
JFP 25, e5, 41 pages, 2015. c© Cambridge University Press 2015

doi:10.1017/S095679681500009X
1

Indexed containers

T H O R S T E N A L T E N K I R C H
School of Computer Science, University of Nottingham, Nottingham, UK

N E I L G H A N I, P E T E R H A N C O C K, C O N O R M C B R I D E
Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK

P E T E R M O R R I S
School of Computer Science, University of Nottingham, Nottingham, UK

Abstract

We show that the syntactically rich notion of strictly positive families can be reduced to a core type
theory with a fixed number of type constructors exploiting the novel notion of indexed containers.
As a result, we show indexed containers provide normal forms for strictly positive families in much
the same way that containers provide normal forms for strictly positive types. Interestingly, this step
from containers to indexed containers is achieved without having to extend the core type theory. Most
of the construction presented here has been formalized using the Agda system.

1 Introduction

Inductive datatypes are a central feature of modern type theory (e.g. Coq The Coq Devel-
opment Team (2008)) or functional programming (e.g. Haskell1). Examples include the
natural numbers a la Peano:2

data � : Set where
zero : �
suc : (n : �) → �

the set of lists indexed by a given set:

data List (A : Set) : Set where
[ ] : List A
_::_ : A → List A → List A

and the set of de Bruijn λ -terms:

1 Here, we shall view Haskell as an approximation of strong functional programming as proposed by Turner
(1985) and ignore non-termination.

2 We are using Agda to represent constructions in type theory. Indeed, the source of this document is a literate
Agda file which is available online, Altenkirch et al. (2015). For an overview over Agda see The Agda
developers (2015), in particular the tutorials and the reference manual which explain how to read the code
included in this paper.

https://doi.org/10.1017/S095679681500009X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500009X


2 T. Altenkirch et al.

data Lam : Set where
var : (n : �) → Lam
app : (f a : Lam) → Lam
lam : (t : Lam) → Lam

An elegant way to formalize and reason about inductive types is to model them as the initial
algebra of an endofunctor.3 We can define the signature functors corresponding to each of
the above examples as follows:

F� : Set → Set
F� X = � � X

FList : (A : Set) → Set → Set
FList A X = � � (A × X)

FLam : Set → Set
FLam X = � � (X × X) � X

This perspective has been very successful in providing a generic approach to program-
ming with and reasoning about inductive types, e.g. see the Algebra of Programming (Bird
& de Moor 1997).

While the theory of inductive types is well developed, we often want to have a finer,
more expressive, notion of type. This allows us, for example, to ensure the absence of
runtime errors such as access to arrays out of range or access to undefined variables in
the previous example of λ -terms. To model such finer types, we move to the notion of an
inductive family in type theory. A family is a type indexed by another, already given, type.
Our first example of an inductive family is the family of finite sets Fin which assigns to
any natural number n, a type Fin n which has exactly n elements. Fin can be used where,
in conventional reasoning, we assume a finite set, e.g. when dealing with a finite address
space or a finite set of variables. The inductive definition of Fin refines the type of natural
numbers:

data Fin : � → Set where
zero : ∀ {n} → Fin (suc n)
suc : ∀ {n} (i : Fin n) → Fin (suc n)

In the same fashion, we can refine the type of lists to the type of vectors which are
indexed by a number indicating the length of the vector:

data Vec (A : Set) : � → Set where
[ ] : Vec A zero
_::_ : ∀ {n} (a : A) (as : Vec A n) → Vec A (suc n)

Notice how using the inductive family Vec instead of List enables us to write a total
projection function projecting the nth element out of vector:

_!!_ : {A : Set} → {n : �} → Vec A n → Fin n → A
[ ] !! ()

3 This requires a type theory with an extensional propositional equality.
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Indexed containers 3

(a :: as) !! zero = a
(a :: as) !! suc n = as !! n

In contrast, the corresponding function _!!_ : {A : Set} → List A → � → A is not
definable in a total language like Agda.

Finally, we can define the family of a well-scoped lambda terms ScLam which assigns
to a natural number n the set of λ -terms with at most n free variables ScLam n. DeBruijn
variables are now modeled by elements of Fin n replacing Nat in the previous, unindexed
definition of λ -terms Lam.

data ScLam (n : �) : Set where
var : (i : Fin n) → ScLam n
app : (f a : ScLam n) → ScLam n
lam : (t : ScLam (suc n)) → ScLam n

Importantly, the constructor lam reduces the number of free variables by one. Inductive
families may be mutually defined, for example the scoped versions of β (NfLam) normal
forms and neutral λ -terms (NeLam):

mutual

data NeLam (n : �) : Set where
var : (i : Fin n) → NeLam n
app : (f : NeLam n) (a : NfLam n) → NeLam n

data NfLam (n : �) : Set where
lam : (t : NfLam (suc n)) → NfLam n
ne : (t : NeLam n) → NfLam n

The initial algebra semantics of inductive types can be extended to model inductive
families by replacing functors on the category Set with functors on the category of families
indexed by a given type – in the case of all our examples so far this indexing type was
Nat. The objects of the category of families indexed over a type I : Set are I-indexed
families of sets, i.e. functions of type I → Set, and a morphism between I-indexed families
A,B : I → Set is given by a family of maps f : (i : I) → A i → B i. Indeed, this category
is easily seen to be isomorphic to the slice category Set/I but the chosen representation is
more convenient type theoretically. Using Σ-types and equality types from type theory, we
can define the following endofunctors FFin, FVec and FLam on the category of families over
Nat whose initial algebras are Fin and Lam, respectively:

FFin : (� → Set) → � → Set
FFin X n = (m : �)× (n ≡ suc m) × (� � X m)

FVec : (A : Set) → (� → Set) → � → Set
FVec A X n = n ≡ zero � ((m : �)× (n ≡ suc m) × (A × X m))

FScLam : (� → Set) → � → Set
FScLam X n = Fin n � (X n × X n) � (X ◦ suc) n
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4 T. Altenkirch et al.

The equality type expresses the focussed character of the constructors for Fin.
The mutual definition of NeLam and NfLam can be represented by two binary
functors:

FNeLam : (� → Set) → (� → Set) → � → Set
FNeLam X Y n = Fin n � (X n × Y n)

FNfLam : (� → Set) → (� → Set) → � → Set
FNfLam X Y n = (Y ◦ suc) n � X n

We can construct NeLam and NfLam as follows: first, we define a parametrized initial
algebra NeLam’ : (� → Set) → � → Set so that NeLam’ Y is the initial algebra of
λ X → FNeLam X Y and then NfLam is the initial algebra of λ Y → FNfLam (NeLam’ Y) Y.
Symmetrically we derive NeLam. Compare this with the encoding in Section 8.

This approach extends uniformly to more complicated examples such as the family of
typed λ -terms, using lists of types to represent typing contexts:

data Ty : Set where
ι : Ty
⇒ : (σ τ : Ty) → Ty

data Var (τ : Ty) : List Ty → Set where
zero : ∀ {Γ} → Var τ (τ :: Γ)
suc : ∀ {σ Γ} (i : Var τ Γ) → Var τ (σ :: Γ)

data STLam (Γ : List Ty) : Ty → Set where
var : ∀ {τ } (i : Var τ Γ) → STLam Γ τ
app : ∀ {σ τ } (f : STLam Γ (σ ⇒ τ))

(a : STLam Γ σ) → STLam Γ τ
lam : ∀ {σ τ } (t : STLam (σ :: Γ) τ) → STLam Γ (σ ⇒ τ)

Types like this can be used to implement a tag-free, terminating evaluator (Altenkirch &
Chapman 2009). Obtaining the corresponding functors is a laborious but straightforward
exercise. As a result of examples such as the above, inductive families have become the
backbone of dependently typed programming as present in Epigram or The Agda Team
(2015). Coq also supports the definition of inductive families but programming with them
is rather hard – a situation which has been improved by the Program tactic (Sozeau 2007).

Indexed containers are designed to provide the mathematical and computational infras-
tructure required to program with inductive families. The remarkable fact about indexed
containers, and the fact which underpins their practical usefulness, is that they offer an
exceedingly compact way to encapsulate all the information inherent within the definition
of functors such as FFin, FVec and FScLam, FNeLam and FNfLam and hence within the as-
sociated inductive families Fin, Vec, ScLam, NeLam and NfLam. The second important
thing about indexed containers is that not only can they be used to represent functors, but
the canonical constructions on functors can be internalized to become constructions on
the indexed containers which represent those functors. As a result, we get a compositional
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combinator language for inductive families as opposed to simply a syntactic definitional
format for inductive families.

1.1 Related work

This paper is an expanded and revised version of the LICS paper by the first and 4th
author (Morris & Altenkirch 2009). In the present paper, we have integrated the Agda
formalization in the main development, which in many instances required extending it.
We have made explicit the use of relative monads which was only hinted at in the con-
ference version, based on recent work (Altenkirch et al. 2010). We have also dualized
the development to terminal coalgebras which required the type of paths to be defined
inductively instead of recursively as done in the conference paper (Section 6). We have
also formalized the derivation of indexed W-types from ordinary W-types (Section 7.1).
The derivation of M-types from W-types (Section 7.2) was already given in Abbott et al.
(2005) and is revisited here exploiting the indexed W-type derived previously. Moreover,
the development is fully formalized in Agda.

Indexed containers are intimately related to dependent polynomial functors
(Gambino & Hyland 2004a), see also the comprehensive notes (Kock 2009). Indeed, at
a very general level one could think of indexed containers as the type theoretic version of
dependent polynomials and vice versa. However, the different needs of programmers from
category theorists has taken our development of indexed containers in a different direction
from that of dependent polynomials. In this vein, an important contribution is the Agda
implementation of our ideas which makes our work more useful to programmers than the
categorical work on dependent polynomials. We also focus on syntactic constructions such
using indexed containers to model mutual and nested inductive definitions. As a conse-
quence, we show that indexed containers are closed under parametrized initial algebras and
coalgebras and reduce the construction of parameterized final coalgebras to that of initial
algebras. Hence, we can apply both the initial algebra and final coalgebra construction
several times. The flexibility of indexed containers allows us to also establish closure under
the adjoints of reindexing. This leads directly to a grammar for strictly positive families,
which itself is an instance of a strictly positive family (Section 8) – see also our previous
work (Morris et al. 2007a,b). This generalizes previous results on strictly positive datatypes
by Dybjer (1997) which have been further developed in Abbott et al. (2005).

Containers are related to Girard’s normal functors (Girard 1988) which themselves are
a special case of Joyal’s analytic functors (Joyal 1987) – those that allow only finite sets of
positions. Fiore, Gambino, Hyland and Winskel’s work on generalized species (Fiore et al.
2008) considers those concepts in a more generic setting – the precise relation of this work
to indexed containers remains to be explored but it appears that generalized species can be
thought of as indexed containers closed under quotients.

Perhaps the earliest publication related to indexed containers occurs in Petersson and
Synek’s paper (Petersson & Synek 1989) from 1989. They present rules extending Martin-
Löf’s type theory with a set constructor for ‘tree sets’ : families of mutually defined
inductive sets, over a fixed index set. Indeed, Petersson–Synek trees are semantically equiv-
alent to the WI-type we define in Section 5 – the difference is that WI-types represent
positions as a family indexed over the output positions while the tree type use a set of
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6 T. Altenkirch et al.

positions together with a function which assigns the output position. This is an instance of
Grothendieck’s well-known inverse image construction. Inspired in part by Petersson and
Synek’s constructor, Hancock, Hyvernat and Setzer (Hancock & Hyvernat 2006) applied
indexed (and unindexed) containers under the name ‘interaction structures’ to the task
of modeling imperative interfaces such as command-response interfaces in a number of
publications. The construction of WI-types from W-types in Section 7 is related to the
reduction of indexed induction-recursion to induction-recursion in Dybjer & Setzer (2001)
and the construction of initial algebras in Gambino & Hyland (2004b). The use of ω-limits
to construct final coalgebras in the same section is folklore, e.g. see Adámek & Koubek
(1995) and Lindström (1989).

The implementation of Generalized Algebraic Datatypes (GADTs) (Cheney & Hinze
et al. 2003) allows Fin and Lam to be encoded in Haskell:

data Fin a where
FZero :: Fin (Maybe a)
FSucc :: Fin a -> Fin (Maybe a)

data Lam a where
Var :: Fin a -> Lam a
App :: Lam a -> Lam a -> Lam a
Abs :: Lam (Maybe a) -> Lam a

Here, Fin and Lam are indexed by types instead of natural numbers; The type constructor
Maybe serves as a type level copy of the succ constructor for natural numbers. Note that
Lam is actually just a nested datatype (Altenkirch & Reus 1999) while Fin exploits the full
power of GADTs because the range of the constructors is constrained. The problem with
using GADTs to model inductive families is, however, that the use of type level proxies for
say, natural numbers, means that computation must be imported to the type level. This is a
difficult problem and probably limits the use of GADTs as a model of inductive families.

Since the publication of the LICS paper, indexed containers have been used as a base for
the generic definition of datatypes for Epigram 2 (Chapman et al. 2010), and to develop
the theory of ornaments (McBride 2010). In recent work, it has been shown that indexed
containers are sufficient to express all small inductive-recursive definitions (Hancock et al.
2013)

1.2 Overview over the paper

We develop our type theoretic and categorical background in Section 2 and also summarize
the basic definitions of non-indexed containers. In Section 3, we develop the concept of an
indexed functor, showing that this is a relative monad and presenting basic constructions
on indexed functors including the definition of a parametrized initial algebra. In Section
4, we develop the basic theory of indexed containers and relate them to indexed functors.
Subsequently in Section 5, we construct parametrized initial algebras of indexed containers
assuming the existence of indexed W-types, this can be dualized to show the existence of
parametrized terminal coalgebras of indexed containers from indexed M-types in Section
6. Both requirements, indexed W-types and indexed M-types can be derived from ordinary
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W-types, this is shown in Section 7. Finally, we define a syntax from strictly positive
families and interpret this using indexed containers in Section 8.

The source of this paper is a literate Agda file, that is we have formally verified the
constructions using Agda. There are some exceptions: Propositions 1–5 are only done on
paper and MIext, that bisimilarity of MI trees implies extensional equality is postulated
instead of proven. We also have omitted the functor laws and naturality laws from the
formal development – we never rely on assuming that something is a functor or a natural
transformation. These laws are of a particular simple form for indexed containers and hence
we implicitly prove them when needed, e.g. in Proposition 10. The propositions which do
rely on these assumptions, e.g. Proposition 3, are only done on paper. The reason for these
omissions is that the purpose of the paper is to introduce indexed containers and a complete
formalization of these more elementary results would have introduced significant technical
complications distracting from our central purpose.

2 Background

2.1 Type theory

Our constructions are all developed in Agda, and so we adopt its syntax, but we will take
certain liberties with its type theory. We have Π-types, denoted (a : A) → B a and Σ-types,
which we write as: (a : A)× B a. In fact, this is sugar for the record type:

record Σ (A : Set) (B : A → Set) : Set where
constructor ,

field
π0 : A
π1 : B π0

We will, however assume that the type theory we work in has Σ-types as primitive, and
has no native support for datatypes. Instead, we only have W-types, the empty-type ⊥, the
unit type tt : � and the booleans true, false : Bool. A type theory has W-types if it has a
type former W : (S : Set) (P : S → Set) → Set with a constructor sup and an eliminator
wrec:

data W (S : Set) (P : S → Set) : Set where
sup : (s : S)× (P s → W S P) → W S P

wrec : {S : Set} {P : S → Set} (Q : W S P → Set)
(x : W S P)
(m : (s : S) (f : P s → W S P)

(h : (p : P s) → Q (f p))
→ Q (sup (s, f)))

→ Q x
wrec Q (sup (s, f)) m = m s f (λ p → wrec Q (f p) m)

Agda comes with a predicative hierarchy of types where Set = Set0 is the lowest universe.
We sometimes define structures containing sets whose type is Set1.
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8 T. Altenkirch et al.

As a notational convenience, we will continue to define extra Agda datatypes in the
rest of the paper, but in the end we will show how each of these can be reduced to a
theory that contains only W. For compactness, and readability we will also define functions
using Agda’s pattern matching syntax, rather than encoding them using wrec. All of these
definitions can be reduced to terms which only use wrec.

We’ll also require a notion of propositional equality. To simplify the presentation of
some definitions later on, we will employ a heterogeneous equality. This can be defined in
Agda via a datatype:

data _∼=_ {A : Set} (x : A) :
{B : Set} → B → Set where

refl : x ∼= x

subst : {A : Set} (P : A → Set) {x y : A} →
x ∼= y → P x → P y

subst P refl p = p

Most of the time our equalities will be homogeneous, however, so we introduce a short
hand for this:

_≡_ : {A : Set} → A → A → Set
a ≡ b = a ∼= b

Alternatively, we could have defined _∼=_ using Σ and homogenous equality. This is an
intensional equality, but we want to work in a setting with extensional type theory, so we
extend the propositional equality with this extensionality axiom:

postulate ext : {f g : (a : A) → B a} →
((a : A) → f a ≡ g a) → f ≡ g

ext-1 : {f g : (a : A) → B a} →
f ≡ g → ((a : A) → f a ≡ g a)

ext-1 refl a = refl

syntax ext (λ a → b) = λ ≡ a → b

We’ll also need a heterogeneous version of the extensionality principle – this says that
two functions of different types are equal iff, when applied to equal arguments they produce
equal results. Note that to exploit a heterogeneous equality between functions we must
provide a guarantee that the functions have equal domains, and co-domains:

postulate exteq : {f : (a : A) → B a}
{g : (a′ : A′) → B′ a′ } →
({a : A} {a′ : A′ } →

a ∼= a′ → f a ∼= g a′) →
f ∼= g

syntax exteq (λ a → b) = λ ∼= a → b

exteq-1 : ∀ { l l′ } {A A′ : Set l}
{B : A → Set l′ } {B′ : A′ → Set l′ }
{f : (a : A) → B a} {g : (a′ : A′) → B′ a′ } →
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A ≡ A′ → B ∼= B′ → f ∼= g →
{a : A} {a′ : A′ } → a ∼= a′ → f a ∼= g a′

exteq-1 refl refl refl {a} {.a} refl = refl

This creates non-canonical elements of _∼=_, i.e. closed terms in equality types which
are not refl. In order to deal with these non-canonical elements, we also rely on axiom K,
or the uniqueness of identity proofs:

UIP : {a b : A} {p : a ∼= b} {q : a ∼= b} → p ∼= q
UIP {p = refl} {q = refl} = refl

With these ingredients, we obtain a theory which captures extensional type theory in
the sense that any intensional type which is inhabited in extensional type theory is also
inhabited in intensional type theory with extensionality and K (Hofmann 1996).

We will also need to use a notion of Set isomorphism, which we denote �� and
which exploits our extensional equality:

record �� (A B : Set) : Set where
field

φ : A → B
ψ : B → A
φψ : φ ◦ ψ ≡ id
ψφ : ψ ◦ φ ≡ id

We are going to use type theoretic versions of certain category theoretic concepts. For
example, we represent functors by packing up their definition as an Agda record. An
endofunctor on Set is given by:

record Func : Set1 where
field

obj : Set → Set
mor : ∀ {A B} → (A → B) → obj A → obj B

It would also be possible to pack up the functor laws as extra fields in these records.
We use ends (Mac Lane 1998) to capture natural transformations. Given a bifunctor F :
Setop → Set → Set, an element of ·∏ X . F X X is equivalent to an element of f : {X :
Set} → F X X, along with a proof: 4

{A B : Set} (g : A → B) → F g B (f {B}) ≡ F A g (f {A})

The natural transformations between functors F and G are ends ·∏ X . F X → G X. We
will often ignore the presence of the proofs, and use such ends directly as polymorphic
functions. In this setting, the Yoneda lemma can be stated as follows, for any functor F:

F X ∼= ·∏ Y . (X → Y) → F Y

we will make use of this fact later on.

4 For simplicity, we adopt here the standard convention to overload the object and morphism part of F.
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Finally, for readability we will elide certain artifacts in Agda’s syntax; for instance, the
quantification of implicit arguments when their types can be inferred from the context. We
will often leave out record projections from notions such as Func, allowing the functor to
stand for both its action on object and morphism, just as would happen in the category
theory literature.

2.2 Containers in a nutshell

Initial algebra semantics is useful for providing a generic analysis of inductive types based
upon concepts such as constructors, functorial map and structured recursion operators.
However, it does not cover the question which inductive types actually exist, and it falls
short of providing a systematic characterization of generic operations such as equality or
the zipper (Huet 1997; McBride 2001). To address this problem, we proposed in previous
work to consider only a certain class of functors, namely those arising from containers (Ab-
bott et al. 2003; Abbott et al. 2005). Since indexed containers build upon containers, we
recall the salient information about containers. A (unary) container is given by a set of
shapes S and a family of positions P assigning, to each shape, the set of positions where
data can be stored in a data structure of that shape.

record Cont : Set1 where
constructor �
field

S : Set
P : S → Set

This shapes and positions metaphor is very useful in developing intuitions about con-
tainers. For example, every container S � P gives rise to a functor which maps a set A to
the set of pairs consisting of a choice of a shape s : S and a function assigning to every
position p : P s for that shape, an element of A to be stored at that position. This intuition
is formalized by the following definition.

�_� : Cont → Func
� S � P � = record {obj = λ A → (s : S)× (P s → A)

;mor = λ m → λ {(s, f) → (s,m ◦ f)}
}

For example, the list functor arises from a container whose shapes are given by the natural
numbers (representing the list’s length) and the positions for a shape n : � are given by
Fin n. This reflects the fact that a list of length n : � has Fin n locations or positions where
data may be stored.

The motivation for containers was to find a representation of well-behaved functors.
Since natural transformations are the semantic representation of polymorphic functions,
it is also natural to seek a representation of natural transformations in the language of
containers. We showed in our previous work that a natural transformation between two
functors arising as containers can be represented as a morphism between containers as
follows.
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record ⇒ (C D : Cont) : Set where
constructor �
field

f : C .S → D .S
r : (s : C .S) → D .P (f s) → C .P s

As promised, such container morphisms represent natural transformations as the follow-
ing definition shows:

� �⇒ : ∀ {C D} → C ⇒ D → ·∏ A . (� C � A → � D � A)
� f � r �⇒ (s,g) = f s,g ◦ r s

Rather surprisingly we were able to prove that the representation of natural transformations
as container morphisms is a bijection, that is every natural transformation between functors
arising from containers is uniquely represented as a container morphism. Technically, this
can be stated by saying that container and their morphisms form a category which is a full
and faithful sub-category of the functor category. We have also shown that the category
of containers is cartesian closed (Altenkirch et al. 2010c), and is closed under formation
of co-products, products and a number of other constructions. Most important of these is
the fact that container functors (i.e. functors arising from containers) have initial algebras.
Indeed, these are exactly the W-types we know well from type theory, which we can be
equivalently defined to be:

data W (S : Set) (P : S → Set) : Set where
sup : � S � P � (W S P) → W S P

However, we have also shown that for n-ary containers (containers with n position
sets) which we denote as Cont n. It is possible to define a parameterized initial algebra
construction μ : ∀ {n} → Cont (suc n) → Cont n. This allows us to model a broad
range of nested and mutual types as containers. Further details can be found in the paper
on containers cited above.

3 Indexed functors

While containers provide a robust framework for studying datatypes arising as initial al-
gebras of functors over sets, indexed containers provide an equally robust framework
for studying the more refined datatypes which arise as initial algebras of functors over
indexed sets. Indeed, just as the essence of containers is a compact representation of well-
behaved functors over sets, so the essence of indexed containers will be an equally compact
representation of functors over indexed sets. Given I : Set we begin by considering the
category of families over I. Its objects are I-indexed families of sets A : I → Set and
its morphisms are given by I-indexed families of functions. The definitions of morphisms,
identity morphisms and composition of morphisms in this category are

→� : {I : Set} → (A B : I → Set) → Set
→� {I} A B = (i : I) → A i → B i

id� : {I : Set} {A : I → Set} → A →� A
id� i a = a
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◦� : {I : Set} {A B C : I → Set} →
(B →� C) → (A →� B) → (A →� C)

f ◦� g = λ i → (f i) ◦ (g i)

We call this category Fam I.5 An I-indexed functor is then a functor from Fam I to Set,
given by:

record IFunc (I : Set) : Set1 where
field

obj : (A : Fam I) → Set
mor : ∀ {A B} → (A →� B) → obj A → obj B

such that both id� is mapped to id and ◦� to ◦ under the action of mor. We adopt
the convention that the projections obj and mor are silent, i.e. depending on the context F :
IFunc I can stand for either the functor’s action on objects, or on morphisms. A morphism
between two such indexed functors is a natural transformation:

⇒F : ∀ {I} → (F G : IFunc I) → Set1
F ⇒F G = ·∏ A . F A → G A

Our goal is, eventually, to give a representation for indexed functors as indexed contain-
ers. In doing this, we will also wish to represent structure on indexed functors as structure
on indexed containers. To achieve this, we next look at the structure possessed by indexed
functors. The main structure we wish to highlight for IFunc is the following monad-like
structure:

ηF : ∀ {I} → I → IFunc I
ηF i = record {obj = λ A → A i;mor = λ f → f i}

>>=F : ∀ {I J} → IFunc I → (I → IFunc J) → IFunc J
F >>=F H =

record {obj = λ A → F (λ i → (H i) A)
; mor = λ f → F (λ i → (H i) f )}

It’s clear that IFunc cannot be a monad in the usual sense, since it is not an endofunctor,
but a functor from the category of small sets whose objects are elements of Set to the
category of large sets whose objects are Set1. However, it is an relative monad in the sense
of Altenkirch et al. (2010) relative to the embedding functor ↑ : Set → Set1. That is we
have

ηF : ∀ {I} → ↑ I → IFunc I
>>=F : ∀ {I J} → IFunc I → (↑ I → IFunc J) → IFunc J

Note that in the code above we have elided the use of the lifting functor. The usual monad
laws can be stated almost verbatim in this setting. On a more conceptual level, a relative
monad is a monoid in the category of functors similar to ordinary monads being monoids

5 This should not be confused with the usual notion of the category of families over a given base category, i.e.
the families fibration.

https://doi.org/10.1017/S095679681500009X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500009X


Indexed containers 13

in the category of endofunctors – for details please see Altenkirch et al. (2010). And indeed
we can show:

Proposition 3.1
(IFunc,ηF, >>=F ) is a relative monad (Altenkirch et al. 2010) on the lifting functor
↑ : Set → Set1.

Proof
To prove the structure is a relative monad, we observe that the following equalities hold up
to Agda’s βη-equality, and our postulate ext. (IFunc* is defined below).

For F : IFunc I, G : IFunc* J I, H : IFunc* K J:

H i ≡ (ηF i) >>=F H (1)

F ≡ F >>=F ηF (2)

(F >>=F G) >>=F H ≡ F >>=F (λ i → (G i) >>=F H) (3)

�

So far our indexed functors represent functors Fam I to Set. However, since we want
to construct fixpoints we are really interested in functors from Fam I to Fam I, or actually
to be able to take partial fixpoints, in functors from Fam (J � I) to Fam I. Hence to be
appropriately general, we want to study functors Fam I to Fam J. We will therefore define
a type IFunc� of such doubly indexed functors and then investigate the structure possessed
by such functors. Fortunately IFunc� can easily be derived from IFunc as follows. First,
note that the opposite of the Kleisli category of the relative monad associated with IFunc
has objects I,J : Set and morphisms given by J-indexed families of I-indexed functors.
We denote this notion of indexed functor IFunc� and note that, as required, inhabitants of
IFunc� are functors mapping indexed sets to indexed sets.

IFunc� : (I J : Set) → Set1
IFunc� I J = J → IFunc I

obj� : ∀ {I J} → IFunc� I J → Fam I → Fam J
obj� F A j = (F j) A

mor� : ∀ {I J A B} (F : IFunc� I J) →
A →� B → obj� F A →� obj� F B

mor� F m j = (F j) m

Again, we will omit obj� and mor� when inferable from the context in which they appear.
Natural transformations extend to this doubly indexed setting, too:

⇒F
�

: ∀ {I J} → (F G : IFunc� I J) → Set1
F ⇒F

�
G = ·∏ A . F A →� G A

Turning to the structure on IFunc�, clearly, the Kleisli structure gives rise to identities and
composition in IFunc�. Indeed, composition gives rise to a re-indexing operation which we
denote ΔF:

ΔF : ∀ {I J K} → (J → K) → IFunc� I K → IFunc� I J
ΔF f F = F ◦ f
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This construction is used, for instance, in building the pattern functor for ScLam as in the
introduction; Concentrating only on the abs case we want to build ScLam′ X
n = (X ◦ suc) n. Or simply ScLam′ X = ΔF suc X. In general, this combinator restricts
the functor X to the indices in the image of the function f.

What if the restriction appears on the right of such an equation? As an example, consider
the successor constructor for Fin; here we want to build the pattern functor:
FFin′ X (1 + n) = X n. To do this, we observe that this is equivalent to the equation
FFin′ X n = (m : �)× (n ≡ 1 + m × X m). We denote the general construction ΣF, so
the 2nd equation can be written FFin′ X = ΣF suc X:

ΣF : ∀ {J I K} → (J → K) → IFunc� I J → IFunc� I K
ΣF {J} f F k =

record {obj = λ A → ( j : J)× (f j ≡ k × F A j)
; mor = λ {m (j,p,x) → (j,p, F m j x)}
}

Perhaps unsurprisingly, ΣF turns out to be the left adjoint to reindexing (ΔF). Its right
adjoint, we denote ΠF:

ΠF : ∀ {J I K} → (J → K) → IFunc� I J → IFunc� I K
ΠF {J} f F k =

record {obj = λ A → (j : J) → f j ≡ k → F A j
; mor = λ m g j p → F m j (g j p)}

Proposition 3.2

ΣF and ΠF are left and right adjoint to reindexing (ΔF).

Proof

To show this, we need to show that for all f : J → K, g : K → J, F : IFunc� I J and
G : IFunc� I K:

ΣF f F ⇒F
�

G

F ⇒F
� ΔF f G

ΔF f F ⇒F
�

G

F ⇒F
� ΠF f G

We can build the components of these isomorphisms easily:

Σ�Δ : (f : J → K) → (ΣF f F ⇒F
�

G) → (F ⇒F
� ΔF f G)

Σ�Δ f m j x = m (f j) (j, refl,x)

Σ�Δ-1 : (f : J → K) → (F ⇒F
� ΔF f G) → (ΣF f F ⇒F

�
G)

Σ�Δ-1 f m . (f j) (j, refl,x) = m j x

Δ�Π : (g : K → J) → (ΔF g F ⇒F
�

G) → (F ⇒F
� ΠF g G)

Δ�Π g m . (g k) x k refl = m k x

Δ�Π-1 : (g : K → J) → (F ⇒F
� ΠF g G) → (ΔF g F ⇒F

�
G)

Δ�Π-1 g m k x = m (g k) x k refl
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It only remains to observe that these pairs of functions are mutual inverses, which is a
simple proof. �

In abstracting over all possible values for the extra indexing information ΠF allows for
the construction of infinitely branching trees, such as rose trees. We also note that finite
co-products and products can be derived from ΣF and ΠF, respectively:

⊥F : ∀ {I} → IFunc� I �
⊥F = ΣF {J = ⊥} λ ()

�F : ∀ {I} → (F G : IFunc I) → IFunc� I �
F �F G = ΣF λ b → if b then F else G

�F : ∀ {I} → IFunc� I �
�F = ΠF {J = ⊥} λ ()

×F : ∀ {I} → (F G : IFunc I) → IFunc� I �
F ×F G = ΠF λ b → if b then F else G

Clearly these are simply the constantly � and ⊥ valued functors, and the pointwise product
and co-product of functors. However, encoding them using ΣF and ΠF allows us to keep to
a minimum the language of indexed functors (and hence indexed containers) with obvious
benefits in terms of tractability.

3.1 Initial algebras of indexed functors

We have seen that an F : IFunc� I I is an endofunctor on the category Fam I. Using this
observation, we know that an algebra of such a functor is a family A : Fam I and a map
α : F A →� A. A morphism, then, between two such algebras (A,α) and (B,β ) is a map
f : A →� B such that the follow diagram commutes:

F A
α ��

F f
��

A

f
��

F B
β

�� B

This defines the category of F-algebras. If it exists, then the initial algebra of F is the initial
object of the category of F-algebras spelled out above. It follows from the fact that not all
functors in Set → Set (for instance F A = (A → Bool) → Bool) have initial algebras
that neither do all indexed functors.

We also know that we cannot iterate the construction of initial algebras given above.
That is, an endofunctor IFunc� I I gives rise to an initial algebra in Fam I, and we cannot
take the initial algebra of something in Fam I. This prevents us from being able to define
nested inductive families in this way.

We finish our study of indexed functors by tackling this problem. Our strategy is as
follows: First note that for a singly indexed functor over a co-product we can eliminate the
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co-product and curry the resulting definition in this way:

IFunc (I � J) ≡ (I � J → Set) → Set

�� (I → Set) × (J → Set) → Set

�� (I → Set) → (J → Set) → Set

This gives us partial application for indexed functors of the form IFunc (I � J). Spelled
out concretely we have:

[ ]F : ∀ {I J} → IFunc (I � J) → IFunc� I J → IFunc I
F [ G ]F =

record { obj = λ A → F [A, G A]
; mor = λ f → F [f , G f ]}

This construction is functorial:

[ ]F : ∀ {I J} (F : IFunc (I � J)) {G H : IFunc� I J}
→ G ⇒F

�
H

→ F [ G ]F ⇒F F [ H ]F

F [ γ ]F = F [(λ a → a),γ ]

Each of these definitions generalizes to IFunc�:

[ ]F
�

: ∀ {I J K} → IFunc� (I � J) K → IFunc� I J → IFunc� I K
F [ G ]F

�
= λ k → (F k) [ G ]F

[ ]F
�

: ∀ {I J K} (F : IFunc� (I � J) K) {G H : IFunc� I J}
→ G ⇒F

�
H

→ F [ G ]F
� ⇒F

�
F [ H ]F

�

[ ]F
�
F {G} {H} γ = λ k → [ ]F (F k) {G} {H} γ

A parametrized F-algebra for F : IFunc� (I � J) J is then simply an algebra for the functor
F [ ]F

�
. That is, a parameterized F-algebra consists of a pair of an indexed-functor G :

IFunc I J and a natural transformation α : F [ G ]F
� ⇒F

�
G. A morphism between two such

algebras (G,α) and (H,β ) is a natural transformation γ : G ⇒F
�

H such that the follow
diagram commutes:

F [ G ]F
� α ��

F [ γ ]F
�

��

G

γ
��

F [ H ]F
�

β
�� H

As you might expect, a parametrized initial algebra for F, if it exists, will be the initial
object in the category of parametrized F-algebras. Alternatively, it is the initial F [ ]F

�
-

algebra. Either way, the parameterized initial algebra construction will map indexed func-
tors to indexed functors and hence can be iterated. This means that we can define nested
and mutual families of datatypes, such as the tuple of neutral and normal λ -terms outlined
in the introduction.
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However, it is still the case that not all indexed functors in IFunc� (I � J) I have pa-
rameterized initial algebras. In the analogous situation for functors on Set, we solved this
problem by limiting ourselves to those functors which can be represented by containers. We
follow a similar approach in the indexed setting, that is, we restrict our attention to those
indexed functors which can be represented by indexed containers. We show that all indexed
containers have parameterized initial algebras and that, surprisingly, initial algebras may
be constructed using only the W-types used to construct initial algebras of containers.

4 Indexed containers

Following the structure of the previous section, we first define singly indexed containers
which will represent singly indexed functors, and then we define doubly indexed containers
which will represent doubly indexed functors. To this end, we define an I-indexed container
to be given by a set of shapes, and an I-indexed family of positions:

record ICont (I : Set) : Set1 where
constructor _�_
field

S : Set
P : S → I → Set

The above definition shows that an I-indexed container is similar to a container in that
it has a set of shapes whose elements can be thought of as constructors. However, the
difference between an I-indexed container and a container lies in the notion of the positions
associated to a given shape. In the case of a container, the positions for a given shape simply
form a set. In the case of an I-indexed container, the positions for a given shape form an
I-indexed set. If we think of I as a collection of sorts, then not only does the constructor
require input to be stored at its positions, but each of these positions is tagged with an i : I
and will only store data of sort i : I at that position. This intuition is formalized by the
following definition which shows how singly indexed containers represent singly indexed
functors

�_� : ∀ {I} → ICont I → IFunc I
�_� {I} (S � P) =

record {obj = λ A → (s : S)× (P s →� A)
; mor = λ {m (s, f) → (s,m ◦� f)}
}

Notice how the extension of an indexed container is very similar to the extension of a
container. In particular, an element of � S � P � A consists of a shape s : S and a morphism
P s →� A of I-indexed sets. This latter function assigns to each i : I, and each position
p : P s i an element of A i. If we think of I as a collection of sorts, then this function assigns
to each i : I-sorted position, an i-sorted piece of data, i.e. an element of A i.

Analogously to the generalization of singly indexed functors to doubly indexed functors,
we can generalize singly indexed containers to doubly indexed containers. Indeed, a doubly
indexed container, that is an element of ICont� I J, is simply a function from J to ICont I.
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Unpacking the definition of such a function gives us the following definition of a doubly
indexed container and its extension as a doubly indexed functor:

record ICont� (I J : Set) : Set1 where
constructor ��

field
S : J → Set
P : (j : J) → S j → I → Set

�_�* : ∀ {I J} → ICont� I J → IFunc� I J
� S �� P �� j = � S j � P j �

We will denote the two projections for an ICont postfix as .S and .P. Our methodology
of reflecting structure on indexed functors as structure on indexed containers means we
must next consider how to reflect morphisms between indexed functors which can be
represented by indexed containers as morphisms between those indexed containers. We
begin by considering what constitutes a natural transformation between the extension of an
indexed container and an arbitrary indexed functor. We do this in the singly indexed case
as follows:

� S � P � ⇒F F (1)

≡ ·∏ X . (s : S)× (P s →� X) → F X {by definition}
��

·∏ X . (s : S) → (P s →� X) → F X {currying}
�� (s : S) → ·∏ X . (P s →� X) → F X {commuting end and pi}
�� (s : S) → F (P s) {Yoneda}

Now, if F is the extension of an indexed container T � Q, we have:

� S � P � ⇒F � T � Q � (2)

�� (s : S) → ( t : T)× (Q t →� P s)

�� ( f : S → T)× ((s : S) → Q (f s) →� P s)

We will use this last line as the definition for indexed container morphisms. This definition
can be implemented by the following record type, containing a function on shapes and a
family of contravariant indexed functions on positions:

record ⇒C {I} (C D : ICont I) : Set where
constructor _�_
field

f : C .S → D .S
r : (s : C .S) → (D .P (f s)) →� (C .P s)

ICont I forms a category, with morphisms given by ⇒C , the identity and composition
morphisms are given as follows:
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idC : ∀ {I} {C : ICont I} → C ⇒C C
idC = id � (λ → id)

◦C : ∀ {I} {C D E : ICont I} →
D ⇒C E → C ⇒C D → C ⇒C E

(f � r) ◦C (g � q) = (f ◦ g) � (λ s → q s ◦� r (g s))

That idC is the left and right unit of ◦C, and that ◦C is associative follows immediately from
the corresponding properties of id and ◦ .

We will use a notion of equality for container morphisms that includes a proof that their
shape and position functions are pointwise equal:

record ≡⇒ {I} {C D : ICont I} (m n : C ⇒C D) : Set where
constructor _�_
field

feq : (s : C .S) → m .f s ≡ n .f s
req : (s : C .S) (i : I) (p : D .P (m .f s) i) →

m .r s i p ≡
n .r s i (subst (λ s′ → D .P s′ i) (feq s) p)

In the presence of extensional equality, we can prove that this is equivalent to the proposi-
tional equality on ⇒C , but it will prove simpler later to use this definition.

We witness the construction of a natural transformation from an indexed container mor-
phisms as follows:

� �⇒ : ∀ {I} {C D : ICont I} (m : C ⇒C D) →
·∏ A . � C � A → � D � A

� f � r �⇒ (s,g) = f s,g ◦� r s

The representation of natural transformations between indexed functors arising from in-
dexed containers and morphisms between the indexed containers themselves is actually
a bijection. This opens the way to reasoning about natural transformations by reasoning
about indexed container morphisms. Technically, this bijection is captured by the following
statement:

Proposition 4.1
The functor (�_�,� �⇒) : ICont I → IFunc I is full and faithful.

Proof
The isomorphism is proved in Equations (1) and (2).

�

Having dealt with indexed container morphisms in the singly indexed setting, we now
turn to the doubly indexed setting. First of all, we define the morphisms between two
doubly indexed containers.

record ⇒C
� {I J} (C D : ICont� I J) : Set1 where

constructor ��

field
f : C .S →� D .S
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r : { j : J} (s : C .S j) → (D .P j (f j s)) →� (C .P j s)

�_�⇒* : ∀ {I J} {C D : ICont� I J} (m : C ⇒C
�

D) →
·∏ A . ( � C �� A →� � D �� A)

� f �� r �⇒
�
j = � f j � r �⇒

Having defined indexed containers and indexed container morphisms as representations
of indexed functors and the natural transformations between them, we now turn our atten-
tion to the relative monad structure on indexed functors, reindexing of indexed functors
(and the associated adjoints), and parameterized initial algebras of indexed functors. Our
goal in the rest of this section is to encode each of these structures within indexed contain-
ers. We begin by showing that, as with IFunc, we can equip ICont with a relative monadic
structure:

ηC : ∀ {I} → I → ICont I
ηC i = � � λ i′ → i ≡ i′

>>=C : ∀ {I J} → ICont I → ICont� J I → ICont J
>>=C {I} (S � P) (T �� Q) =

(� S � P � T)
� λ {(s, f) j → Σ (( i : I)× P s i) (λ {(i,p) → Q i (f i p) j})}

Proposition 4.2
The triple (ICont,ηC, >>=C ) is a relative monad.

Proof
Instead of proving this directly, we observe that the ηC and >>=C are preserved under
the extension functor, that is that the following natural isomorphisms hold:

·∏ X . � ηC i � X �� ηF i X
·∏ X . � C >>=C D � X �� (� C �� >>=F � D �) X

Which follows from the extensionality of our propositional equality, the associativity of
Σ and the terminality of �. By the full and faithful nature of the embedding �_�, we can
then reuse the result that (IFunc,ηF, >>=F ) is a relative monad to establish the theorem.

�

As with indexed functors, the re-indexing functor ΔC on indexed containers is defined
by composition, and it has left and right adjoints ΣC and ΠC. As we shall see, our proof of
this fact uses the full and faithfulness of the embedding of indexed containers as indexed
functors and the fact that reindexing of indexed functors has left and right adjoints.

ΔC : (J → K) → ICont� I K → ICont� I J
ΔC f F = λ k → F (f k)

ΣC : (J → K) → ICont� I J → ICont� I K
ΣC f (S �� P) = λ k →

(( j : J)× (f j ≡ k × S j))
� λ {(j,eq,s) → P j s}

ΠC : (J → K) → ICont� I J → ICont� I K
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ΠC f (S �� P) = λ k →
((j : J) → f j ≡ k → S j)

� λ s i → ( j : J)× ((eq : f j ≡ k)× P j (s j eq) i)

Proposition 4.3
ΣC and ΠC are left and right adjoint to reindexing (ΔC).

Proof
Again, we appeal to the full and faithfulness of �_� and show instead that �_� also
preserves these constructions. That is we want to show that the following three natural
isomorphisms hold:

·∏ X . � ΣC f F j � X �� ΣF f � F �� j X
·∏ X . � ΔC f F j � X �� ΔF f � F �� j X
·∏ X . � ΠC f F j � X �� ΠF f � F �� j X

These can be proved simply by employing the associativity of Σ. �

Before we build the initial algebras of indexed containers, it will help to define their
partial application.

[ ]C : ∀ {I J} → ICont (I � J) → ICont� I J → ICont I
[ ]C {I} {J} (S � P) (T �� Q) =
let PI : S → I → Set;PI s i = P s (inl i)

PJ : S → J → Set;PJ s j = P s (inr j)
in � S � PJ � T �

(λ {(s, f) i → PI s i
� (( j : J)× ((p : PJ s j)× Q j (f j p) i))})

The composite container has shapes given by a shape s : S and an assignment of T shapes
to PJ s positions. Positions are then a choice between a I-indexed position, or a pair of an
J-indexed position, and a Q position underneath the appropriate T shape.
As with indexed functors, this construction is functorial in its second argument, and lifts
container morphisms in this way:

[ ]C : ∀ {I J} (C : ICont (I � J)) {D E : ICont� I J} →
D ⇒C� E

→ C [ D ]C ⇒C C [ E ]C

C [ γ ]C =
(λ {(s, f) → (s,λ j p → γ .f j (f j p))}) �
λ {(s, f) i → id � λ {(j,p,q) → (j,p,γ .r j (f j p) i q)}}

5 Initial algebras of indexed containers

We will now examine how to construct the parameterized initial algebra of an indexed
container of the form F : ICont� (I � J) J. The shapes of such a container are an J-indexed
family of Sets and the positions are indexed by I � J; we will treat these position as two
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separate entities, those positions indexed by J – the recursive positions – and those by I –
the payload positions.

The shapes of the initial algebra we are constructing will be trees with S shapes at the
nodes and which branch over the recursive PJ positions. We call these trees indexed W-
types, denoted WI, and they are the initial algebra of the functor � S � PJ ��. In Agda, we
can implement the WI constructor and its associated iteration operator WIfold as follows:

data WI {J : Set} (S : J → Set)
(PJ : (j : J) → S j → J → Set) : J → Set where

sup : � S �� PJ �� (WI S PJ) →� WI S PJ

Proposition 5.1
(WI S PJ,sup) is the initial object in the category of � S � PJ �-algebras.

Proof
We show this by constructing the iteration operator WIfold, a morphism in the category of
� S � PJ �-algebras from our candidate initial algebra to any other algebra such that the
following diagram commutes:

� S �� PJ �� (WI S PJ)
sup ��

� S �� PJ �� (WIfold α)
��

WI S PJ

WIfold α
��

� S �� PJ �� X
α �� X

In fact we can use this specification as the definition of WIfold:

WIfold : ∀ {J} {S X : J → Set} {PJ} →
� S �� PJ �� X →� X →
WI S PJ →� X

WIfold {S = S} {PJ = PJ} α j (sup ._ x) =
α j ( � S �� PJ �� (WIfold α) j x)

We also require that WIfold is unique, that is we must show that any morphism β which
makes the diagram above commute must be equal to WIfold α:

WIfoldUniq : ∀ {J} {X : J → Set} {S : J → Set}
{PJ : (j : J) → S j → J → Set}
(α : � S �� PJ �� X →� X)
(β : WI S PJ →� X) →
((j : J) (s : � S �� PJ �� (WI S PJ) j) →

(β j (sup j s)) ≡ (α j ( � S �� PJ �� β j s))) →
(j : J) (x : WI S PJ j) → β j x ≡ WIfold α j x

WIfoldUniq α β commβ j (sup .j (s,g)) = begin
β j (sup j (s,g))

∼=〈 commβ j (s,g) 〉
α j (s,(λ j′ p′ → β j′ (g j′ p′)))

∼=〈 cong (λ f → α j (s, f))
(λ ≡ j′ → λ ≡ p′ → WIfoldUniq α β commβ j′ (g j′ p′)) 〉
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α j (s,(λ j′ p′ → WIfold α j′ (g j′ p′)))
�

The above definition proves that β and WIfold α are pointwise equal, by employing ext
we can show that WIfoldUniq′ implies that they are extensionally equal. �

This proof mirrors the construction for ordinary containers, where we can view ordinary
W-types as the initial algebra of a container functor. Positions in an indexed W-type are
given by the paths through such a tree which terminate in a non-recursive PI-position:

data Path {I J : Set} (S : J → Set)
(PI : (j : J) → S j → I → Set)
(PJ : (j : J) → S j → J → Set)
: (j : J) → WI S PJ j → I → Set where

path : ∀ { j s f i} →
PI j s i

� (( j′ : J)× ((p : PJ j s j′ )× Path S PI PJ j′ (f j′ p) i))
→ Path S PI PJ j (sup (s, f)) i

pathh : ∀ {I J : Set} (S : J → Set)
(PI : (j : J) → S j → I → Set)
(PJ : (j : J) → S j → J → Set)
{ j s f i} →

PI j s i
� (( j′ : J)× ((p : PJ j s j′ )× Path S PI PJ j′ (f j′ p) i))
→ Path S PI PJ j (sup (s, f)) i

pathh S PI PJ x = path x

Again this mirrors the partial application construction where positions were given by a
PI position at the top level, or a pair of a PJ position and a recursive Path position. This
reflects the fact that a WI-type can be thought of as iterated partial application. We can
now use WI-types, or equivalently initial algebras of indexed containers, to construct the
parametrized initial algebra of an indexed container. First, we construct the carrier of the
parameterized initial algebra:

μC : {I J : Set} → ICont� (I � J) J → ICont� I J
μC {I} {J} (S �� P) =

let PI : (j : J) → S j → I → Set;PI j s i = P j s (inl i)
PJ : (j : J) → S j → J → Set;PJ j s j′ = P j s (inr j′)

in WI S PJ �� Path S PI PJ

Next, we note that the structure map for this parameterized initial algebra is a container
morphism from the partial application of F and its parametrized initial algebra to the
parameterized initial algebra. This structure map is given by the constructor sup of WI
and the deconstructor for Path:

inC : ∀ {I J} → (F : ICont� (I � J) J) → F [ μC F ]C� ⇒C� μC F
inC F = sup �� λ { (path p) → p}
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Proposition 5.2
(μC F, inC F) is initial in the category of parameterized F-algebras of indexed containers.
Further, by full and faithfulness, (� μC F ��,� inC F �⇒

�
) will also be initial in the indexed

functor case.

To show this, we must define an operator foldC from the initial algebra to an arbitrary
algebra. The shape map employs the fold for WI directly. For the position map we apply
the position map for the algebra, which maps Q positions to either a P position in the first
layer, or a recursive Q position – it is straightforward to recursively employ this position
map to construct the corresponding Path to a P position somewhere in the tree.

foldC : ∀ {I J} (F : ICont� (I � J) J) {G : ICont� I J} →
F [ G ]C� ⇒C� G → μC F ⇒C� G

foldC {I} {J} (S �� P) {T �� Q} (f �� r) = ffold �� rfold
where PI : (j : J) → S j → I → Set;PI j s i = P j s (inl i)

PJ : (j : J) → S j → J → Set;PJ j s j′ = P j s (inr j′)
ffold = WIfold f
rfold : { j : J} (s : WI S PJ j)

(i : I) → Q j (ffold j s) i → Path S PI PJ j s i
rfold (sup ._ (s,g)) i p =

path ((id � (λ jpq → ( ,π0 (π1 jpq)
, rfold (π1 (π1 jpq))))) (r (s, ) i p))

We also need to show that the following diagram commutes for any parametrized F-algebra
(G,α):

F [ μC F ]C� inC F ��

F [ (foldC F α) ]F
�

��

μC F

foldC F α
��

F [ G ]C� α �� G

Or, equivalently:

foldComm : ∀ {I J} {F : ICont� (I � J) J} (G : ICont� I J)
(α : F [ G ]C� ⇒C� G) →
(foldC F α ◦C� inC F) ≡⇒*

(α ◦C� F [ (foldC F α) ]C�)
foldComm {F} G α = (λ j x → refl) �� (λ j x i p → refl)

All that remains for us to show in order to prove that (μC F, inC F) is the initial parametrized
F-algebra is to show that foldC F α is unique for any α . That is any morphism β : μC F ⇒C�

G, that makes the above diagram commute, must be foldC F α:

foldUniq : ∀ {I J} {F : ICont� (I � J) J} (G : ICont� I J)
(α : F [ G ]C� ⇒C� G) (β : μC F ⇒C� G) →
(β ◦C� inC F) ≡⇒* (α ◦C� F [ β ]C�) →
β ≡⇒* (foldC F α)

foldUniq {I} {J} {S �� P} (T �� Q)
(αf �� αr) (β f �� β r) (feq �� req) =

WIfoldUniq αf β f feq �� rfoldUniq
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where
PI : (j : J) → S j → I → Set;PI j s i = P j s (inl i)
PJ : (j : J) → S j → J → Set;PJ j s j′ = P j s (inr j′)

That the shape maps of β and foldC F α agree follows from the uniqueness of WIfold; while
the proof that the position maps agree follows the same inductive structure as rfold in the
definition of foldC. 6

rfoldUniq : (j : J) (s : WI S PJ j) (i : I)
(p : Q j (β f j s) i) →
β r s i p ∼=

rfold S PI PJ (T �� Q) αf αr s i
(subst (λ s → Q j s i)

(WIfoldUniq αf β f feq j s) p)
rfoldUniq j (sup ._ y) i p with req j y i p
rfoldUniq j (sup ._ y) i p | reqjyip with β r (sup j y) i p
rfoldUniq j (sup ._ y) i p | reqjyip | path q = begin

path q -- β r (sup j y) i p
∼=〈 cong path reqjyip 〉

path ((id � (λ jpq → (π0 jpq,π0 (π1 jpq)
,β r (π1 y (π0 jpq) (π0 (π1 jpq))) i

(π1 (π1 jpq)))))
(αr (π0 y,(λ j’ p’ → β f j’ (π1 y j’ p’))) i

(subst (λ s’ → Q j s’ i) (feq j y) p)))
∼=〈 cong . . . (λ ∼= j′ → λ ∼= p′ → λ ∼= q′ → begin

β r (π1 y )
∼=〈 rfoldUniq (π1 y ) i 〉

rfold S PI PJ (T �� Q) αf αr (π1 y ) i
(subst (λ s → Q s i)

(WIfoldUniq αf β f feq (π1 y )) )
∼=〈 . . . 〉

rfold S PI PJ (T �� Q) αf αr (π1 y ) i �) . . . 〉
path ((id � (λ jpq → (π0 jpq,π0 (π1 jpq)

, rfold S PI PJ (T �� Q) αf αr
(π1 y (π0 jpq) (π0 (π1 jpq))) i
(π1 (π1 jpq)))))

(αr (π0 y,(λ j p → WIfold αf j (π1 y j p))) i
(subst (λ s → Q j s i)

(WIfoldUniq αf β f feq (sup y)) p)))
∼=〈 refl 〉

rfold S PI PJ (T �� Q) αf αr (sup y) i
(subst (λ s → Q s i)

(WIfoldUniq αf β f feq (sup y)) p) �

6 Some parts of the Agda proof are hidden and denoted by . . . .
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6 Terminal coalgebras of indexed containers

Dually to the initial algebra construction outlined above, we can also show that indexed
containers are closed under parameterized terminal coalgebras. We proceed in much the
same way as before, by first constructing the dual of the indexed W-type, which we refer
to as an indexed M-type. As you might expect this is in fact the plain (as opposed to
parametrized) terminal coalgebra of an indexed container:

data MI {I : Set} (S : I → Set)
(PI : (i : I) → S i → I → Set) : I → Set where

sup : � S �� PI �� (λ i → ∞ (MI S PI i)) →� MI S PI

sup-1 : ∀ {I S} {PI : (i : I) → S i → I → Set} →
MI S PI →� � S �� PI �� (MI S PI)

sup-1 (sup (s, f)) = s,λ i p → � (f i p)

Here, we employ Agda’s approach to coprogramming (e.g. see (Danielsson & Altenkirch
2010)), where we mark (possibly) infinite subtrees with ∞. The type ∞ A is a suspended
computation of type A, and � : A → ∞ A delays a value of type A and � : ∞ A → A forces
a computation. A simple syntactic test then ensures that co-recursive programs are total –
recursive calls must be immediately guarded by a � constructor.

The equality between infinite objects will be bi-simulation, for instance MI. Types are
bi-similar if they have the same node shape, and all their sub-trees are bi-similar:

data ≈MI {J S PJ} { j : J} : (x y : MI S PJ j) → Set where
sup : ∀ {s f g} → (∀ { j′ } (p : PJ j s j′) →

∞ (� (f j′ p) ≈MI � (g j′ p))) →
sup (s, f) ≈MI sup (s,g)

It is simple to show that this bi-simulation is an equivalence relation.

Proposition 6.1
(MI S PJ,sup-1) is the terminal object in the category of � S �� PJ �-coalgebras.

We must construct a co-iteration operator MIunfold, a morphism in the category of
� S �� PJ �-coalgebras to our candidate terminal coalgebra from any other coalgebra such
that the following diagram commutes:

X
α ��

MIunfold α
��

� S �� PJ �� X

� S �� PJ �� (MIunfold α)
��

MI S PJ
sup-1

��
� S �� PJ �� (MI S PJ)

sup
��

The following definition of MIunfold makes the diagram commute up-to bi-
simulation.

MIunfold : ∀ {J S PJ} {X : J → Set} →
X →� � S �� PJ �� X → X →� MI S PJ

MIunfold α j x with α j x
MIunfold α j x | s, f = sup (s,λ j′ p → � MIunfold α j′ (f j′ p))
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We also require that MIunfold is unique, i.e. any morphism that makes the diagram above
commute should be provably equal (again upto bi-simulation) to MIunfold α . To state this
property we need to lift the bi-simulation ≈MI through the extension of an indexed
container, to say what is it for two elements in the extension to be bi-similar:

≈� �MI : ∀ {J : Set} {S : J → Set}
{PJ : (j : J) → S j → J → Set} { j : J} →
(x y : � S �� PJ �� (MI S PJ) j) → Set

≈� �MI {J} {S} {PJ} { j} (s, f) (s′, f′) =
Σ (s ≡ s′) λ eq → { j′ : J} (p : PJ j s j′) →

f p ≈MI f′ (subst (λ s → PJ j s j′) eq p)

The uniqueness property is then given by:

MIunfoldUniq : ∀ {J} {X : J → Set} {S PJ}
(α : X →� � S �� PJ �� X) → (β : X →� MI {J} S PJ) →
((j : J) (x : X j) →
(sup-1 (β j x)) ≈� �MI (( � S �� PJ �� β ◦� α) j x)) →

(j : J) (x : X j) → β j x ≈MI MIunfold α j x

MIunfoldUniq α β commβ i x with commβ i x
MIunfoldUniq α β commβ i x | commix with β i x
MIunfoldUniq α β commβ i x | (refl,y) | sup (. (π0 (α i x)),g) =

sup (λ p → � ≈MItrans (y p) (MIunfoldUniq α β commβ ))

However, Agda rejects this definition due to the recursive call not being guarded imme-
diately by the �, however, it is productive due to the fact that the proof of transitivity of
bi-simulation is contractive. We can persuade the system this is productive by fusing the
definition of ≈MItrans with this MIunfoldUniq in a cumbersome but straightforward way.
The paths to positions in an indexed M-tree are always finite – in fact modulo the use of �,
this Path is the same as the definition for the initial algebra case.

data Path {I J : Set} (S : J → Set)
(PI : (j : J) → S j → I → Set)
(PJ : (j : J) → S j → J → Set)
: (j : J) → MI S PJ j → I → Set where

path : ∀ { j s f i} →
PI j s i

� (( j′ : J)×
((p : PJ j s j′ )× Path S PI PJ j′ (� (f j′ p)) i))

→ Path S PI PJ j (sup (s, f)) i

Just as parameterized initial algebras of indexed containers are built from WI-types,
so parameterized terminal coalgebras of indexed containers are built from MI-types as
follows:

νC : {I J : Set} → ICont� (I � J) J → ICont� I J
νC {I} {J} (S �� P) =

let PI : (j : J) → S j → I → Set;PI j s i = P j s (inl i)
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PJ : (j : J) → S j → J → Set;PJ j s j′ = P j s (inr j′)
in MI S PJ �� Path S PI PJ

outC : ∀ {I J} → (F : ICont� (I � J) J) → νC F ⇒C� F [ νC F ]C�

outC {I} {J} (S �� P) = (λ → sup-1) �� outr
where outr : { j : J} (s : (νC (S �� P) .S) j) →

((((S �� P) [ νC (S �� P) ]C�) .P) j (sup-1 s)) →�

((νC (S �� P)) .P j s)
outr (sup s) i′ p = path p

Proposition 6.2
(νC F,outC F) is the terminal object in the category of parametrized F-coalgebras of in-
dexed containers. By full and faithfulness, (� νC F ��,� outC F �⇒

�
) will also be terminal in

the indexed functor case.

Proof
Mirroring the case of initial algebras, the coiteration for this terminal co-algebra employs
the coiteration of MI for the shape maps. The position map takes a Path and builds a Q
position by applying the position map from the coalgebra at every step in the path – note
that this position map is inductive in its path argument.

unfoldC : ∀ {I J} (F : ICont� (I � J) J) {G : ICont� I J} →
G ⇒C� F [ G ]C� → G ⇒C� νC F

unfoldC {I} {J} (S �� P) {T �� Q} (f �� r) = funfold �� runfold
where PI : (j : J) → S j → I → Set;PI j s i = P j s (inl i)

PJ : (j : J) → S j → J → Set;PJ j s j′ = P j s (inr j′)
funfold = MIunfold f
runfold : { j : J} (t : T j)

(i : I) → Path S PI PJ j (funfold j t) i → Q j t i
runfold t i (path p) =

r t i ([ inl
,(λ y → inr ( ,π0 (π1 y)

, runfold (π1 (f t) ) i (π1 (π1 y))))] p)

We must then show that unfoldC is the unique morphism that makes the following
diagram commute:

G

F [ (unfoldC F α) ]F
�

��

α �� F [ G ]C�

unfoldC F α
��

νC F
outC F �� F [ νC F ]C�

As with the initial algebra case, this follows immediately from the definition:

unfoldComm : ∀ {I J} {F : ICont� (I � J) J} (G : ICont� I J)
(α : G ⇒C� F [ G ]C�) →
(outC F ◦C� unfoldC F α) ≡⇒*

https://doi.org/10.1017/S095679681500009X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500009X


Indexed containers 29

((F [ (unfoldC F α) ]C�) ◦C� α)
unfoldComm (S �� P) (f �� r) = (λ j s → refl) �� (λ j s i p → refl)

We also have to show that the unfoldC is unique; that is, any morphism that makes the
above diagram commute must be equal to unfoldC F α .

In order to show this in Agda, we are assuming a second extensionality principle namely
that if two MI trees are bi-similar, then they are in fact equal:

postulate MIext : ∀ {J S PJ} { j : J} {x y : MI S PJ j} →
x ≈MI y → x ∼= y

The inverse of this principle is obviously true:

MIext-1 : ∀ {J S PJ} { j : J} {x y : MI S PJ j} →
x ∼= y → x ≈MI y

MIext-1 refl = ≈MIrefl

It is reasonable to assume that any language with fully-fledged support for co-inductive
types and extensional equality would admit such an axiom.

We can now state the property that unfoldC is, indeed, unique:

unfoldUniq : ∀ {I J} {F : ICont� (I � J) J} (G : ICont� I J)
(α : G ⇒C� F [ G ]C�) (β : G ⇒C� νC F) →
(outC F ◦C� β ) ≡⇒* (F [ β ]C� ◦C� α) →
β ≡⇒* (unfoldC F α)

The proof that the shape maps agree follows from the proof that MIunfold is unique, and the
proof that the position maps agree follows the same inductive structure as runfold. Unfor-
tunately, because Agda lacks full support for both co-induction and extensional equality it
is not feasible to complete the proof terms for these propositions in our Agda development.
The main obstacle remains mediating between bi-simulation, the (functional) extensional
equality and Agda’s built-in notion of equality. We have completed this proof on paper,
however, and we are hopeful that soon we may be in a position to complete these proof
terms in a system where the built-in equality is sensible for both functions and co-inductive
types. �

7 W is still enough

So far, we have developed a theory of indexed containers using a rich type theory with
features such as WI- and MI-types. We claimed in the introduction, however, that the theory
of indexed containers could be developed even when one only has W-types. In this section,
we will outline the translation of many of the definitions above into such a spartan theory.
First, we will show how to obtain indexed WI-types from W-types, and by analogy MI-
types from M-types, and then we will revisit our proof of how to derive M-types from
W-types.
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7.1 WI from W

How, then, can we build WI-types from W-types? The initial step is to create a type of
pre-WI trees, with nodes containing a shape and its index, and branching over positions
and their indices:

WI′ : {I : Set} (S : I → Set)
(P : (i : I) (s : S i) → I → Set) → Set

WI′ {I} S P = W (( i : I)× S i) (λ {(i,s) → ( i′ : I)× P i s i′ })

Given such a tree, we want to express the property that the subtrees of such a pre-tree
have the correct index in their node information. In order to do this we need a second W-
type, which is similar to WI′, but with an extra copy of the index information stored in that
node:

WIl : {I : Set} (S : I → Set)
(P : (i : I) (s : S i) → I → Set) → Set

WIl {I} S P = W (I × (( i : I)× S i))
(λ {(i′, i,s) → ( i′ : I)× P i s i′ })

There are two canonical ways to turn an element of WI’ S P into an element of WIl S P,
both of which involve filling in this extra indexing information: (i) we can simply copy the
index already stored at the node; or (ii) we can push the indexes down from parent nodes
to child nodes:

lup : WI′ S P → WIl S P
lup (sup ((i,s), f)) = sup ((i,(i,s)),(λ p → lup (f p)))

ldown : I → WI′ S P → WIl S P
ldown i (sup (s, f)) = sup ((i,s),λ {(i′,p) → ldown i′ (f (i′,p))})

The property of a pre-tree being type correct can be stated as its two possible labelings
being equal. That is we can use W-types to define the WI-type as follows:

WI : {I : Set} (S : I → Set)
(P : (i : I) (s : S i) → I → Set) → I → Set

WI S P i =
(x : (WI′ S P))×

lup { } {S} {P} x ≡ ldown { } {S} {P} i x

Having built the WI-type from the W-type, we must next build the constructor sup which
makes elements of WI-types. We rely on function extensionality to define the constructor
sup:

sup : ∀ {J S PJ} → � S �� PJ �� (WI {J} S PJ) →� WI S PJ

sup {J} {S} {PJ} j (s, f) =
(sup (( ,s),λ {(j,p) → π0 (f j p)}))
,cong (λ x → sup ((j, j,s),x)) (λ ≡ ip → π1 (f (π1 ip)))

Proposition 7.1
(WI S PJ,sup) is the initial object in the category of � S �� PJ �-algebras.
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Proof

We must once again show that for any � S �� PJ �-algebra (X,α) where α : � S ��

PJ �� X →� X there is a unique mediating morphism WIfold : WI S PJ →� X. It is simple
enough to define WIfold:

WIfold : ∀ {J} {S X : J → Set} {PJ} →
� S �� PJ �� X →� X →
WI S PJ →� X

WIfold α j (sup ((j′,s), f),ok) with cong (π0 ◦ π0 ◦ sup-1) ok
WIfold α j (sup ((.j,s), f),ok) | refl =
α j (s,(λ j′ p → WIfold α j′ (f (j′,p),ext-1 (cong (π1 ◦ sup-1) ok) (j′,p))))

In the form below, WIfold does not pass Agda’s termination checker; the direct encoding
via Wfold would avoid this problem, at the expense of being even more verbose.

To show that WIfold makes the initial algebra diagram commute, we must employ the
UIP principle, that any two proofs of an equality are equal:

WIcomm : ∀ {J} {S X : J → Set} {PJ}
(α : � S �� PJ �� X →� X)
(j : J) → (x : � S �� PJ �� (WI S PJ) j) →
WIfold α j (sup {J} {S} {PJ} j x) ≡

α j ( � S �� PJ �� (WIfold α) j x)
WIcomm α j (s, f) with

(cong (π0 ◦ π0 ◦ sup-1)
(cong (λ x → sup ((j, j,s),x))

(λ ≡ ip → π1 (f (π0 ip) (π1 ip)))))
WIcomm α j (s, f) | refl =

cong (λ g → α j (s,g))
(λ ≡ j′ → λ ≡ p →

cong (λ eq → WIfold α j′ (π0 (f j′ p),eq)) UIP)

We can also show that the fold is unique:

WIfoldUniq′ : ∀ {J} {X : J → Set} {S : J → Set}
{PJ : (j : J) → S j → J → Set}
(α : � S �� PJ �� X →� X)
(β : WI S PJ →� X) →
(β ◦� sup) ≡ (α ◦� � S �� PJ �� β ) →
(j : J) (x : WI S PJ j) → β j x ≡ WIfold α j x

WIfoldUniq′ α β commβ j (sup ((j′,s), f),ok)
with cong (π0 ◦ π0 ◦ sup-1) ok

WIfoldUniq′ α β commβ j (sup ((.j,s), f),ok) | refl = begin
β j (sup ((j,s), f),ok)

∼=〈 cong (λ ok′ → β j (sup ((j,s), f),ok′)) UIP 〉
β j (sup ((j,s), f)

,cong (λ p → sup ((j, j,s),p))
(ext (ext-1 (cong (π1 ◦ sup-1) ok))))
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∼=〈 ext-1 (ext-1 commβ j) (s, ) 〉
α j (s,λ j p → β j (f (j,p)

,ext-1 (cong (π1 ◦ sup-1) ok) (j,p)))
∼=〈 (cong (λ n → α j (s,n))

(λ ≡ j → λ ≡ p →
WIfoldUniq′ α β commβ j

(f (j,p),ext-1 (cong (π1 ◦ sup-1) ok) (j,p)))) 〉
α j (s,λ j p → WIfold α j (f (j,p)

,ext-1 (cong (π1 ◦ sup-1) ok) (j,p)))
�

�

We can use this proof that WI-types can be encoded by W to explain where Path fits in,
since it is straightforwardly encoded as a WI:

Path : {I J : Set} (S : J → Set)
(PI : (j : J) → S j → I → Set)
(PJ : (j : J) → S j → J → Set)
(j : J) → WI S PJ j → I → Set

Path {I} {J} S PI PJ j w i = WI PathS PathP (j,w)
where PathS : ( j : J)× WI S PJ j → Set

PathS (j,sup (s, f)) = PI j s i � Σ J (PJ j s)
PathP : (jw : ( j : J)× WI S PJ j) (s : PathS jw) →

( j : J)× WI S PJ j → Set
PathP (j,sup (s, f)) (inl p) (j′,w′) = ⊥
PathP (j,sup (s, f)) (inr (j′′,p)) (j′,w′) =

(j′′ ≡ j′) × (f j′′ p ∼= w′)

The reader will be unsurprised to learn that a similar construction to the above allows
us to derive MI-types from M-types. The details are, once again, somewhat obfuscated by
the experimental treatment of co-induction in Agda, but are in the spirit of the dual of the
proof above.

7.2 M from W

Since we have shown that both WI and MI types can be reduced to their non-indexed
counterparts, we can finish the reduction of the logical theory of indexed containers to W-
types by showing that M types can be reduced to W-types. This is a result from our previous
work on containers (Abbott et al. 2005), though in the setting of indexed WI-types, we can
give a better explanation. Before tackling this question directly, we first introduce the basic
definitions pertaining to final coalgebras and our implementation of them within Agda.

In category theory, an ω-chain is an infinite diagram:

A0 A1

a0�� A2

a1�� · · · An−1 An

an−1�� An+1
an�� · · ·

https://doi.org/10.1017/S095679681500009X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500009X


Indexed containers 33

In type theory, we can represent such a chain as a pair of functions:

Chain : Set1
Chain = (A : (� → Set))× ((n : �) → A (suc n) → A n)

A cone for a chain is an object X and family of projections πn ∈ X → An such that, in the
following diagram, all the small triangles commute:

A0 A1

a0�� A2

a1�� · · · An−1 An

an−1�� An+1
an�� · · ·

X

π0

������������������������������������

π1

����������������������������

π2

���������������������

πn−1

��

πn

		��������������

πn+1



�������������������

The limit of a chain is the cone which is terminal amongst all cones for that chain. This
terminality condition is called the universal property of the limit. We can encode the limit
of a chain, including its projections and its universal property as follows:

LIM : Chain → Set
LIM (A,a) = ( f : ((n : �) → A n))×

((n : �) → a n (f (suc n)) ≡ f n)

π : {c : Chain} → (n : �) → LIM c → π0 c n
π n (f,p) = f n

comm : {c : Chain} (n : �) (l : LIM c) →
π1 c n (π {c} (suc n) l) ≡ π {c} n l

comm n (f,p) = p n

univ : {c : Chain} {X : Set} (pro : (n : �) → X → π0 c n)
(com : (n : �) (x : X) →

π1 c n (pro (suc n) x) ≡ pro n x) →
X → LIM c

univ pro com x = (λ n → pro n x),(λ n → com n x)

We are interested in certain ω-chains which can be constructed from a functor F as follows
(where ! is the unique morphism from any object into the terminal object �):

� F�!�� F2�
F!�� F3�

F2!�� · · ·

For the moment, denote this chain Fω = ((λ n → F n �),λ n → F n !). We know from
Asperti & Longo (1991) that if F is ω-continuous, i.e. that for any chain (A,a):

F (LIM (A,a)) ≈ LIM ((F ◦ A),(F ◦ a))
then the limit of Fω will be the terminal co-algebra of F. To see this, we first observe that
there is an isomorphism between the limit of a chain, and the limit of any of its tails:

tail : Chain → Chain
tail (A,a) = (A ◦ suc,a ◦ suc)

tailLIM : (c : Chain) → LIM c → LIM (tail c)
tailLIM (A,a) (f,p) = f ◦ suc,p ◦ suc
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tailLIM-1 : (c : Chain) → LIM (tail c) → LIM c
tailLIM-1 (A,a) (f,p) = f′,p′

where f′ : (n : �) → A n
f′ zero = a (f zero)
f′ (suc n) = f n
p′ : (n : �) → a (f n) ∼= f′ n
p′ zero = refl
p′ (suc n) = p n

We also note that the tail of Fω is ((λ n → F (Fn �)),λ n → F (Fn !)), which allows us
to construct the isomorphism between F (LIM Fω) and LIM Fω :

F (LIM Fω)

≈ LIM (F ◦ (λ n → Fn �),F ◦ (λ n → Fn !)) {F is ω-continuous}
≡ LIM ((λ n → F (Fn �)),(λ n → F (Fn !))) {definition}
≈ LIM Fω { tailLIM }

This isomorphism is witnessed from right to left by the co-algebra map out. To show that
the co-algebra is terminal, we employ the universal property of LIM. Given a co-algebra
for α : X → F X, we construct an Fω cone:

� F�!�� F2�
F!�� F3�

F2!�� · · ·

X

!

��

f
�� FX

F!

��

Ff
�� F2X

F2!

��

F2f
�� F3X

F3!

��

· · ·

We now turn to the specific task at hand, namely the construction of M-types from W-types,
that is the capacity to construct final coalgebras of container functors from the capacity to
construct the initial algebras of container functors. In order to do this, we must construct the
iteration of container functors (to build the chain) and show that all container functors are
ω-continuous. Since we only need to build iterations of container functors applied to the
terminal object �, we build that directly. We define the following variation of W, cut-off
at a known depth:

data WM (S : Set) (P : S → Set) : � → Set where
wm� : WM S P zero
sup : ∀ {n} → � S � P � (WM S P n) → WM S P (suc n)

Note that WM is itself encodable as an indexed WI-type (and, by the final result in Sec-
tion 7.1, a W-type):

WM′ : (S : Set) (P : S → Set) → � → Set
WM′ S P = WI S′ P′

where
S′ : � → Set
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S′ zero = �
S′ (suc n) = S
P′ : (n : �) → S′ n → � → Set
P′ zero = ⊥
P′ (suc m) s n with m ?= n
P′ (suc .n) s n | yes refl = P s
P′ (suc m) s n | no ¬p = ⊥

Our candidate for the final coalgebra of � S � P � is, then, the limit of the chain WM S P,
along with the truncation of a tree of depth suc n to one of depth n. This truncation is
achieved by the repeated application of the morphism part of the container functor to the
unique morphism into the terminal object. Or, more concretely:

trunc : ∀ {S P} → (n : �) → WM S P (suc n) → WM S P n
trunc zero (sup (s, f)) = wm�
trunc (suc n) (sup (s, f)) = sup (s, trunc n ◦ f)

Now, we can build the chain of finite iterations of a container functor whose limit will form
the final coalgebra of the container functor.

M-chain : (S : Set) (P : S → Set) → Chain
M-chain S P = WM S P, trunc

Proposition 7.2
All container functors are ω-continuous. That is, they preserve ω-limits.

Proof
We want to build the isomorphism F (LIM (A,a)) ∼= LIM ((F ◦ A),F ◦ a) in the case that
F is a container functor. However, the function from left to right is uniquely given by the
universal property of LIM for all functors F : Set → Set. To show this, we build the cone
for the chain ((F ◦ A),F ◦ a):

FA0 FA1

Fa0�� FA2

Fa1�� · · · FAn−1 FAn

Fan−1�� · · ·

F (LIM (A,a))

Fπ0

�����������������������������

Fπ1

����������������������

Fπ2

														

Fπn−1

��
















Fπn

�����������������������

The small triangles in the diagram above obviously commute, so there exists a unique
morphism from F (LIM (A,a)) into LIM ((F ◦ A),F ◦ a). All that remains then, is to
construct an inverse to this unique morphism, in the case that F ≡ � S � P �, that is
we must build a function:

ω-cont : LIM ((λ n → (s : S)× (P s → A n))
, λ n → λ {(s, f) → (s,a n ◦ f)})

→ (s : S)× (P s → (LIM (A,a)))
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Note that the shape picked at every point along the chain that we are given must be the
same, in order to make the diagrams commute. This is the key insight into constructing
this function:

ω-cont (f,p) =
(π0 (f zero),λ x →

(λ n → π1 (f n) (subst P (f0≡ n) x))
,λ n → begin

a n (π1 (f (suc n)) (subst P (f0≡ (suc n)) x))
∼=〈 exteq-1 (cong (P ◦ π0) (p n)) (λ ∼= → refl)

(cong π1 (p n))
(begin

subst P (f0≡ (suc n)) x
∼=〈 subst-removable P (f0≡ (suc n)) x 〉

x
∼=〈 sym (subst-removable P (f0≡ n) x) 〉

subst P (f0≡ n) x �) 〉
π1 (f n) (subst P (f0≡ n) x) �)

where f0≡ : (n : �) → (π0 (f 0)) ≡ (π0 (f n))
f0≡ zero = refl
f0≡ (suc n) = trans (f0≡ n) (sym (cong π0 (p n)))

�

Now, since we have established that M-chain is isomorphic to the chain of iterations
of container functors, and that all container functors are ω-continuous, we know that the
terminal co-algebra of a container functor must be the limit of its M-chain:

M : (S : Set) (P : S → Set) → Set
M S P = LIM (M-chain S P)

In this section, we have established that we can derive WI-types from W (and by duality
we argue MI types from M) and also M types from W, by these results we can reduce
all the constructions in this paper to the setting of extensional type theory with W-types,
or equivalently, any Martin-Löf category. That is to say, in the move from containers to
indexed containers, we require no extra structure in our underlying type theory.

8 Strictly positive families

We have developed indexed containers as representations of those indexed functors which,
intuitively, support shapes and positions metaphor. These shapes and positions are just
as with standard containers apart from the fact they are indexed. We now introduce a
grammar for strict positivity suitable for generating inductive families, and show that all
such functors can be encoded as indexed container functors. This grammar defines what we
call the strictly positive families. Strictly positive families are in turn defined from indexed
strictly positive types as follows:
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mutual
SPF : (I J : Set) → Set1
SPF I J = J → ISPT I

data ISPT (I : Set) : Set1 where
ηT : (i : I) → ISPT I
ΔT : ∀ {J K} (f : J → K) (F : SPF I K) → SPF I J
ΣT : ∀ {J K} (f : J → K) (F : SPF I J) → SPF I K
ΠT : ∀ {J K} (f : J → K) (F : SPF I J) → SPF I K
μT : ∀ {J} (F : SPF (I � J) J) → SPF I J
νT : ∀ {J} (F : SPF (I � J) J) → SPF I J

We show how to interpret strictly positive families as indexed containers and hence
indexed functors.

mutual
� �T� : ∀ {I J} → SPF I J → ICont� I J
� F �T� = λ j → � F j �T

� �T : ∀ {I} → ISPT I → ICont I
� ηT i �T = ηC i
� ΔT f F j �T = ΔC f � F �T� j
� ΣT f F k �T = ΣC f � F �T� k
� ΠT f F k �T = ΠC f � F �T� k
� μT F j �T = μC � F �T� j
� νT F j �T = νC � F �T� j

Just as indexed containers support a relative monad structure, so do strictly positive
families:

mutual

ISPT : ∀ {I J} → (I → J) → ISPT I → ISPT J
ISPT γ t = t >>=T (ηT ◦ γ)

SPF : ∀ {I J K} → (I → J) → SPF I K → SPF J K
SPF γ t k = ISPT γ (t k)

>>=T : ∀ {I J} → ISPT I → SPF J I → ISPT J
ηT i >>=T F = F i
ΔT f G j >>=T F = ΔT f (λ k → G k >>=T F) j
ΣT f G k >>=T F = ΣT f (λ j → G j >>=T F) k
ΠT f G k >>=T F = ΠT f (λ j → G j >>=T F) k
μT G j >>=T F = μT (λ k → G k >>=T [(SPF inl F),(ηT ◦ inr)]) j
νT G j >>=T F = νT (λ k → G k >>=T [ (SPF inl F),(ηT ◦ inr)]) j

As defined above this doesn’t pass Agda’s termination check, due to deriving the ISPT
from the monad instance. If we define the map of the functor directly the whole thing
obviously terminates, at the expense of having to show that the two definitions of the map
for ISPT agree.

https://doi.org/10.1017/S095679681500009X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681500009X


38 T. Altenkirch et al.

Proposition 8.1
(ISPT,ηT, >>=T ) is a relative monad on the lifting functor ↑ : Set → Set1. Moreover,
this structure is preserved under the translation to containers � �T.

Proof
To prove the structure is a relative monad, we observe that the following equalities hold:

For F : ISPT K, G : SPF J K, H : ISPT I J:

H j ≡ (ηT j) >>=T H (4)

F ≡ F >>=T ηF (5)

(F >>=T G) >>=T F ≡ F >>=T (λ k → (G k) >>=T H) (6)

The first is by definition, and the others follow by induction on F. To show that the
structure is preserved by � �T it is sufficient to show that for all F : ISPT J and G : SPF I J
there exist mutually inverse container morphisms bindpres and bindpres-1:

bindpres : (� F >>=T G �T) ⇒C (� F �T >>=C � G �T�)
bindpres-1 : (� F �T >>=C � G �T�) ⇒C (� F >>=T G �T)

�

We finish by showing how strictly positive families represent some of the key indexed
datatypes we saw in the beginning of the paper. We start by showing that, as with indexed
containers and indexed functors, strictly positive families support disjoint unions and carte-
sian products.

⊥T : ∀ {I} → ISPT I
⊥T = ΣT {J = ⊥} {K = �} (λ ())

�T : ∀ {I} → (F G : ISPT I) → ISPT I
F �T G = ΣT {K = �} (λ b → if b then F else G)

�T : ∀ {I} → ISPT I
�T = ΠT {J = ⊥} {K = �} (λ ())

×T : ∀ {I} → (F G : ISPT I) → ISPT I
F ×T G = ΠT {K = �} (λ b → if b then F else G)

We can now define finite sets, vectors and lambda terms as strictly positive families.

TFin : SPF ⊥ �
TFin = μT (ΣT suc (�T �T (ηT ◦ inr)))

TVec : SPF � �
TVec = μT ( ΣT {J = �} (λ → zero) (λ → �T)

�T ΣT suc (λ n → ηT (inl ) ×T ηT (inr n)))

TScLam : SPF ⊥ �
TScLam = μT ( SPF (λ ()) TFin

�T (((ηT ◦ inr) ×T (ηT ◦ inr))
�T ΔT suc (ηT ◦ inr)))

Note that we have to weaken the reference to TFin in the definition of TScLam, since
under the μT we can refer to the recursive TSCLam trees, but TFin itself can refer to no
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variables. We can also define the mutual types Ne and Nf. Here, a copy of the normal forms
is defined inside the definition of the neutral terms, and vice versa:

TNeLam : SPF ⊥ �
TNeLam = μT (SPF (λ ()) TFin

�T ((ηT ◦ inr) ×T TNeNf))
where TNeNf : SPF (⊥ � �) �

TNeNf = μT ( (ΔT suc (ηT ◦ inr))
�T (ηT ◦ (inl ◦ inr)))

TNfLam : SPF ⊥ �
TNfLam = μT ( ΔT suc (ηT ◦ inr)

�T TNfNe)
where TNfNe : SPF (⊥ � �) �

TNfNe = μT ( SPF (λ ()) TFin
�T ((ηT ◦ inr) ×T (ηT ◦ (inl ◦ inr))))

From these definitions, we can derive the actual datatypes with constructors and elimi-
nators by unfolding all definitions. Example, in the case of TFin we derive the container

TFinC : ICont� ⊥ �
TFinC = � TFin �T�

the next step is to construct the associated indexed functor:

TFinF : IFunc� ⊥ �
TFinF = � TFinC ��

and finally the actual datatype

Fin : � → Set
Fin n = (TFinF n) (λ ())

We leave the laborious derivation of the constructors and the eliminator to the reader.

9 Conclusions

We have shown how inductive and co-inductive families, a central feature in dependently
typed programming, can be constructed from the standard infrastructure present in type
theory, i.e. W-types together with Π, Σ and equality types. Indeed, we are able to reduce
the syntactically rich notion of families to a small collection of categorically inspired
combinators. This is an alternative to the syntactic schemes to define inductive families
present in the Calculus of Inductive Constructions (CIC), or in the Agda and Epigram
systems. Indeed, indexed containers can also be viewed as normal forms of Dybjer–Setzer
codes (Dybjer & Setzer 2006) for non-recursive indexed inductive definitions. We are
able to encode inductively defined families in a small core language which means that we
rely only on a small trusted code base. The reduction to W-types requires an extensional
propositional equality. Our current approach using an axiom ext is sufficient for proofs but
isn’t computationally adequate. A more satisfying approach would built on Observational
Type Theory (OTT) (Altenkirch et al. 2007).
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The present paper is an annotated Agda script, i.e. all the proofs are checked by the
Agda system. We have tried hard to integrate the formal development with the narrative. In
some cases, we have suppressed certain details present in the source of the paper to keep
the material readable.

A more serious challenge are mutual inductively (or coinductively) defined families
where one type depends on another (Nordvall Forsberg & Setzer 2010; Nordvall Forsberg
2013). A typical example is the syntax of type theory itself which, to simplify, can be
encoded by mutually defining contexts containing terms, types in a given context and terms
in a given type:

Con : Set
Ty : Con → Set
Tm : (Γ : Con) → Ty Γ → Set

In recent work (Altenkirch et al. 2011), present a categorical semantics for this kind of
definitions based on dialgebras. However, a presentation of strictly positive definitions in
the spirit of containers is not yet available.
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