposed by Meyer & Linden (2014) is inconsistent with the
relevant definition for horizontal ducts. For these reasons, there is still a need to find a
physical explanation and a generalized governing parameter determining the transitions in
positively inclined, horizontal and negatively inclined ducts.

For horizontal ducts, it is known that diffusion dominates and U/Ug ∝ RegA−1 (with U
denoting the typical magnitude of the velocity) for RegA−1 	 (180/Sc)1/2 (Kaptein et al.
2020). This approximation is known as the viscous advective–diffusive (VAD) solution
(Cormack, Leal & Imberger 1974; Hogg et al. 2001), the hydrostatic–viscous balance
(Lefauve & Linden 2020a) or the diffusion-dominated regime (Kaptein et al. 2020). In
the opposite case of RegA−1 � (180/Sc)1/2, Kaptein et al. (2020) found two distinct
approximations that arise depending on Sc: one for Sc ≈ 1 and another for Sc � 1.

For Sc ≈ 1, the flow tends to the hydraulic limit, in which U/Ug ∝ 1 (Hogg et al. 2001).
This is the theoretical limit for a steady, inviscid, irrotational, hydrostatic flow in which
the two layers are of equal thickness all along the duct (Gu & Lawrence 2005; Lefauve &
Linden 2020a). For Sc � 1, Kaptein et al. (2020) found that U/Ug ∝ RegA−1, similarly
to the VAD solution but with a different proportionality constant. This behaviour would
correspond to what we refer here to as the HGV-A approximation. However, the observed
scaling cannot continue indefinitely as the value of Reg increases, since the hydraulic limit
also exists for Sc � 1, and hence, there is the upper bound U/Ug = 1. Most probably,
Kaptein et al. (2020) did not observe the transition towards the hydraulic limit because
they only modelled laminar, steady flows. In fact, the limit of the parameter space that

956 A4-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1077


Transitions in stratified shear flows

they explored was established by the emergence of waves and instabilities at the interface.
This suggests that the HGV-A approximation should hold for flows with Sc � 1 between
the VAD solution (which is not hydraulically controlled) and a hydraulically controlled
flow. It is this hypothesis that we will endeavour to verify in this paper.

3. Analytical description of the HGV-A approximation

In this section we focus on the HGV-A approximation and derive its consequences
for regime transitions in inclined ducts. Although scaling analysis for a SID flow
has been previously done by Lefauve & Linden (2020a), the HGV-A approximation
was not considered. Furthermore, we take a slightly different approach in the
non-dimensionalization that allows us to simplify the equations in a mathematically formal
way by using an asymptotic analysis of the momentum and density transport equations
describing the flow in a long duct (A � 1) (see Van Dyke 1975, for background theory).
Such an analysis has been proven to be a powerful tool to analyse problems where the
geometrical shape of the domain introduces a small parameter (see, e.g. Rienstra &
Chandra 2001; Duran-Matute et al. 2012), which in this case is A−1. In fact, Cormack et al.
(1974) used a similar approach to derive the VAD approximation in a closed container.

First, in § 3.1 we present the non-dimensional governing equations that are later used,
in § 3.2, to derive the HGV-A approximation using asymptotic analysis for a long duct. In
§ 3.3 we present the analytical solution for the 2-D velocity and density fields. Then, in
§ 3.4 we discuss its implications for the regime transitions.

3.1. Governing equations
We consider the 2-D, steady flow in a (x, z) cross-section of an infinitely wide duct, where x
is the along-channel coordinate and z is the coordinate going from the bottom to the top of
the duct. The fluid velocity is v = (u, 0, w). The flow is described by the continuity and the
steady Navier–Stokes equations with the Boussinesq approximation for an incompressible
fluid,

∂u
∂x

+ ∂w
∂z

= 0, (3.1)

u
∂u
∂x

+ w
∂u
∂z

= − 1
ρ̄

∂p
∂x

+ ν

(
∂2u
∂x2 + ∂2u

∂z2

)
+ g

ρ′

ρ̄
sin θ, (3.2)

u
∂w
∂x

+ w
∂w
∂z

= − 1
ρ̄

∂p
∂z

+ ν

(
∂2w
∂x2 + ∂2w

∂z2

)
− g

ρ′

ρ̄
cos θ, (3.3)

where p is the pressure and ρ′ = ρ − ρ̄ is the variable part of the total density,
with ρ̄ � ρ′. In the reference frame of the inclined duct, the gravity vector is g =
(g sin θ, 0, −g cos θ). A linear equation of state relates the density ρ to, for example, salt
concentration or fluid temperature. In this way, the density ρ is also governed by a steady
transport equation

u
∂ρ

∂x
+ w

∂ρ

∂z
= κ

(
∂2ρ

∂x2 + ∂2ρ

∂z2

)
. (3.4)

We define the non-dimensional variables denoted by a tilde such that

u = Uũ, w = U
A

w̃, x = L
2

x̃, z = H
2

z̃, ρ′ = Δρρ̃′, p = 2ρ̄UνL
H2 p̃. (3.5a–f )
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Using the non-dimensional variables defined in (3.5a–f ), (3.1)–(3.4) can be written as

∂ ũ
∂ x̃

+ ∂w̃
∂ z̃

= 0, (3.6)

A−1Reg Fr
(

ũ
∂ ũ
∂ x̃

+ w̃
∂ ũ
∂ z̃

)
= −∂ p̃

∂ x̃
+ A−2 ∂2ũ

∂ x̃2 + ∂2ũ
∂ z̃2 + Reg

2Fr
ρ̃′ sin θ, (3.7)

A−3RegFr
(

ũ
∂w̃
∂ x̃

+ w̃
∂w̃
∂ z̃

)
= −∂ p̃

∂ z̃
+ A−4 ∂2w̃

∂ x̃2 + A−2 ∂2w̃
∂ z̃2 − A−1 Reg

2Fr
ρ̃′ cos θ, (3.8)

A−1Reg Sc Fr
(

ũ
∂ρ̃′

∂ x̃
+ w̃

∂ρ̃′

∂ z̃

)
= A−2 ∂2ρ̃′

∂ x̃2 + ∂2ρ̃′

∂ z̃2 , (3.9)

where the Froude number is defined as

Fr ≡ U
Ug

= 1
HUg

∫ H/2

−H/2
|u| dz. (3.10)

We do not set, a priori, Ug as the typical velocity scale (as done by, for example,
Cormack et al. 1974) because we do not know if U scales with Ug, and it is imperative
to use a representative velocity scale to fully profit from the asymptotic analysis. In fact,
determining the relationship between U and Ug (i.e. determining Fr) as a function of the
control parameters of the problem is a crucial step in deriving the analytical solution in the
HGV-A approximation. Hence, the Froude number represents the non-dimensional volume
flow rate through the duct, and it is related to the function fΔU discussed by Lefauve &
Linden (2020a) for which they used the peak-to-peak velocity as the typical velocity scale.

3.2. Asymptotic analysis for long ducts
We now make use of the fact that A−1 	 1 to describe the main characteristics and
balances in the HGV-A approximation using an asymptotic analysis. We introduce the
symbol O to denote the mathematical order of a function and Os to denote the sharp
order (see Appendix A for formal definitions). Note that the symbol O does not denote
the physical order of magnitude because no account is kept of constants of proportionality
(Van Dyke 1975). Our approach differs in three ways from that of Cormack et al. (1974).
First, as already mentioned, we do not consider a priori Ug as a representative velocity
scale. Second, we simplify the problem by considering only the lowest order terms in the
expansion. Third, we complicate the problem by not assuming that the interface is parallel
to the bottom and top of the duct.

The starting point of the asymptotic analysis is to write the velocity, the pressure and
the variable part of the density as asymptotic expansions on A−1, such that

ũ =
∞∑

n=0

A−nũn, w̃ =
∞∑

n=0

A−nw̃n, p̃ =
∞∑

n=0

A−np̃n, ρ̃′ =
∞∑

n=0

A−nρ̃′
n. (3.11a–d)

As a second step, it is necessary to express the response parameters, in this case, Fr as a
function of A−1. We write

Fr = CA−l, (3.12)

where C is a finite constant such that Fr = Os(A−l) with l ∈ N. We now substitute
(3.11a–d) and (3.12) into (3.7)–(3.9), and extract the equations for the lowest (zeroth-order)
terms.
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Transitions in stratified shear flows

We start the analysis with the x and z components of the Navier–Stokes equations, (3.7)
and (3.8), respectively. Considering A−1 	 1 immediately yields, as expected for long
ducts, that horizontal viscous diffusion (terms with ∂2/∂x2) can be neglected from these
equations when compared with vertical viscous diffusion (terms with ∂2/∂z2) because of
the additional A−2 factor. The lowest order term of vertical viscous diffusion in (3.8) is
O(A−2) and can also be immediately neglected with respect to the lowest order terms of
the pressure gradient and gravity forces that are O(A0).

Different balances can be obtained by considering different values of l in (3.12).
However, here we are interested only in the laminar flow for which we assume that the
nonlinear terms in (3.7) and (3.8) can be neglected, and we will verify this a posteriori by
comparing with laboratory experiments. Neglecting the nonlinear terms formally means
that we consider here only the case where RegFrA−1 = O(A−1). Equation (3.8) yields
then, at lowest order, the hydrostatic balance

∂ p̃0

∂ z̃
= −K

2
ρ̃′

0 cos θ, (3.13)

with

K ≡ Reg

A Fr
. (3.14)

However, the hydrostatic balance (3.13) can only hold if K cos θ is a finite constant
(formally, if K cos θ = Os(A0)), so that the terms on both sides are of the same order.
Furthermore, θ 	 1 so cos θ ≈ 1, and thus, K must be a finite constant (0 < K < ∞) in
the limit A−1 → 0 (formally, K = Os(A0)).

We now turn our attention to (3.7), where the remaining terms yield

∂2ũ0

∂ z̃2 = ∂ p̃0

∂ x̃
− K

2
ρ̃′

0A sin θ. (3.15)

Here, we can clearly see that the hydrostatic pressure and gravity are balanced by viscous
momentum diffusion. This is the balance that gives rise to the HGV acronym. Here, the
condition that θ 	 1 is also important so that A sin θ remains finite when A � 1. Note
that taking sin θ = 0 yields the governing equation for a horizontal duct or what Lefauve
& Linden (2020a) call the hydrostatic/viscous balance. Finally, the z component of the
velocity, w̃, is given by the continuity equation

∂ ũ0

∂ x̃
+ ∂w̃0

∂ z̃
= 0. (3.16)

The simplified equations (3.13), (3.15) and (3.16) were already introduced by Macagno
& Rouse (1961) as the governing equations for SID flows. However, the perturbation
analysis yields the additional important result that K = Os(A0). This means that
Fr = Os(A−1), i.e. that Fr = U/Ug = Reg/(A K) (in agreement with the numerical results
of Kaptein et al. 2020), with K−1 a proportionality constant in the limit of A−1 → 0. We
can see from (3.15) that the balance and, hence, the value of K still depends on the value
of A sin θ that remains a finite parameter in the simplified set of equations. In short, the
perturbation analysis so far tells us that, to find the dimensionless volumetric flow rate
Fr = Reg/(K A), we must find the value of K as a function of A sin θ since the values of
Reg and A are known.
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We now continue our analysis with the density transport equation (3.9), which yields at
lowest order

∂2ρ̃′
0

∂ z̃2 = 0, (3.17)

meaning that the vertical diffusion of density is equal to zero.
In short, the HGV-A approximation is characterized by a hydrostatic balance in the

vertical, while in the horizontal, the flow is driven by a pressure gradient force, and by
gravity in the along-duct direction if θ /= 0. Finally, we have the hallmark of the HGV-A
approximation: diffusion dominates over inertia in the along-channel momentum equation
but is equal to zero in the density transport equation. This combination requires that Sc is
large (as observed by Kaptein et al. 2020), which is the case, for example, for water flows
where the density difference is caused by a difference in salt concentration (Sc ≈ 700) but
not by a difference in temperature (Sc ≈ 7).

3.3. Analytical solution in the HGV-A approximation
We consider now the governing equations at lowest order (3.13) and (3.15)–(3.17), referred
to as the HGV-A approximation. For simplicity in the notation, we drop the tildes. The
goal now is to find an analytical solution for this set of equations. We split the procedure
in two steps. First, we determine the expressions for the along-channel velocity u0 and the
density ρ′

0. Second, we determine the value of Fr that, as mentioned earlier, is equivalent
to finding the value of K as a function of A sin θ .

3.3.1. Determining the along-channel velocity and the density
To find an expression for the along-channel velocity u0 and the density ρ′

0 in the HGV-A
approximation, we begin with the transport equation (3.17). For the solution to this
equation, we propose

ρ′
0(x, z) = 1

2
− H(z − η(x)), (3.18)

where H(z) is the Heaviside function defined as H(z > 0) = 1, H(z < 0) = 0 and H(z =
0) = 1/2. The physical meaning of this solution is that the density gets organized in two
layers with a sharp interface located at z = η(x) with η(0) = 0 due to the definition of the
coordinate system.

The proposed solution satisfies ∂2ρ′
0/∂z2 = 0 in each of the layers. However, formally,

the solution is not defined at the interface, and it is convenient to approach the problem
by treating each layer separately, with the interface as a boundary between them. We
use the index ζ = ±1 with ζ = +1 referring to the top layer and ζ = −1 to the bottom
layer. Using this notation, ρ′

0,ζ = −ζ/2. Macagno & Rouse (1961) also solved the same
governing equations for a two-layer system, but they considered the simplified problem
where the interface is parallel to the top and bottom of the duct, i.e. η(x) = 0.

We now turn our attention to (3.13) to derive the pressure distribution and the horizontal
pressure gradient that drives the flow. Integrating this equation with respect to z yields an
expression for the pressure,

p0,ζ (x, z) = K
ζ

4
z cos θ + γζ (x), (3.19)
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Transitions in stratified shear flows

with γζ (x) as integration constants that are functions of x to be determined using the
boundary conditions. At z = 1, the pressure is an unknown function of x, but it is
convenient to define, without loss of generality,

p0,+1(x, z = 1) = −K[ f (x) − η(x) cos θ ]/4, (3.20)

with f (x) an unknown function giving the x dependence of the barotropic pressure. Using
(3.19) and (3.20), one obtains an expression for γ+1(x) as a function of η(x) and f (x), and
applying continuity of pressure at z = η(x) yields an expression for γ−1(x). The pressure
as a function of x and z is then given by

p0,ζ (x, z) = ζ
K
4

[cos θ(z − η(x) − ζ ) + ζ f (x)] (3.21)

so that the along-channel pressure gradient is

∂p0,ζ

∂x
= ζ

K
4

(
cos θ

dη(x)
dx

− ζ
df (x)

dx

)
, (3.22)

where we can see that it is composed of a baroclinic part due to the sloping interface and
a barotropic part given by the gradient of f (x).

Substituting (3.22) into (3.15) yields

∂2u0,ζ

∂z2 = −ζ
K
4

Fζ (x), (3.23)

with

Fζ (x) = cos θ
dη(x)

dx
− ζ

df (x)
dx

− A sin θ. (3.24)

Integrating twice with respect to z and applying the boundary conditions u0(z = ±1)

= u0(z = η(x)) = 0 gives

u0,ζ (x, z) = −ζ
K
8

Fζ (x)(z − ζ )(z − η(x)). (3.25)

Since the barotropic pressure gradient is responsible for an equal volume flow rate in
both directions, we use the condition of zero mean flow through the duct,

∫ 1

−1
u0(x, z) dz = 0, (3.26)

to determine df (x)/dx. We do this by integrating u0,−1(x, z) from z = −1 to z = η(x) and
u0,+1(x, z) from z = η(x) to z = 1, yielding

df (x)
dx

= −η(x)[3 + η2(x)]
1 + 3η2(x)

(
cos θ

dη(x)
dx

− A sin θ

)
, (3.27)

and Fζ (x) can be rewritten as

Fζ (x) = [1 + ζη(x)]3

1 + 3η2(x)

(
cos θ

dη(x)
dx

− A sin θ

)
. (3.28)

Replacing this expression for Fζ into (3.23) clearly shows the physical origin of the two
drivers of the flow: (i) a baroclinic pressure gradient due to a sloping interface between
the two layers with homogeneous density, and (ii) gravity due to the tilt of the duct. For a
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given value of A, the relative importance of these two forcing terms varies with the angle θ

and the slope of the interface. For example, for horizontal ducts, the pressure gradient will
be the only forcing, while it would be expected that gravity takes over with increasing θ

values (particularly, if dη(x)/dx decreases simultaneously). Hence, considering these two
forcing terms without neglecting a priori any of them is crucial to link our knowledge of
horizontal and inclined ducts. The difficulty here is that although the value of θ is known
since it is a control parameter, the value of dη(x)/dx is not.

Now, the only missing part of the solution is to determine the shape of the interface
η(x). For this, we consider the flow rate through each of the layers yielding

−
∫ 1

η(x)
u0,+1(x, z) dz = 1 =

∫ η(x)

−1
u0,−1(x, z) dz, (3.29)

where the value of one is due to the way the velocity was made dimensionless. In this way,
we obtain an autonomous differential equation for η(x),

cos θ
dη(x)

dx
= −48

K
1 + 3η2(x)

[1 − η2(x)]3 + A sin θ. (3.30)

Equation (3.30) can be further used to rewrite Fζ (x) in (3.28) yielding

Fζ (x) = −48
K

1
[1 − ζη(x)]3 , (3.31)

such that (3.23) is now written as

∂2u0,ζ

∂z2 = − 12ζ

[1 − ζη(x)]3 . (3.32)

Finally, the along-duct velocity given by (3.25) can be written as

u0,ζ (x, z) = 6ζ

[1 − ζη(x)]3 (z − ζ )(z − η(x)), (3.33)

where we can notice that the velocity profile at x = 0,

u0,ζ (0, z) = 6ζ(z − ζ )z, (3.34)

always has the same shape consisting of two parabolas. To reach the complete solution, it
is still necessary to determine the position of the interface, which is equivalent to finding
the value of K as a function of A sin θ , which can be done by solving (3.30) for η(x).

3.3.2. Determining K
Since the analytical solution for horizontal ducts is tractable, we focus first on this case for
which (3.30) simplifies to

dη(x)
dx

= −48
K

1 + 3η(x)2

[1 − η(x)2]3 , (3.35)

yielding

x = − K
19 440

[320
√

3 arctan(
√

3η(x)) − 555η(x) + 150η(x)3 − 27η(x)5]. (3.36)

The value of K is obtained by imposing boundary conditions. Finding the slope of
the interface from an autonomous equation – similar to (3.30) – was previously done
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Figure 2. Density field from the numerical simulation by Kaptein et al. (2020) for Reg = 500, A = 60,
Sc = 300 and θ = 0. The white dashed lines represent the limits of the duct (x = ±1). The black dashed
line represents the interface given by (3.36) with K = 131.

for horizontal ducts by Gu & Lawrence (2005) and for inclined ducts by Lefauve &
Linden (2020a) who derived the equation using internal hydraulics. Gu & Lawrence
(2005) found in fact a similar expression to (3.36), but the constant to be determined from
the boundary conditions was the composite Froude number given a certain magnitude of
the frictional effects. When using internal hydraulics, the boundary condition is proposed
using maximum exchange flow theory (Armi & Farmer 1986). This theory states that
the maximum flow rate possible is such that the flow becomes critical at the ends of the
channel (i.e. that the composite Froude number becomes unity at x = ±1; see e.g. Dalziel
1991; Zaremba, Lawrence & Pieters 2003; Gu & Lawrence 2005 for details). In such a
case, the flow is said to be hydraulically controlled. However, enforcing the composite
Froude number to be equal to unity at the edges is inconsistent with the results of the
perturbation analysis leading to the HGV-A approximation. On the one side, for internal
hydraulics to be valid, inertia in the x component of the momentum equation should not
be negligible. On the other hand, setting the value of the composite Froude number at
x = ±1 would mean that the position of the interface at these locations depends on the
Froude number. Imposing this boundary condition to find the value of K would, in turn,
make K depend on the Froude number. However, this is inconsistent with the results from
the asymptotic analysis that K = Os(A0) while Fr = Os(A−1), which is a condition needed
for the hydrostatic balance (3.13) to hold.

We propose then a different boundary condition inspired by the results of Kaptein
et al. (2020) for the simulation used to exemplify the HGV-A approximation (Reg = 500,
A = 60, Sc = 300, θ = 0◦) and shown in figure 2. In this figure we can see that the
interface curves sharply when reaching the end of the duct, with the light fluid turning
upwards at x = −1 and the dense fluid turning downwards at x = 1. The currents at
the ends of the duct must have a dimensionless thickness ε in the x direction with
ε < A−1 	 1, meaning that they are thin with respect to the length of the duct. We propose
then to impose η[x = ±(1 + ε)] = ∓1. For long ducts, we can assume a small error of
order A−1, and enforce, instead η(x = ±1) = ∓1, meaning also that dη/dx|x=±1 = ∓∞.
Note that, even though the flow inside the duct is not controlled by the composite Froude
number being equal to one at the edges, the boundary conditions at the edges remain
crucial in determining the slope of the interface, and hence, the volume flow rate. Taking
η(±1) = ∓1 yields K ≈ 131 and dη/dx|x=0 = −48/K ≈ −0.366 for a horizontal duct.
Note that the value of dη/dx|x=0 is close to the slope of −1/3 obtained empirically and
numerically by Kaptein et al. (2020) and shows good agreement with the density field
shown in figure 2.
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Figure 3. Shape of the interface for three different values of A sin θ as obtained from solving (3.30).

To find the value of K for the inclined ducts, we follow a similar approach as for the
horizontal ducts, but we do the calculations numerically. The value of K is obtained by
solving (3.30) while enforcing η(±1) = ∓1. We further simplify the problem by taking
cos θ ≈ 1 since θ 	 1. It was already discussed in § 3.2 that K is a constant for A−1 → 0
but that it depends on A sin θ , and this can be seen again in (3.30). The solution to (3.30)
for three different values of A sin θ is shown in figure 3. Several properties of the shape
of the interface expected from previous work (see e.g. Gu & Lawrence 2005; Lefauve
et al. 2019a; Kaptein et al. 2020) and observed in figure 2 are reproduced by the analytical
solution. For example, the solution naturally yields a slope of the interface that is constant
to a good approximation over a large portion of the duct around x = 0, and that it bends
up or down as it approaches the edges of the duct. Furthermore, the slope of the interface
at x = 0 is given by

S ≡ dη(x)
dx

∣∣∣∣
x=0

≈ cos θ
dη(x)

dx

∣∣∣∣
x=0

= −48
K

+ A sin θ ≤ 0, (3.37)

and it goes towards zero for increasing values of θ . The values of K and S as a function
of A sin θ are shown in figure 4. Note that, due to the way the variables where made
dimensionless, the ‘real’ slope (e.g. as observed in the experiments) is given by S′ = S/A.

Previous work has suggested a change in behaviour around A sin θ = 1 where the flow
transitions from lazy to forced (Lefauve et al. 2019a). In particular, the slope of the
interface is considered relatively flat throughout the duct (S ≈ 0) for A sin θ > 1. Although
here S does not tend to zero for A sin θ > 1, the values of S′ are quite small for typical
values of A used in the experiments. For example, in the case of A = 30, the height
of the interface varies about 3 mm over 1 m, which could be imperceptible by the eye.
Furthermore, we can see that, for A sin θ > 1, the value of K varies little when compared
with the variation for A sin θ < 1.

The fact that we obtain the value of S as a function of A sin θ is a critical difference with
respect to the parametrization used by Kaptein (2021) to determine the regime transition
curves. In that work, the variation of S with A sin θ was assumed based on previous results
by Lefauve et al. (2019a) and Kaptein et al. (2020). In particular, it was assumed that S =
(A sin θ − 1)/3 for A sin θ < 1 and that S = 0 for A sin θ ≥ 1. Although certain features
and trends of the regime transition curves might be reproduced using these assumptions,
differences are also expected when the value of S, as shown in figure 4(b), is considered.
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Figure 4. (a) Value of the parameter K defined in (3.14) and (b) value S, the slope of the interface at x = 0,
as a function of A sin θ . The value of K and S are such that the solution to the autonomous equation for η(x)
(3.30) satisfies η(±1) = ∓1 assuming cos θ ≈ 1. The dotted line in (b) represents the empirical approximation
used by Kaptein (2021).

3.4. Implications of the HGV-A approximation for the regime transition
The derivation of the analytical solution in the HGV-A approximation yielded that K is
a constant for a given value of A sin θ by solving (3.30) while enforcing η(±1) = ∓1.
For the upcoming discussion and an easier comparison with the work by Lefauve et al.
(2019a), it is convenient to use the fact that, for a long duct with a small tilt angle
(θ, A−1 	 1), A sin θ ≈ θ/α. In such a case, the solution in the HGV-A approximation
yields that K = Reg/(FrA) must be a constant for a given value of θ/α. Both Reg and
A are control parameters of the problem, while Fr is a response parameter equivalent to
the non-dimensional volume flow rate. Hence, if the value of RegA−1 is increased while
keeping θ/α fixed, the value of Fr should also increase keeping the value of K constant.

It is, here, convenient to define the Froude number in the HGV-A approximation as

Fr∗ ≡ Reg

AK
≈ Regα

K
. (3.38)

Note that Fr∗ can be seen as either a response parameter or a control parameter. It is a
response parameter because it represents the non-dimensional volumetric flow rate that
results from the choice of control parameters: Reg, θ and A. In addition, it is a control
parameter because Reg and A are directly imposed for a given experiment, and K is a
geometrical parameter set by imposing the value of θ/α. The value of K is determined
from the analytical solution in the HGV-A approximation, and it is, to a very good
approximation for θ 	 1, the value shown in figure 4(a). In this way, the value of Fr∗
is a known quantity for a given experiment. Within the HGV-A approximation, Fr = Fr∗,
but this is not the case if the approximation does not hold. Furthermore, since K ≈ 131
is a constant for θ = 0, saying that Fr∗ is the control parameter for horizontal ducts is
equivalent to saying that Reg A−1 is the control parameter as shown by Hogg et al. (2001).

To study the limit of validity of the HGV-A approximation, we consider a hypothetical
SID set-up with given values for A and θ satisfying A � 1 and θ 	 1. As just mentioned,
the value of K is known then. In this hypothetical set-up, we first take a sufficiently small
value of Reg so that Fr∗ is sufficiently small to neglect inertia from the x component of the
momentum equation (3.7). Furthermore, Sc � 1 so that the flow gets organized (too good
approximation) in a two-layer configuration and the HGV-A approximation holds. In such
a case, Fr = Fr∗. We now do a series of experiments increasing Reg, which is equivalent
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to increasing Fr∗. We know from internal hydraulic theory that there is a maximum flow
rate possible through the duct, i.e. a maximum possible value for Fr. In the frictionless
case, this maximum value is Fr = 1 that is known as the hydraulic limit (Hogg et al.
2001; Lefauve et al. 2019a), while friction reduces the maximum possible value of Fr
(Gu & Lawrence 2005). Hence, there must be a critical value Fr∗

c at which the HGV-A
approximation becomes invalid. For Fr∗ values larger than this critical value, the actual
Froude number is such that Fr < Fr∗. Approaching this limit of validity of the HGV-A
approximation, it is expected that a transition (i.e. a qualitative change in the flow) occurs.

Now, the next step is to determine the range of validity of the HGV-A approximation by
determining Fr∗

c since the asymptotic analysis does not give information about the physical
order of magnitude at which the different terms become relevant (Van Dyke 1975). Hence,
to determine the range of validity of the HGV-A approximation, it is necessary to use
numerical simulations or laboratory experiments. In the following section we study this
range of validity and the consequence for regime transitions in four different experimental
set-ups.

4. Experimental verification

It was already discussed that several of the properties of the analytical solution in the
HGV-A approximation agree with the numerical results of Kaptein et al. (2020). Now,
we use results from laboratory experiments to verify the theoretical results derived in the
previous section. We have two main aims: (i) to show that the solution in the HGV-A
approximation described in § 3.3 does exist and is observed experimentally in a region of
the parameter space, and (ii) to show that curves of Fr∗ = const. describe the transition
between different regimes.

4.1. Description of the data
We use the experimental data sets by Meyer & Linden (2014), Lefauve et al. (2019a) and
Lefauve & Linden (2020a). These data sets have been discussed and made available online
(https://doi.org/10.17863/CAM.48821, https://doi.org/10.17863/CAM.41410) by Lefauve,
Partridge & Linden (2019b) and Lefauve & Linden (2020a,b). Four ducts with different
dimensions were used. We will refer to them as mSID (m for mini), tSID (t for tall),
LSID (L for large), and HSID (H for half), in accordance with Lefauve & Linden (2020a).
Table 1 summarizes the characteristics of all the set-ups. For each set-up, the inclination
angle of the duct θ and the gravitational Reynolds number Reg were varied independently.
The fluid used was a salt (NaCl) solution (Sc ≈ 700), and the value of Reg was varied by
changing the salt concentration in each of the tanks. In total, we used 738 data points to
study the regime transitions.

Meyer & Linden (2014) distinguished four different regimes: laminar (L), Holmboe
waves (H), intermittently turbulent (I), and turbulent (T). Lefauve & Linden (2020a)
introduced a ‘waves’ (W) regime where waves other than Holmboe waves were observed.
The different regimes were mostly identified by shadowgraph observations over a
subsection of the duct, following the qualitative description of each regime by Meyer &
Linden (2014). A schematic of the shadowgraph set-up was presented by Lefauve (2018).
The observed regime and the mass flow rate as a function of the governing parameters
are provided by Lefauve & Linden (2020b). A complication for the comparison with the
experimental data is that, as pointed out by Lefauve & Linden (2020a), there is a surprising
difference between the results from the LSID and the mSID set-ups: the regions in the
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Transitions in stratified shear flows

Name H (mm) Cross-section A B Sc θ (deg.) Reg

mSID 45 30 1 700 [−1,6] [300, 6000]

LSID 100 30 1 700 [−1,4] [2000, 20 000]

HSID 100 15 1 700 [0,4] [1000, 20 000]

tSID 90 15 1/4 700 [−1,3] [3000, 15 000]

Table 1. Characteristics of the experiments used in this paper. Four duct geometries (abbreviated mSID, LSID,
HSID, tSID) are used (Lefauve & Linden 2020a). We list the values of the dimensionless numbers describing
each duct geometry (A and B), the value of Sc for salt in water and the ranges of θ and Reg explored.

(θ, Reg) plane where the different regimes occur do not coincide even though the values
of all the dimensionless parameters are identical.

To show that the proposed solution in the HGV-A approximation is observed
experimentally and to observe the limit of validity, we analyse in the following section
the along-duct velocity and the density fields for three experiments in the mSID duct all
with θ = 2◦ (provided by Lefauve et al. 2019b). The first experiment falls within the L
regime with Reg = 398, the second within the H regime with Reg = 1059 and the third
within the I regime with Reg = 1466. A detailed description of the experiments and the
methodology is given by Lefauve et al. (2019a). With this choice of experiments, we have
the same approach as mentioned for a hypothetical SID set-up in § 3.4, but with a real
set-up and real experimental results.

4.2. Experimental confirmation of the HGV-A approximation
For the three experiments for which we analyse the velocity and density field, we first
determine the value of K numerically as explained in § 3.3.2. This value is given to good
approximation in figure 4(a). For θ = 2◦ and A = 30, A sin θ ≈ θ/α ≈ 1.0 so K ≈ 39.
We then compute the value of the Froude number in the HGV-A approximation Fr∗ ≡
Reg(KA)−1, giving Fr∗ ≈ 0.34 for the L experiment, Fr∗ ≈ 0.91 for the H experiment and
Fr∗ ≈ 1.25 for the I experiment. Here, we note already that the value of Fr∗ for the I
experiments is larger than Fr = 1 corresponding to the hydraulic limit. In the following, we
investigate if the key flow characteristics and working assumptions leading to the solution
in the HGV-A approximation derived in § 3.3 hold in these experiments. We consider four
aspects: (i) the density field, focusing on the slope of the interface; (ii) the x component of
the momentum equation (4.1), focusing on the fact that the HGV balance holds; (iii) the
vertical profiles of the along-channel velocity component; and (iv) the prediction of the
mass flux through the duct.

Figure 5 shows the experimentally obtained time-averaged density fields and the
location of the interface as predicted by the HGV-A approximation for the three individual
experiments considered. The slope of the interface close to x = 0 is given to good
approximation by (3.37), which yields S ≈ −0.20 for these experiments. First, we see
that the density is indeed organized into two layers with a sharp interface in between, with
the I experiment presenting a thicker interface. For the L experiment, the semi-analytical
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Figure 5. Time-averaged density field in the (x, z) plane at y = 0 for three experiments in the mSID set-up.
(a) Experiment within the L regime (θ = 2◦, Reg = 398). (b) Experiment within the H regime (θ = 2◦, Reg =
1059). (c) Experiment within the I regime (θ = 2◦, Reg = 1455). The black dashed line represents the line
z = Sx with S = −0.20 as given by (3.37).

solution for the slope of the interface agrees well with the experiment. This means that
(3.30) with the boundary condition η(±1) = ∓1 predicts well the shape of the interface
for this experiment and that the value of K obtained from the analytical solution in the
HGV-A approximation applies. The agreement is less for the H experiment, with the slope
of the interface being slightly less steep than predicted. Finally, for the I experiment, the
interface is fully parallel to the top and bottom of the duct, suggesting that the solution in
the HGV-A approximation does not hold for this experiment.

As a next step, we investigate if the HGV balance (3.32) is indeed the leading order
balance in the x component of the momentum equation (3.7) close to the centre of the duct
(x ≈ 0), which we rewrite here as

A−1RegFr
(

u
∂u
∂x

+ w
∂u
∂z

)
︸ ︷︷ ︸

I

= A−2 ∂2u
∂x2︸ ︷︷ ︸

II

+ ∂2u
∂z2︸︷︷︸
III

+ Reg

2AFr

(
A sin θρ′ − cos θ

∫ z

0

∂ρ′

∂x
dz′

)
︸ ︷︷ ︸

IV

,

(4.1)

with z′ a dummy variable. Here, we have assumed that the hydrostatic balance (3.13) holds
and followed the derivation by Kaptein et al. (2020) to write the pressure gradient term
in this form. To see that the HGV balance (3.32) holds, vertical viscous diffusion (term
III) must be equal to minus the forcing (term IV). In addition, we want to see that term I
(inertia) is negligible with respect to term III and term IV. Figure 6 shows with black lines
the vertical profiles of terms I, III and (minus) IV of (4.1) obtained from the time- and
y-averaged velocity and density fields at x ≈ −0.2. We do not show term II because it is
practically equal to zero for all experiments. In general, we see that term I is also much
smaller than the other two terms meaning that it can indeed be neglected. As can be seen,
term III and (minus) term IV overlap well for all experiments, with the experiment in the L
regime showing better agreement, meaning that the HGV balance holds particularly well
for the L experiment. In the case of the H and I experiments, terms III and IV match in
general, suggesting that the HGV balance is still the leading balance of the time-averaged
flow, but some deviations are observed.

To understand these deviations, we make a comparison with the theory. Figure 6
also shows with dashed grey lines the value for terms III and IV according to the
solution in the HGV-A approximation derived in § 3.3 and given by the right-hand side
of (3.32), which assumes an infinitely thin interface. The interface in the experiments is
not infinitely thin due to diffusion in the vertical direction that is fully neglected in the
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Figure 6. The vertical profiles of the time- and y-averaged terms of the horizontal momentum balance (4.1) as
a function of z and x ≈ −0.2 for the same three experiments as in figure 5. The black dotted, solid and dashed
lines denote the terms I, III and (minus) IV, respectively, as obtained from the laboratory experiments. Term II
is always approximately equal to zero and not explicitly shown. The dashed grey line represents both terms III
and (minus) IV as obtained from the analytic solution in the HGV-A approximation that assumes an infinitely
sharp interface, and is given by the right-hand side of (3.32).

HGV-A approximation. This effect is most visible in the I experiment due to turbulent
diffusion across the interface. For all three experiments, the forcing corresponds well
with forcing expected in the HGV-A approximation given by the sum of gravity and
the baroclinic pressure gradient. It is the diffusion in the vertical direction that shows
deviations for the H and I experiments. We note, in particular, an increase of the magnitude
of vertical momentum diffusion in the bottom boundary layer, and just above and below the
shear layer. Note that the reasons why the momentum balance is not closed for the H and I
experiments is that (4.1) would need additional terms for the time-averaged experimental
results. Most importantly, it misses the momentum diffusion in the across-duct direction
and a term containing the time-averaged effect of temporal perturbation (similar to
Reynolds stresses).

We now compare the velocity profiles. Figure 7 shows the vertical profiles of the x
component of the velocity at x ≈ −0.2 and averaged in the y direction for the same three
experiments. Choosing different values of x does not affect the results beside the fact that
the height of the point with u = 0 is slightly shifted. For the experiment in the L regime,
the flow is steady so the instantaneous and time-averaged velocity profiles coincide. Even
for the H and I experiments, the variation in the instantaneous profiles is small compared
with the magnitude of the time-averaged velocity. For the three experiments, we see a
different level of disagreement in the amplitude of the velocity. Computing the value of Fr
for the experiments using the time- and y-averaged x-velocity component yields Fr = 0.40
(compared with Fr∗ ≈ 0.34) for the L experiment, Fr = 0.81 (compared with Fr∗ ≈ 0.91)
for the experiment in the H regime and Fr = 0.90 (compared with Fr∗ ≈ 1.25) for the
experiment in the I regime. As mentioned earlier, maximum exchange theory says that the
maximum value is Fr = 1, so we could have already expected that the Froude number
for the I experiment was not going to reach Fr∗ = 1.25, but we have here confirmation of
this. It suggests again that the HGV-A approximation does not hold for this experiment.
On the other hand, the value of the Froude number for the L and H experiments are
well predicted (within 13 %) by the HGV-A analytical solution. We believe that this is
a very good result, particularly if we consider, on the one side, experimental errors, and
on the other, some of the assumptions made during the analytical derivation. For example,
we assumed an infinitely wide duct, while the experiments have a cross-sectional aspect
ratio B = 1.

956 A4-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1077


M. Duran-Matute, S.J. Kaptein and H.J.H. Clercx

1.0

(a) (b) (c)

0.5

0

0

(Fr/Fr∗)u

z

–0.5
Instantaneous
Time-averaged
Theoretical

1.0–1.0
–1.0

1.0

0.5

0

–0.5

–1.0

1.0

0.5

0

–0.5

–1.0
2.0–2.0 0

(Fr/Fr∗)u
1.0–1.0 2.0–2.0 0

(Fr/Fr∗)u
1.0–1.0 2.0–2.0

Figure 7. Vertical velocity profiles of the x component of the velocity as a function of z for x ≈ −0.2 and
averaged in the y direction for the same three experiments as in figures 5 and 6. The grey lines represent the
instantaneous velocity, the black dashed line the time-averaged velocity and the red line represents the velocity
in the HGV-A approximation given by (3.33).

In the previous paragraphs, we studied the characteristics of only three experiments with
equal value of θ/α and, hence, equal value of K. In general, we saw that the L experiment
is very well reproduced by the HGV-A approximation, the H experiment is slightly less so,
and the I experiment shows clear differences. In § 3.4 we discussed that we expect that,
for Fr∗ values larger than a critical value Fr∗

c , the HGV-A approximation does not hold,
and the actual Froude number must be smaller than Fr∗. The results suggest that Fr∗

c is
found somewhere between the H and I experiment. However, it is difficult to determine
clear trends from only these three experiments. Although values of Fr are not available for
many experiments, the mass flux

Qm ≡
∫ 1

−1

∫ 1

−1
|ρ′u| dy dz (4.2)

is available for several experiments. The value of Qm is commonly used to compare
(and, thus, characterize) the flow, with Qm = 1/2 corresponding to the hydraulic limit
(Hogg et al. 2001; Lefauve et al. 2019a), while Qm = Fr/2 = Fr∗/2 in the HGV-A
approximation. The factor 1/2 arises from the fact that ρ′ = ±1/2 in the HGV-A
approximation following the way we made the density dimensionless.

The value of Qm as a function Fr∗/2 for the experiments in the mSID set-up are shown in
figure 8. The values of Qm can then be compared with the expected values in the HGV-A
approximation (Qm = Fr∗/2) and to the hydraulic limit (Qm = 1/2). For Fr∗/2 � 1/2,
Qm ≈ Fr∗/2, showing that the HGV-A approximation gives a good estimate for the value
of Qm. Although the values for some specific experiments are overestimated, and some
others are underestimated, clear trends are visible. For example, for the experiments
with θ ≥ 1.0◦, Qm ≈ Fr∗/2 up to Fr∗/2 = 1/2. Then, a sharp transition to the hydraulic
limit occurs, and Qm ≈ 1/2 for Fr∗/2 ≥ 1/2. For experiments with θ = 0.5◦, Qm seems
to saturate reaching a maximum value Qm ≈ 0.4 < 1/2. The results for θ = 0◦ suggest
that Qm will similarly not reach the value 1/2 for a horizontal duct. The impossibility
of reaching Qm = 1/2 is in agreement with frictional hydraulic theory that states that
frictional effects reduce the maximum possible value of Qm (Gu & Lawrence 2005). It is
only for θ ≥ 1.0◦ that the additional forcing by gravity in the along-duct direction reduces
the importance of frictional effects and makes the direct transition from the HGV-A
approximation to the hydraulic limit (Qm = 1/2) possible.

Figure 8 is reminiscent of similar plots by Hogg et al. (2001) where they plotted Qm as a
function of (RegA−1)2 for simulations with Sc = 1 in a horizontal duct. In that case, they
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Figure 8. Mass flux per unit width Qm as a function of the parameter Fr∗/2 for the experiments in the
mSID set-up. The colour denotes the value of the angle θ . The solid black lines represent Qm = Fr∗/2 (the
expected value in the HGV-A approximation) and Qm = 1/2 (the expected value in the hydraulic limit). The
experimental values tend to follow the trend of the prediction based on the HGV-A approximation Qm ≈ Fr∗/2
until Fr∗/2 ≈ 0.5. For larger values of Fr∗/2, a maximum, constant value of Qm is reached for each value of
θ as expected from (frictional) two-layer hydraulics. The overall maximum value is Qm ≈ 0.5 as predicted for
the hydraulic limit.

observed the change from the VAD solution to the hydraulic limit. In our case with Sc ≈
700, we observe a similar change but from the HGV-A approximation to the hydraulic
limit. In short, the flow changes from the HGV-A approximation where the value of K is
constant for a given value of θ/α, to a hydraulically controlled flow where the value of Fr
is constant for a given value of θ/α.

In general, the flows in the L and H regimes are very well described by the HGV-A
approximation. For the L experiment, Fr = 0.40, Reg = 398 and A = 30, meaning that
FrRegA−1 ≈ 5.3 or Reg ≈ 13.3A. We have seen in figure 6 that inertia can be neglected
for this experiment. Furthermore, if we consider the series of experiments with θ = 1◦
(K ≈ 62) shown in figure 8, we see that Qm ≈ 0.5 for Fr∗/2 > 0.5. This suggests that the
limit of validity of the HGV-A (in which inertia is neglected) is around Fr∗ ≈ 1. For this
set of experiments, Fr∗ = 1 corresponds to Reg ≈ 62A. These two examples show that
the restrictive condition Reg 	 A derived using a scaling analysis by Lefauve & Linden
(2020a) to neglect advection terms can be drastically relaxed.

4.3. Regime transitions
In this section we finally discuss how the values of Fr∗ are related to regime transitions.
Figure 9 shows the location of the different regimes in the parameter space (θ, Reg) for all
experimental set-ups with superimposed curves of constant Fr∗. It can be clearly seen that
these curves describe the transitions between the different regimes through all values of
θ/α. For θ/α � 1, curves given by Fr∗ = const. are equivalent to curves given by θReg =
const. for a given duct. This is in agreement with the transitions derived for forced flows
by Lefauve et al. (2019a) using an energetics budget approach and that Lefauve & Linden
(2020a) derived using a two-layer frictional hydraulics model. However, the agreement
of the curves of constant Fr∗ value, based on the HGV-A approximation, extends to lazy
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Figure 9. Location of the different regimes in the (Reg,θ ) plane for the four different set-ups: mSID, LSID,
HSID and tSID. The different symbols represent the different regimes, i.e. laminar (L), Holmboe waves (H),
other waves (W), intermittently turbulent (I) and turbulent (T). The solid lines represent curves of constant Fr∗
with the value indicated along the line. The dashed line represents θ/α = 1. The dotted lines are examples of
the transition between regimes for forced flows given by θReg = const. as proposed by Lefauve et al. (2019a).

flows (θ/α < 1) including θ/α ≤ 0 where the curves given by θReg = const. do not make
physical sense.

In the mSID set-up, the transitions between successive regimes are given by Fr∗ ≈ 0.5,

1 and 2. The detailed analysis of the three experiments in the previous section (shown as
red open squares in figure 9a) and of the mass flux as a function of Fr∗ coincides with
this picture. We observe the emergence of turbulence at Fr∗ ≈ 1, where we find the limit
of validity of the HGV-A approximation. This transition further represents a transition
to hydraulically controlled flows. It is interesting now to note that experiments in the I
regime (i.e. for 1 � Fr∗ � 2) and θ ≥ 2 have values of Qm larger than in the hydraulic
limit where Qm ≈ 1/2. For these experiments, Qm seems to overshoot following the trend
of the HGV-A approximation (Qm = Fr∗/2). This suggests that the flow in the I regime has
mixed characteristics of the HGV-A approximation and the fully turbulent, hydraulically
controlled flow. Finally, the characteristics of the HGV-A approximation are negligible
when Fr∗ � 2 and the flow is in the T regime.

Surprisingly, although curves of constant Fr∗ match the transitions for all ducts, the
particular values of Fr∗ associated with the transitions differ. For the LSID set-up, the
values of Fr∗ marking these transitions are about a factor two larger, for the HSID about
a factor three larger, and for the tSID about a factor five larger. In spite of the differences
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Transitions in stratified shear flows

in these values, there is a remarkable similarity: there is always a factor two between the
values of Fr∗ describing successive regime transitions.

The difference in the transition values for the tSID set-up with respect to all the other
set-ups could have been expected since there is one non-dimensional parameter (B) that is
different. In fact, the tSID set-up is much thinner than the other set-ups and, hence, 3-D
effects are more important. In particular, there is additional friction from the side walls,
which results in a smaller value of Fr for a given forcing magnitude. This, in turn, means
that the successive transitions are delayed. Further investigation of the 3-D effects would
require extension of the 2-D solution presented in § 3.3 to three dimensions, which we
believe is possible, but outside the scope of the current paper.

On the other hand, the difference between the mSID and LSID (both with A = 30), and
the HSID (with A = 15) set-ups needs further explanation since the HGV-A approximation
accounts for having different A values. It could be that A = 15 is not long enough for
the limit of long ducts to hold. However, we do not have enough information to test
this hypothesis. Still, the most surprising difference is between the LSID and mSID
set-ups, as already mentioned by Lefauve & Linden (2020a), since both set-ups have the
same values for A, B and Sc. If the values of these non-dimensional parameters are the
same, the fact that two experiments with the same values of Reg and θ are in different
regimes would go against the principle of dynamic similarity. Lefauve & Linden (2020a)
already mentioned that there might be a missing length scale (and its accompanying
non-dimensional parameter), but they could not think of a relevant one. If one is to consider
just the duct itself, there are no other non-dimensional parameters that are needed to
describe the problem. For example, the non-dimensional parameters used so far are the
only parameters needed to set-up a numerical simulation such as those by Kaptein et al.
(2020). This would suggest that there are certain characteristics of the set-up outside the
duct that can delay or stimulate flow transitions. Unfortunately, there is much less data
available for the LSID and HSID set-ups when compared with the mSID set-up. For
example, there are no 3-D velocity and density fields, and there are fewer experiments
for which the value of Qm is available. However, we saw that, for the mSID set-up, the
different data give a self-consistent picture. Ultimately, new independent experimental or
numerical efforts will be needed to clarify the differences between set-ups.

We believe that the key to understand further the regime transitions, and possibly, the
differences between the mSID and LSID set-ups lies at the edges of the duct. There
are three main reasons for this: (i) the flow is largely determined by flow details at the
edges of the duct (e.g. the analytical solutions obtained using either two-layer hydraulics
or the HGV-A approximation are highly dependent on the boundary conditions there);
(ii) the HGV-A approximation formally breaks down immediately outside the duct; (iii)
instabilities first emerge at the edges of the duct where the nonlinear terms are larger since
both u and ∂u/∂x grow as |x| → 1 (this can be deduced from conservation of mass and the
shape of the interface). Hence, further knowledge of the flow and the experimental set-ups
at the edges of the duct is needed to clarify these points. Note, for example, that Meyer
& Linden (2014) used two different shapes of edges in the duct, and any of these shapes
are quite different from the solid long vertical walls in the simulations by Kaptein et al.
(2020). Furthermore, more information about the flow at the edges of the duct can help
us understand how it transitions from the HGV-A approximation to being hydraulically
controlled.

In spite of the differences between the set-ups, figure 9 suggests that the parameter Fr∗
does quantify the forcing for a given set-up. Recall that this parameter groups together
the control parameters: Reg, A and θ with the latter incorporated in the value of K. It was
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already known that RegA−1 is the control parameter for horizontal ducts (Hogg et al. 2001).
In this way, Fr∗ is an equivalent number that is only rescaled by dividing by K to account
for the relative inclination of the duct with respect to its internal angle (i.e. depending
on θ/α). It would seem that K is an intrinsic parameter of SID set-ups. A different way
to analyse the problem is in terms of a generalized gravitational Reynolds number for
inclined ducts. If the Reg quantifies the forcing due to the density differences, a generalized
gravitational Reynolds number

Reg,θ = K(θ = 0)

K
Reg ≈ 131

K
Reg (4.3)

can be defined, in a similar way as done by Kaptein (2021). In this way, Reg,θ incorporates
both aspects of the forcing: the density difference between the tanks and the tilting of the
duct.

We have shown that the transition from laminar to turbulent in a (long) SID experiment
with Sc � 1 depends solely on Fr∗. For weak forcing (small Fr∗ values), the flow is
laminar and can be described by HGV-A approximation. As the forcing (the value of
Fr∗) is increased, the flow develops nonlinear and time-dependent characteristics (waves,
thinner boundary layers, turbulence). Once the flow becomes turbulent, the HGV-A
approximation becomes invalid. The nonlinear characteristics result in additional vertical
viscous momentum diffusion that, for Fr∗ > 1, compensates the increase in forcing. In this
way, the value of Fr can remain constant in agreement with (frictional) two-layer hydraulic
theory (Gu & Lawrence 2005).

5. Conclusions

In the current paper we present an analytical solution for the laminar flow in
SID experiments within the HGV-A approximation, where the acronym stands for
hydrostatic/gravitational/viscous balance in momentum and advective for density. This
approximation is derived for long ducts (A = L/H � 1) and small-inclination angles θ

(including θ = 0 and slightly negative angles). The Reynolds number has to be small
enough for viscosity to dominate over inertia in the along-channel momentum equation,
but diffusion is negligible in the density transport equation. This combination is only
observed if Sc � 1. Under these conditions, the flow is organized into two homogeneous
layers and the non-dimensional volume flow rate is given by Fr∗ = Reg(KA)−1, where
Reg is the gravitational Reynolds number and K is a geometrical parameter that depends
exclusively on A sin θ ≈ θ/α with α the internal angle of the duct. The parameter Fr∗ can
be considered as a control parameter because its value can be set a priori, and it quantifies
the relative magnitude of the forcing (gravity and the horizontal pressure gradient) against
viscous forces.

A comparison with results from laboratory experiments has demonstrated that the
analytical solution describes well the flow in the laminar regime and the time-averaged
flow in the Holmboe waves regime. Furthermore, this comparison shows that the HGV
balance holds and inertia can be neglected for values of Reg and θ well beyond what was
previously thought. The HGV-A approximation presents the relevant balances in these two
regimes, and it clearly exposes the two forcing mechanisms: a baroclinic pressure gradient
due to the inclined interface and gravity in the along-duct direction due to the tilt of the
duct. For θ/α � 1 (forced flows), the inclination of the interface might be neglected, but
for θ/α � 1 (lazy flows), it drives a crucial component of the forcing despite being small
(e.g. S′ ≈ 48/(131A) for θ = 0). To make the link between horizontal and inclined ducts,
it is crucial to include both of these terms.
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Finally, the curves given by Fr∗ = const. describe the regime transitions observed
experimentally for horizontal and slightly (both positively and negatively) inclined ducts.
As the value of Fr∗ is increased, the forcing magnitude is increased. First, the HGV-A
approximation breaks down as a critical Fr∗ value is approached and reached. Successive
transitions from laminar flow, to interfacial waves, to intermittent turbulence and sustained
turbulence are needed to increase momentum diffusion to keep the internal Froude number
from exceeding the maximum value imposed by maximum exchange theory. In this way,
the curves Fr∗ = const. provide a solution to the long-standing problem of finding the
curves describing the regime transitions spanning horizontal and inclined ducts.

Acknowledgements. The authors would like to acknowledge A. Lefauve and P.F. Linden for making
the experimental data available, and for fruitful input and discussions. Finally, the authors would like to
acknowledge L.P.J. Kamp for productive discussions.

Funding. This research was funded by STW, now NWO/TTW, (the Netherlands) through the project
‘Sustainable engineering of the Rhine region of freshwater influence’ (no. 12682).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
M. Duran-Matute https://orcid.org/0000-0002-1340-339X.

Appendix A. Formal definitions of order symbols

The definitions of the order symbols follow from Eckhaus (1979) or Van Dyke (1975) with
slight modifications in notation.

DEFINITION A.1 (O (big O)). A function f (ε) = O(φ(ε)) as ε → 0 if there is a fixed
constant C > 0 and an interval (0, ε1) such that

|f (ε)| ≤ C|φ(ε)| for 0 < ε < ε1. (A1)

In other words, if f (ε) = O(φ(ε)) as ε → 0, then

lim
ε→0

f (ε)
φ(ε)

< ∞. (A2)

DEFINITION A.2 (o (small o)). A function f (ε) = o(φ(ε)) as ε → 0 if, for every C > 0,
there is an interval (0, ε1) such that

|f (ε)| ≤ C|φ(ε)| for 0 < ε < ε1. (A3)

In other words, if f (ε) = o(φ(ε)) as ε → 0, then

lim
ε→0

f (ε)
φ(ε)

= 0. (A4)

DEFINITION A.3 (Os (sharp O)). A function f (ε) = Os(φ(ε)) as ε → 0 if f (ε) = O(φ(ε))

and f (ε) /= o(φ(ε)). In other words, if f (ε) = Os(φ(ε)) as ε → 0, then

lim
ε→0

f (ε)
φ(ε)

= C ∈ (0, ∞), (A5)

and f behaves exactly the same (up to a multiplicative constant) as φ in a neighbourhood
of 0. Hence, Os describes quantitatively the rate at which a function approaches its limit.
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