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Abstract. This paper generalises an argument for probabilism due to Lindley [9]. I extend
the argument to a number of non-classical logical settings whose truth-values, seen here as ideal
aims for belief, are in the set {0, 1}, and where logical consequence |= is given the “no-drop”
characterization. First I will show that, in each of these settings, an agent’s credence can only
avoid accuracy-domination if its canonical transform is a (possibly non-classical) probability
function. In other words, if an agent values accuracy as the fundamental epistemic virtue, it is a
necessary requirement for rationality that her credence have some probabilistic structure. Then
I show that for a certain class of reasonable measures of inaccuracy, having such a probabilistic
structure is sufficient to avoid accuracy-domination in these non-classical settings.

§1. Overview. It is a common assumption in formal epistemology that an agent’s
beliefs can be represented by (or even identified with) a credence function cr, which
assigns to each proposition A a number cr(A) ∈ R, interpreted as the agent’s degree of
belief in that proposition. On this foundation is built the position known as probabilism;
the claim that, in order to be rational, an agent’s credence function must be a probability
distribution. In other words, supporters of probabilism see the probability axioms as
epistemic norms that all rational agents should respect.1

One way to argue for probabilism is to show that probabilistic credences are in
some way more epistemically valuable than non-probabilistic ones. Many arguments
to this effect assume that the fundamental value of credences is their accuracy, which
intuitively reflects how closely they align with the truth. The concept of accuracy is
made precise by introducing inaccuracy measures, functions I (cr, w) which assign a
penalty to the credence cr for each state of the world w. These measures are then used to
show that a rational agent who values accuracy ought to have probabilistic credences.

Clearly, a great deal of an accuracy argument’s strength rests on what we take to be
a reasonable accuracy measure. This will be a main theme in this essay, which aims to
generalize an accuracy argument due to Lindley. Lindley’s argument makes remarkably
weak assumptions on what should count as a reasonable accuracy measure; because
of this, it leads to a weaker set of rationality norms than probabilism proper, one that
has a number of interesting philosophical ramifications.
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1 It remains up for debate to what extent human agents can hope to be rational in this sense.
Here I avoid the problem by discussing probabilism as a theory of purely ideal rationality.
For an in-depth treatment of this issue, see Staffel [16].
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The generalization I pursue involves the logical setting of the argument. Like most
accuracy arguments in the literature, Lindley’s assumes that sentences are either true
or false, and that logical consequence is defined in the classical way. Although [20] has
generalized an argument due to Joyce [6] to a broad class of non-classical settings, this
generalization relies on Joyce’s specific assumptions on what counts as an accuracy
measure, and thus cannot be applied to Lindley’s argument. I will proceed in a
fundamentally different way to extend Lindley’s argument to some of the non-classical
settings discussed by Williams.

I will start in Section 2 by introducing probabilism as an epistemological position,
and accuracy arguments as a way to justify it. Section 3 is an overview of
Lindley’s accuracy argument, with particular attention devoted to spelling out its
assumptions and philosophical consequences. The remainder of the paper contains
my generalisation of Lindley’s argument. Section 4 prepares the ground by making
precise the non-classical settings which I will be working with, and the non-classical
probability axioms I will be justifying as rational norms for credences. In Section 5
prove the main result: rational agents are required to have credences whose transforms
obey the non-classical probability axioms, if they want to avoid accuracy-domination.
Section 6 discusses the problem of a converse result, and shows that, for a class
of reasonable inaccuracy measures, having a probabilistic transform is sufficient to
avoid accuracy-domination. Some open problems are briefly outlined in Section 7, and
Section 8 concludes the essay with a summary of its main results.

§2. Probabilism and accuracy. Let’s start by introducing some notation. We
consider an agent who has beliefs towards a set of sentences F in a finite propositional
language L, which includes the standard connectives ∧,∨,¬. We assume F to be closed
under ∧,∨,¬. For the moment, we restrict ourselves to the classical case, and assume
that each sentence in L must be either true or false (this assumption will be abandoned
in later sections). We denote this by taking S = {true, false} as our set of truth-
statuses. We will consider a finite set W of functionsw : F → S satisfying the classical
truth conditions (e.g., w(A) = true iff w(¬A) = false). Each w ∈W is a classically
possible world. The agent’s beliefs are modeled by credence functions cr : F → R, with
cr(A) being interpreted as the agent’s degree of belief in A. We denote by Cred the set
of all credence functions defined over F .

A popular way to argue for probabilism starts from the idea that the fundamental
epistemic virtue of a credence is its accuracy. Accuracy is taken to be a gradational
concept: one is more accurate at a world w the higher one’s degree of belief in the
sentences that are true at w, and the lower one’s degree of belief in the sentences that
are false at w. It is normally assumed that credence 0 represents complete lack of belief,
and that credence 1 represents the maximum degree of belief the agent can have; thus
the function �·�w defined by:

�A�w =

{
1, if w(A) = true,
0, if w(A) = false,

(1)

will be the most accurate credence at world w.2 We can think of �·�w as providing an
aim for belief at world w, in the sense that it is the credence of an ideal agent who

2 As explained in greater detail below, the choice of values 0 and 1 is arbitrary, and any other
pair of values could be used to the same effect.
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knows the truth or falsity of every proposition, and thus will assign maximum belief
to all truths, and minimum belief to all falsities [20]. I refer to the value �A�w as the
truth-value of A at world w.

Most accuracy arguments for probabilism follow the same three-step structure.

1. A function (or class of functions) I : Cred ×W → R is defined, such that
I (cr, w) is a reasonable measure of how accurate the credence function cr is at
world w (i.e., how “close” it is to the ideal credence �.�w). Whether I assigns
higher values to more accurate credences and lower values to less accurate ones,
or vice versa, is just a matter of convention. Throughout this paper we will
assume that the higher the value I (cr, w), the more inaccurate the credence cr is
at world w. This way, the function I will act as a kind of distance between the
agent’s beliefs and the ideal credence. I will write IG to denote the inaccuracy of
a credence cr on a subset G of F .

2. As a second step, the accuracy measure I is used to define one or more rationality
requirements. For example, we may think that an agent with credence function cr
is not rational if there is another credence function cr′ that is more accurate than
cr in every possible world. This is known as the Non-Dominance requirement.

3. Finally, a theorem proves that in order for an agent’s credence to be rational
according to the specified measure and requirement, it must be probabilistic.

A classical example of accuracy argument is due to Joyce [6], who takes advantage
of an earlier theorem proven by De Finetti [2]. Following the above schema, Joyce
begins by laying down some conditions to establish what functions can be considered
appropriate measures of accuracy. Then, the Non-Dominance criterion is introduced
as a way of discriminating between rational and irrational credences. Finally, Joyce
proves the following result:

• Accuracy Theorem: When evaluating credences with an acceptable accuracy
measure I, every non-probabilistic credence cr is accuracy-dominated by a
probabilistic cr′, meaning that cr′ is more accurate than cr in each world. More
formally:

I (cr′, w) < I (cr, w) (2)

for every possible world w ∈W .

Putting the pieces together, we deduce that the credence function cr of a rational agent
must be probabilistic, for otherwise there would be some other credence function cr′

which is more accurate than cr no matter what, and this we regard as a failure of
rationality on the part of the agent.

Most of the criticism of Joyce’s argument is directed towards its assumptions, rather
than towards the theorem that contains the argument’s deductive step. In particular,
the following have been questioned:

(i) The assumption that the rationality of an agent’s beliefs depends on how
accurate her credence is with regards to the actual world.

(ii) The assumption that a rational credence function should not be accuracy-
dominated (Non-Dominance).

(iii) Assumptions on what counts as an acceptable accuracy measure.

Critics of (i) argue that accuracy is not the only criterion required to define rationality.
Other properties of an agent’s beliefs, such as the degree by which they are supported
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by evidence, or their behavioural implications, might be just as (if not more) important
for the agent’s epistemic profile. Furthermore, these other virtues might trade-off
with accuracy, so that pursuing the one requires implies giving up the other [1].
A serious answer to this objection goes beyond the scope of this essay, and has
already been discussed at length by others.3 However, I hope that even a sceptical
reader will agree that there are at least some contexts in which credal accuracy is the
most important epistemic desideratum—think for example of a meteorologist making
weather predictions, or a computer program making economic forecasts. The sceptic
can read the present discussion as limited in scope to those contexts. After settling
on (i), (ii) is fairly uncontroversial: if all we care about is accuracy, and cr′ is more
accurate than cr no matter what, then there’s no reason why we should hold the latter
instead of the former. On the other hand, Joyce’s assumptions on (iii) what counts as
an acceptable accuracy measure are not trivial, and they have sparked considerable
debate [10].4

Given the above discussion, it is natural to ask ourselves whether it’s possible to
justify probabilism with a different set of conditions on what an appropriate measure
of accuracy should be like. Many justifications of probabilism rely on a specific class
of measures of inaccuracy, which are called strictly proper [7, 14, 15].

Definition 2.1 ((Strictly) proper inaccuracy measure). Let W be a finite set of worlds
mapping sentences in F into {true, false}. Then I is proper iff for every probability
function p and every finite subset G ⊆ F , the expected score

Expp[IG(cr, ·)] =
∑
w∈W

p({w})IG(cr, w), (3)

taken as a function of cr for fixed p, is minimized when cr = p. Furthermore, if cr = p
uniquely minimises this function (on all finite G’s ), we say that I is strictly proper.5

Intuitively, the above definition requires that the inaccuracy measure I make
all probabilistic credences immodest, in the sense that an agent whose beliefs are
represented by such a credence would expect her own beliefs to be more accurate
than any other. By arguing that these rules provide reasonable measures of epistemic
accuracy, and assuming Non-Dominance to be a rationality requirement, it’s possible
to show that all rational credences respect the probability axioms.

Lindley [9] also evaluates an agent’s beliefs in terms of their accuracy, and takes Non-
Dominance to be a requirement for rational credences. However, he considers a class of
reasonable accuracy measures other than the class of proper ones. This difference in his
assumptions leads him to a weaker conclusion. Avoiding accuracy-domination does
not require credences to be probabilistic; instead, Lindley argues, it merely requires
that they can be transformed into probabilistic functions by a canonical transform.

3 The standard references are Pettigrew [13, 14], in which it is argued that accuracy is the
fundamental epistemic virtue on the basis that all others can be derived from it. This position
is known as veritism.

4 Joyce himself has adjusted and extended his argument over the years to address some of this
criticism [7]. However, his assumptions are still the subject of debate among epistemologists
[17].

5 The requirement that G be finite guarantees that, defining I as in Section 3, the inaccuracy
IG(cr, w) is finite. If we were measuring accuracy over propositions instead of sentences, then
the requirement that W is finite would suffice.
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In other words, although Lindley’s undemanding assumptions are not sufficient to
justify full-blown probabilism, the rational credences they characterise all share some
probabilistic structure. The details and philosophical significance of this result will be
discussed in more detail in the next section.

§3. Lindley’s argument. I will now go over Lindley’s accuracy argument. I begin
with an overview of the formal result, and then discuss its philosophical consequences.
The result is presented with the notation introduced in the previous section, in order
to simplify the extension to non-classical settings in following sections.

Like Joyce, Lindley begins with assumptions that establish what kind of measure of
inaccuracy should be considered reasonable, and what it means for a credence function
to be rational according to such a measure.

(a) Score assumption: if cr is a credence function defined over F , f is a score
function, andG is a subset ofF , then the total inaccuracy of cr at world w overG
is given by

∑
A∈G f(cr(A), �A�w). I will abuse the notation and use the symbol

f to denote both the local score function and the global inaccuracy measure
defined by that score function. So the score assumption can be written as:

IG(cr, w) = fG(cr, w) =
∑
A∈G
f(cr(A), �A�w). (4)

Note that the inaccuracy of cr over an infinite G may be infinite, so the range
of IG is the extended real numbers.

(b) Admissibility assumption: We say an agent’s credence cr : F → R is accuracy-
dominated on a finite subset G ⊂ F (according to the inaccuracy measure f ) iff
there is some other credence function cr′ such that:∑

A∈G
f(cr′(A), �A�w) ≤

∑
A∈G
f(cr(A), �A�w) (5)

for all possible worlds w ∈W , with some worlds in which the inequality
is strict. This means that cr is never more accurate than some other cr′

on G, no matter what world is the case, and in some worlds cr′ is more
accurate than cr. We say cr is accuracy-dominated (according to f ) if it is
accuracy-dominated on some finite G ⊂ F . We then introduce the following
rationality criterion: a credence cr is rationally admissible according to an
inaccuracy measure f only if it is not accuracy-dominated according to that f
(Non-Dominance).

(c) Origin and Scale assumption: There are two distinct values xF , xT ∈ R with
xF < xT , such that:
• xF is the only rationally admissible value for cr(A) if A is false in all

possible worlds w ∈W .
• xT is the only rationally admissible value for cr(A) if A is true in all possible

worlds w ∈W .
In Lindley’s argument, the credence values xF , xT represent the agent’s

certainty in the falsity/truth of a proposition, respectively.
(d) Regularity assumptions: The credence cr can assume all values in a closed,

bounded interval J ⊂ R. There exists the derivative f′(x, y) of f(x, y) with
respect to x ∈ J . This derivative is continuous in x for each y and, for both

https://doi.org/10.1017/S1755020322000053 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000053


1058 GIACOMO MOLINARI

y = 0 and y = 1, is zero at no more than one point. Also xF and xT are interior
points of J.

Lindley’s assumptions are too weak to imply that all rational credences be
probabilistic. Instead they imply that a rational credence’s canonical transform must
respect the probability axioms. For each inaccuracy measure f, this transform is
obtained by composing the agent’s credence with the function Pf : R → R defined as:

Pf(x) :=
f′(x, 0)

f′(x, 0) – f′(x, 1)
. (6)

Lindley’s proof is then developed via three main lemmas, each showing that Pf ◦ cr
respects one of the probability axioms. The axioms are taken to be:

0 ≤ P(A) ≤ 1, (A1)

P(A) + P(¬A) = 1, (A2)

P(A ∧ B) = P(A)P(A|B). (A3)

After proving the lemmas, the following theorem can be derived straightforwardly:

Theorem 3.2 (Lindley [9]). Under the assumptions (a –– d ) listed above, if cr : F → R

is admissible according to a reasonable inaccuracy measure f (i.e., cr is not accuracy-
dominated under f), and if Pf is the canonical transform defined as in (6), then the
composite function (Pf ◦ cr) : F → R obeys the probability axioms (A1)–(A3).

To better understand the nature of Lindley’s conclusions, it will be useful to discuss
the assumptions he makes about the inaccuracy measures. In particular, we will
compare the kind of measures of accuracy he considers reasonable to the (strictly)
proper measures which are commonly used in accuracy arguments for probabilism.
Assumption (a) demands that the total inaccuracy of a credence cr over G is simply
the sum of the scores f(cr(A), �A�w) on each A ∈ G. This is also commonly assumed
for proper inaccuracy measures, which are usually defined as sums of proper scoring
rules. Assumption (c) reflects the fact that the rational credence values cr(
) = 1 for a
tautology, and cr(⊥) = 0 for a contradiction, are conventional. This level of generality
can also be achieved by proper inaccuracy measures. In his reply to Howson, Joyce
[8] shows that we can adapt these measures so that any two values may be used as
the endpoints of a rational credal scale. By doing so we derive a different form of
probabilism, where the usual probability axioms are substituted by “scale-invariant”
formulations. Assumption (d) mainly requires the score functions to be smooth. This
guarantees that if the credence cr(A) is very close to cr′(A), the respective scores will
be close as well. It also adds some further technical conditions, some of which can be
weakened (see [9]).

If we restrict ourselves to smooth inaccuracy measures in the sense of (d), then
the measures Lindley finds reasonable are a strictly larger class than the proper ones.
Indeed, Lindley points out that, among the inaccuracy measures he considers, the
proper ones are those that “lead[] directly to a probability” [9, p. 7]. By this he means
that the transform Pf defined from a proper inaccuracy measure f is simply the
identity function, so Pf ◦ cr = cr for each cr ∈ Cred . As a consequence of this, for a
credence cr to be non-dominated under a proper measure of inaccuracy, cr must itself
be probabilistic, regardless of whether we define probability by means of the standard
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or “scale-invariant” axioms. Under Lindley’s more general assumptions, on the other
hand, it might be that a non-probabilistic cr is non-dominated under f (when f is not
proper). In this case, the transform Pf ◦ cr produces a different credence cr′, which
Theorem 3.2 ensures is probabilistic, again with either standard or “scale-invariant”
fomulations of the axioms.6

Titelbaum [17] suggests that Lindley’s conclusions can be interpreted in different
ways depending on one’s position with regards to the numerical representation of
beliefs. On one hand, if we think all that matters to an epistemologist are qualitative
statements like “Sally believes A more than B,” then quantifying the agent’s beliefs
with real numbers is a useful modeling technique, but nothing more than that. Since
different credence functions corresponding to the same probability distribution are
ordinally equivalent, according to this view they are just different ways to represent
the same beliefs. Every rational credence is then either probabilistic, or, by Lindley’s
theorem, epistemically equivalent to a probabilistic one.

On the other hand, we may think that numeric representations capture some
deeper facts about belief, facts that cannot always be expressed by mere qualitative
judgements. In this case, there can be a real difference between ordinally equivalent
credence functions, and in particular between a credence function and its probabilistic
transform. So the result takes a more negative light, showing just how demanding
our assumptions have to be in order to induce full-blown probabilism. This double
relevance of Lindley’s argument makes it an interesting target for generalization, which
will be the subject of the next section.

§4. Non-classical generalisation: the set-up. This section lays the groundwork for
the generalization of Lindley’s accuracy argument in Section 5 First of all, I specify
the family of non-classical logics to which my generalised result applies, and then
list some of them. I show that Lindley’s proof of Theorem 3.2 does not extend to
these settings in general, and explain why this has to do with the axiomatisation of
probability he is working with. Secondly, I clarify what my generalised result establishes
by presenting an alternative version of the probability axioms, due to Paris [12], which
characterises closed convex combinations of truth-values in the non-classical settings
under consideration.

This setup closely follows the one used by Williams in his generalization of Joyce’s
accuracy argument. To prove his accuracy theorem, Joyce [6] uses the fact that
probability functions are convex combinations of the ideal credences induced by each
(classically) possible world, which I denoted earlier by �·�w . In his generalization,
Williams [19, 20] takes advantage of the fact that the concept of convex combination
can be easily extended to the non-classical case. More precisely: if the truth-status of
a sentence A at world w is w(A), Williams interprets the truth-value �A�w as the ideal
belief of an agent towards A, if w is the case. Then nonclassical probabilities end up
being convex combinations of the functions �.�w induced by each non-classical possible
world.

Unlike Joyce, however, Lindley does not rely on a concept like that of convex
combinations which can be so readily generalized. In order to transfer Lindley’s
argument to the non-classical case, I will need to adjust some of his assumptions and

6 Further discussion of this point can be found in Joyce [7, sec. 10].
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proofs in Section 5 My conclusion will also be different; whereas Williams vindicates
full-blown non-classical probabilism, I aim to justify its weaker version, analogous to
that justified by Lindley: in a number of non-classical settings, all rational credence
functions can be canonically transformed into functions that respect Paris’s generalised
probablity axioms.

We are interested in generalising Lindley’s argument to non-classical logics with
truth-values in {0, 1}. We do not impose any restrictions on the set S of truth-statuses
of these logics, but we do require that the truth-value assignment functions �·�w of
each possible world w ∈W satisfy the following:

�A�w = 1 and �B�w = 1 ⇐⇒ �A ∧ B�w = 1, (TV1)

�A�w = 0 and �B�w = 0 ⇐⇒ �A ∨ B�w = 0. (TV2)

Since we interpret truth-values as aims for belief, the above conditions concern the
ways an ideal agent’s degree of belief in a composite propositions is constrained by
her degree of belief in its components. The classical setting with its usual truth-value
assignment clearly satisfies both conditions, and so we include it as a particular case
of the more general non-classical pattern. But many non-classical settings also fall
within this family. Here I list some of them, again following Williams [20] in their
definition7:

• Classical:
– S := {true, false}.
– The truth-value mapping �.�w is defined by:

�A�w =

{
1, if w(A) = true,

0, if w(A) = false.

– ∧,¬ follow their usual classical truth tables.
• LP Gluts:

– S := {true, both, false}
– The truth-value mapping �.�w is defined by:

�A�w =

{
0, if w(A) = false,

1, otherwise.

– The connectives ∧,¬ follow the rules:

w(A ∧ B) =

⎧⎪⎨
⎪⎩
true, if w(A) = true and w(B) = true,
false, if w(A) = false or w(B) = false,
both, otherwise.

w(¬A) =

⎧⎪⎨
⎪⎩
true, if w(A) = false,
false, if w(A) = true,
both, if w(A) = both.

• Kleene gaps: (see Appendix)

7 For reasons of space, only the classical and LP cases are written out here. The definitions of
the other logics can be found in the Appendix.
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• Intuitionism: (see Appendix)
• Fuzzy Gaps (finite or infinite): (see Appendix)

Lindley’s proof does not apply in general to these logical settings. To show this, I
take as an example Lindley’s proof of (A2), showing how it breaks in the case of LP
Gluts. This is also a nice way to introduce Lindley’s proof strategy, which I will adapt
later in this section.

Proposition 4.3 (Lindley’s Lemma 2 [9]). Under the assumptions (a-d ) listed in
Section 3, if the credence cr : F → R is not accuracy-dominated according to a reasonable
inaccuracy measure f, then for all A ∈ F :

Pf(cr(A)) + Pf(cr(¬A)) = 1. (7)

Proof. Classical case: Assume cr is not accuracy-dominated for some inaccuracy
measure f. There can be only two distinct (classically) possible worlds w1, w2 with:
w1(A) = true, w1(¬A) = false and w2(A) = false, w2(¬A) = true. Let x := cr(A)
and y := cr(¬A). Then from the Score assumption (a) we know that the total
inaccuracy in the two possible cases is:

f(x, 1) + f(y, 0), (8)

f(x, 0) + f(y, 1). (9)

Now we move from cr to a new credence distribution cr′ such that:

cr′(A) = cr(A) + h = x + h, (10)

cr′(¬A) = cr(¬A) + k = y + k, (11)

cr′(B) = cr(B) for all other B ∈ F , (12)

with h, k ∈ R. You can think of this as nudging our credence in A by some small
quantity h, nudging our credence in ¬A by some small quantity k, and leaving
unchanged our credence in all other sentences in F . The idea is that, since cr is
not accuracy-dominated, it should not be possible to decrease our total inaccuracy in
every world by means of this sort of nudging.

By Score assumption (a) we have that the total inaccuracy of an agent is the sum
of the scores she obtains on each sentence, and since cr and cr′ agree on all sentences
except for A and ¬A, the difference in total inaccuracy between these two credences
will amount to the difference in their scores on A and ¬A:

f(x + h, 1) – f(x, 1) + f(y + k, 0) – f(y, 0), (13)

f(x + h, 0) – f(x, 0) + f(y + k, 1) – f(y, 1). (14)

Thinking of f(x, 1) and f(x, 0) as functions of a single variable x, for small h, k we
can rewrite this shift in accuracy in terms of the derivative of f :

f′(x, 1)h + f′(y, 0)k, (15)

f′(x, 0)h + f′(y, 1)k. (16)
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If we equate these two expressions to small, selected negative values, we get a system
of two linear equations in unknowns h, k, one for each distinct possible world. If this
system had a solution, then defining cr′ as above would make it more accurate than cr
over the set {A,¬A} in all possible worlds, but this would contradict the assumption
that cr is not accuracy-dominated. So the system must not have a solution, that is, its
determinant must be equal to zero.8 This happens when:

f′(x, 1)f′(y, 1) = f′(x, 0)f′(y, 0). (18)

We now expand the sum Pf(x) + Pf(y) using the transform’s definition in (6):

Pf(x) + Pf(y) =
f′(x, 0)

f′(x, 0) – f′(x, 1)
+

f′(y, 0)
f′(y, 0) – f′(y, 1)

, (19)

=
f′(x, 0)f′(y, 0) – f′(x, 0)f′(y, 1) – f′(x, 1)f′(y, 0) + f′(x, 0)f′(y, 0)
f′(x, 0)f′(y, 0) – f′(x, 0)f′(y, 1) – f′(x, 1)f′(y, 0) + f′(x, 1)f′(y, 1)

. (20)

So by (18) we have Pf(x) + Pf(y) = 1, that is,

P(cr(A)) + P(cr(¬A)) = 1, (21)

as needed.9

LP Case: Here there are three distinct possible worldsw1, w2, w3 with:w1(A) = true,
w1(¬A) = false, w2(A) = false, w2(¬A) = true, w3(A) = both, w3(¬A) = both. So
by replicating the procedure above, in our move from cr to cr′ we get the following
variation in accuracy in the three possible cases:

f′(x, 1)h + f′(y, 0)k, (22)

f′(x, 0)h + f′(y, 1)k, (23)

f′(x, 1)h + f′(y, 1)k, (24)

since �A�w = 1 when w(A) = both in LP Gluts. At this point, if we attempt to equate
these expressions to some selected negative values as above, we obtain a system of three
linear equations in unknowns h, k, which does not have a solution in general.

The reason why Lindley’s proof does not immediately extend to non-classical settings
is that the very probability axioms he is trying to justify contain implicit references to
classical logical notions. For example, the definition of tautology is dependent on the
notion of logical consequence: A is a tautology if and only if |= A, where the double
turnstile denotes the classical logical consequence. Axiom (P2) says that (A ∨ ¬A),

8 Denote the small negative values on the right-hand of the first and second equation by �1 and
�2, respectively. By regularity assumption (d), at least one of f′(x, 1) or f′(x, 0) is nonzero.
Let’s say, without loss of generality, that f′(x, 1) �= 0. Then we can divide both sides of the
first equation by this quantity to express h as a function of k. Substituting this expression in
the second equation, we obtain:

(f′(x, 1)f′(y, 1) – f′(x, 0)f′(y, 0))k = �1f
′(x, 1) – �2f

′(x, 0), (17)

which gives us a solution if we can divide both sides by the factor multiplying k. So unless this
factor, which is the determinant of the system, is equal to 0, we have that cr is inadmissible.

9 For boundary cases, see the original proof [9].
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which is a classical tautology, ought to be believed with credence 1. However there
are logical settings in which it might be reasonable to be less than certain about the
truth of (A ∨ ¬A). In a treatment of scientific confirmation, for instance, it might
be appropriate to have low belief in both A and ¬A, and to not be certain of their
disjunction, if neither has received any supporting evidence [18].

If we want to extend Lindley’s argument, we must first understand what probabilism
would look like in a non-classical setting. To this purpose we introduce Paris’s axioms
[12]:

|= A =⇒ P(A) = 1,

A |= =⇒ P(A) = 0,
(P1)

A |= B =⇒ P(A) ≤ P(B), (P2)

P(A ∧ B) + P(A ∨ B) = P(A) + P(B). (P3)

Note that this axiomatisation of probability makes explicit reference to a notion of
logical consequence. When we restrict ourselves to classical logic this notion is uniquely
defined, but many definitions are possible in non-classical contexts. The conclusion of
my generalised accuracy argument will be that Paris’s axioms provide epistemic norms
for a number of non-classical settings when logical consequence is given a no-drop
characterization. This is defined as follows:

Definition 4.4 (No-drop logical consequence).

A |= B iff �A�w ≤ �B�w for every world w ∈W. (25)

This point highlights another perspective from which to consider the generalisation
of Lindley’s accuracy argument presented in this essay. As noted by Williams [20],
the ability to support (some form of) probabilism might offer a reason to prefer
the no-drop characterization of logical consequence over its alternatives, opening
up an interesting connection between our epistemology and the underlying semantic
theory.

Before we move on, it’s worth pointing out an important difference between
Lindley’s result and what we are trying to prove. Lindley’s original argument considers
conditional credences as the fundamental expression of the uncertainty of an agent.
This reflects a stance in the philosophy of probability that sees conditional probability
as the fundamental notion, and derives unconditional probability from it. In contrast
to this view, many textbooks on probability theory, but also many philosophical
treatments, take unconditional judgements as primitive and interpret axiom (A3)
as a definition of conditional probability (see [4, 5] for some discussion of these two
positions). While I will not go over the details of this debate here, I want to point out
that, unlike Lindley’s, my argument will be limited to agents expressing unconditional
beliefs. This is not because I consider unconditional belief to be more fundamental
in any way, but because the relationship between conditional and unconditional
probabilities in a non-classical setting is not at all straightforward. A number of
different approaches are available for specifying it [21], and they can lead to fairly
different results. Thus I will restrict myself to the simpler unconditional case. Indeed,
Paris’s (P1)–(P3), which I try to justify here, do not make any reference to conditional
probability. Thus my goal is not to extend Lindley’s result itself, but rather to generalize
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his argument strategy in order to prove a weaker result in a number of non-classical
settings.

§5. Non-classical generalisation: the necessary condition. It’s time to start working
on our generalization of Theorem 3.2. As mentioned in the previous section, in order
to transfer the argument to a non-classical setting, we need to adapt some of its
assumptions. The obvious place to start is the origin and scale assumption (c): unlike
in the classical case, we don’t have a perfect correspondence between truth-statuses
and truth-values anymore, so we must further specify the role of truth-values as ideal
aims for belief.

(c∗ ) Origin and Scale assumption There are two distinct values, x0, x1 ∈ R with
x0 < x1, such that:
• x0 uniquely minimises f(x, 0).
• x1 uniquely minimises f(x, 1).

This new formulation differs from the original in two ways. First, we use the names
x0, x1 for our admissible values instead of xT , xF . This is because they do not really
correspond to a sentence’s truth status, but rather to the ideal belief the agent should
have in it. Secondly, the way these values are defined is different. Notice that if we
define x0 as in (c), it must be that f(x, 0) is uniquely minimised at x0. If that were not
the case, then having credence cr(A) = xF when �A�w in every possible world would
make one accuracy-dominated, and thus xF would be inadmissible, contradicting our
assumption (similarly for xT ). But in the non-classical case, we might be working in a
logic for which there is no A ∈ F such that �A�w = 0 for all possible worlds, in which
case the previous formulation of the assumption would hold vacuously. Thus we must
directly assume that x0 uniquely minimises f(x, 0) (and similarly for x1).

We begin our generalisation by proving an analogue of Lindley [9]’s Lemma 1.

Lemma 5.5. Under the assumptions (a), (b), and (d ) listed in Section 3 and the
assumption (c∗) above, if the credence function cr : F → R is not accuracy-dominated
under a reasonable inaccuracy measure f, then:

1. For all A ∈ F , cr(A) ∈ [x0, x1].
2. The function Pf : R → R defined as in (6), takes values in [0, 1] for x ∈ [x0, x1].
3. Pf(x) is continuous in [x0, x1], with P(x0) = 0 and P(x1) = 1.

Proof. The proof follows the original one [9]. Assume cr is not accuracy-dominated
according to inaccuracy measure f. Let A ∈ F , and let x := cr(A). By regularity
assumptions we know:

f′(x0, 0) = 0, (26)

f′(x0, 1) = 0, (27)

x < x1 =⇒ f′(x, 1) < 0, (28)

x < x0 =⇒ f′(x, 0) < 0, (29)

x > x1 =⇒ f′(x, 1) > 0, (30)

x > x0 =⇒ f′(x, 0) > 0. (31)
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If we had x > x1 then both derivatives f′(x, 0), f′(x, 1) would be positive, and so
moving to a credence cr′ with cr′(A) = cr(A) – h = x – h for some small positive h
would guarantee a reduction of inaccuracy. But this contradicts our assumption that
cr is not accuracy-dominated. Likewise for x < x0. So we have proven the first point.

Consider now the case where x ∈ [x0, x1]. Decreasing the value of x will decrease
f(x, 0) (i.e., we get “closer” to the ideal belief when A has truth-value 0) but increase
f(x, 1) (i.e., we get “further away” from the ideal belief when A has truth-value 1),
and vice versa when the value of x increases. We can now see from Pf ’s definition that
Pf(x) ∈ [0, 1], so the second point holds. Also, from the continuity of f′(x, y), we
have that Pf is continuous for all non-dominated degrees of belief x ∈ [x0, x1], and:

Pf(x0) =
f′(x0, 0)

f′(x0, 0) – f′(x0, 1)
, (32)

=
0

0 – f′(x0, 1)
, (33)

= 0. (34)

and, similarly, Pf(x1) = 1. This proves the third point.

From Lemma 5.5 we obtain that Pf ◦ cr respects (P1). We prove now that (P3) is
also satisfied, employing a similar strategy to that used by Lindley for his Lemma 2.
In the proof we will use the LP Gluts case as an example, and explain how analogous
proofs can be constructed for the other settings under consideration.

Lemma 5.6. Under the assumptions (a), (b), and (d ) listed in Section 3 and the
assumption (c∗) above, if the credence function cr : F → R is not accuracy-dominated
under a reasonable inaccuracy measure f, then for any A,B ∈ F :

Pf(cr(A ∧ B)) + Pf(cr(A ∨ B)) = Pf(cr(A)) + Pf(cr(B)). (35)

Proof. Assume the credence function cr is not accuracy-dominated under the
inaccuracy measure f. Let A,B ∈ F and let x := cr(A), y := cr(B), p := cr(A ∧
B), s := cr(A ∨ B). We want to prove that

Pf(x) + Pf(y) = Pf(p) + Pf(s). (36)

Applying the Definition (6) of Pf and moving all the terms to the left-hand side, this
becomes:

f′(x, 0)
f′(x, 0) – f′(x, 1)

+
f′(y, 0)

f′(y, 0) – f′(y, 1)
–

f′(p, 0)
f′(p, 0) – f′(p, 1)

–
f′(s, 0)

f′(s, 0) – f′(s, 1)
=0.

(37)

The expression on the left-hand side can be simplified to have a common denominator.
Let φ be the numerator of the resulting fraction. Ultimately, then, we need to prove:

φ = 0. (38)
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Now in the case of LP Gluts, we have at most nine distinct possible worlds. These are:

World A B A ∧ B A ∨ B
w1 true true true true
w2 true both both true
w3 true false false true
w4 both true both true
w5 both both both both
w6 both false false both
w7 false true false true
w8 false both false both
w9 false false false false

which lead to the following inaccuracy for each possible case (note that �both� = 1):

f(x, 1) + f(y, 1) + f(p, 1) + f(s, 1), (39)

f(x, 1) + f(y, 1) + f(p, 1) + f(s, 1), (40)

f(x, 1) + f(y, 0) + f(p, 0) + f(s, 1), (41)

f(x, 1) + f(y, 1) + f(p, 1) + f(s, 1), (42)

f(x, 1) + f(y, 1) + f(p, 1) + f(s, 1), (43)

f(x, 1) + f(y, 0) + f(p, 0) + f(s, 1), (44)

f(x, 0) + f(y, 1) + f(p, 0) + f(s, 1), (45)

f(x, 0) + f(y, 1) + f(p, 0) + f(s, 1), (46)

f(x, 0) + f(y, 0) + f(p, 0) + f(s, 0). (47)

Consider the change from credence cr to a new credence cr′ such that:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
cr′(A) = cr(A) + d1 = x + d1,

cr′(B) = cr(B) + d2 = y + d2,

cr′(A ∧ B) = cr(A ∧ B) + d3 = p + d3,

cr′(A ∨ B) = cr(A ∨ B) + d4 = s + d4.

This leads to a corresponding change in the accuracy for each possible case:

f(x, 1)′d1 + f(y, 1)′d2 + f(p, 1)′d3 + f(s, 1)′d4, (48)

f(x, 1)′d1 + f(y, 1)′d2 + f(p, 1)′d3 + f(s, 1)′d4, (49)

f(x, 1)′d1 + f(y, 0)′d2 + f(p, 0)′d3 + f(s, 1)′d4, (50)

f(x, 1)′d1 + f(y, 1)′d2 + f(p, 1)′d3 + f(s, 1)′d4, (51)
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f(x, 1)′d1 + f(y, 1)′d2 + f(p, 1)′d3 + f(s, 1)′d4, (52)

f(x, 1)′d1 + f(y, 0)′d2 + f(p, 0)′d3 + f(s, 1)′d4, (53)

f(x, 0)′d1 + f(y, 1)′d2 + f(p, 0)′d3 + f(s, 1)′d4, (54)

f(x, 0)′d1 + f(y, 1)′d2 + f(p, 0)′d3 + f(s, 1)′d4, (55)

f(x, 0)′d1 + f(y, 0)′d2 + f(p, 0)′d3 + f(s, 0)′d4. (56)

Again we can equate these expressions to small, selected negative values, and obtain a
linear system in unknowns d1, d2, d3, d4.

However, notice that many of the system’s equations are repeated. This is no
coincidence: we assumed that the truth-value assignment �·� respects (TV1) and (TV2),
which means that the truth-values of A and B are jointly sufficient to determine the
truth-values of A ∧ B and A ∨ B . So for any two worlds w1, w2 such that:

�A�w1 = �A�w2 and �B�w1 = �B�w2 , (57)

the two expressions:

f(x, �A�w1 )′d1 + f(y, �B�w1 )′d2 + f(p, �A ∧ B�w1)′d3 + f(s, �A ∨ B�w1)′d4 and
(58)

f(x, �A�w2 )′d1 + f(y, �B�w2 )′d2 + f(p, �A ∧ B�w2)′d3 + f(s, �A ∨ B�w2)′d4 (59)

will be identical, and will produce identical inequalities in our linear system. Because
we restrict the truth-values of sentences to the two values {0, 1}, once we get rid of
duplicates we will have at most four equalities in our linear system, regardless of which
non-classical setting we are working with.

f(x, 1)′d1 + f(y, 1)′d2 + f(p, 1)′d3 + f(s, 1)′d4, (60)

f(x, 1)′d1 + f(y, 0)′d2 + f(p, 0)′d3 + f(s, 1)′d4, (61)

f(x, 0)′d1 + f(y, 1)′d2 + f(p, 0)′d3 + f(s, 1)′d4, (62)

f(x, 0)′d1 + f(y, 0)′d2 + f(p, 0)′d3 + f(s, 0)′d4. (63)

This gives us a system of four linear equations in four unknowns.
Since we assumed that cr is not accuracy-dominated under f, this system cannot

have a solution, since in that case the shift to cr′ would reduce inaccuracy in every
possible world. So the system’s determinant must be equal to zero. But the determinant
is precisely the expression φ obtained in the first part of the proof. We conclude that
φ = 0, and therefore Pf(x) + Pf(y) = Pf(p) + Pf(s) as needed (boundary cases are
discussed in the Appendix).

Note how in the proof above each equation of the reduced 4 × 4 system corresponds
to one of the four possible classical worlds. Indeed, the result holds for the classical
setting as a particular case of the more general non-classical, {0, 1}-valued one. In
order to prove that (P2) also holds for the transform, we apply a similar technique,
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with the key difference that we are dealing with inequalities rather than with equations.
Again, the the proof for LP Gluts is shown as an example of the general strategy.

Lemma 5.7. Under the assumptions (a), (b), and (d ) listed in Section 3 and the
assumption (c∗) above, if the credence cr : F → R is not accuracy-dominated according
to an acceptable inaccuracy score f, then for any A,B ∈ F :

A |= B =⇒ Pf(cr(A)) ≤ Pf(cr(B)). (64)

Proof. Let x := cr(A) and y := cr(B), and we know that A |= B . Since cr is
admissible, Lemma 5.5 tells us thatx, y ∈ [x0, x1]. First consider the case wherex = x1.
This value is admissible only when �A�w = 1 for all possible worlds w. Furthermore,
from Lemma 5.5 we have that Pf(x) = Pf(x1) = 1. We know from the no-drop
characterization of |= that A |= B iff �A�w ≤ �B�w for all w ∈W . Therefore it must
be that �B�w = 1 for all possible w in the current non-classical interpretation. But then
the only admissible value for y is x1 and Pf(y) = Pf(x1) = 1. So:

1 = Pf(x) ≤ Pf(y) = 1, (65)

as needed.
In the case where x = x0, we have from Lemma 5.5 that P(x) = 0, and since in the

same lemma we proved that Pf(y) ∈ [0, 1] for all admissible y, it clearly holds that
P(x) ≤ P(y). 10

Consider now the case where x, y ∈ (x0, x1). We want to prove thatPf(x) ≤ Pf(y),
which by definition of Pf means:

f′(x, 0)
f′(x, 0) – f′(x, 1)

≤ f′(y, 0)
f′(y, 0) – f′(y, 1)

, (66)

since the denominators are both positive and greater than 0 we can simplify to:

f′(y, 0)f′(x, 1) ≤ f′(x, 0)f′(y, 1), (67)

this inequality is what we are going prove.
We know that A |= B , so in the case of LP Gluts we have at most seven possible

worlds:

World A B �A�wi �B�wi

w1 true true 1 1
w2 true both 1 1
w3 both true 1 1
w4 both both 1 1
w5 false true 0 1
w6 false both 0 1
w7 false false 0 0

For i = 1, ... , 7 the total inaccuracy at world wi is given by:

f(x, �A�wi ) + f(y, �B�wi ). (68)

As in the previous proof, consider the change in the total inaccuracy when we move
from cr to cr′ by changing the credence in A,B of small quantities h, k respectively.

10 Similar cases can be constructed for y = x1 and y = x0.
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By imposing that this inaccuracy change be less then zero we obtain a system of
seven inequalities. Once again, we see that some of these inequalities are duplicates.
Regardless of which one of the non-classical settings under consideration we are
working on, we are forced to assign truth-values in {0, 1} to A and B, and because
of the no-drop characterization of logical consequence, a world where �A�w = 1 and
�B�w = 0 is not possible. So we always obtain a system of at most three inequalities:⎧⎪⎨

⎪⎩
kf′(x, 0) + hf′(y, 0) < 0,
kf′(x, 0) + hf′(y, 1) < 0,
kf′(x, 1) + hf′(y, 1) < 0.

(69)

Since by regularity assumptions f′(y, 0) > 0 for all y ∈ (x0, x1), the first inequality
becomes:

h <– k
f′(x, 0)
f′(y, 0)

, (70)

and the angular coefficient of the corresponding equation is negative, because
f′(x, 0) > 0. Similarly, the second inequality becomes:

h >– k
f′(x, 0)
f′(y, 1)

, (71)

where f′(y, 1) < 0 and so the corresponding angular coefficient is positive. Figure A.1
in the Appendix shows the space of the solutions of these two inequalities. The third
inequality becomes:

h >– k
f′(x, 1)
f′(y, 1)

, (72)

and the corresponding equation has negative angular coefficient. The space of the
solutions of the system is the one highlighted in Figure A.2 in the Appendix.

If this system had a solution, then changing from cr to cr′ would guarantee us
greater accuracy no matter what, which is absurd because cr is assumed to not be
accuracy-dominated. So the space of solutions must be empty, which happens when:

–
f′(x, 1)
f′(y, 1)

≤–
f′(x, 0)
f′(y, 0)

, (73)

that is, when:

f′(y, 0)f′(x, 1) ≤ f′(x, 0)f′(y, 1). (74)

This is exactly the inequality we needed to prove.

Combining the three lemmas above, we get a result analogous to Lindley’s
Theorem 1 [9]:

Theorem 5.8. Under the assumptions (a), (b), and (d ) listed in Section 3 and the
assumption (c∗) above, if cr : F → R is not accuracy-dominated according to a reasonable
inaccuracy measure f, then the transform (Pf ◦ cr) : F → R, where Pf is defined as in
(6), obeys Paris’s probability axioms (P1)–(P3).
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This result, together with our assumption (Non-Dominance) that avoiding accuracy-
domination is a necessary requirement for rationality, shows that all rational credences
must have a probabilistic transform in the logical settings under discussion.

§6. Sufficient conditions. Let us take a moment to look back at the main result of
the previous section, Theorem 5.8 It has the typical form of the accuracy theorems
discussed in Section 2: starting from some assumptions on what counts as a reasonable
measure of inaccuracy, we have shown that in order to avoid accuracy-domination,
a credence’s transform must respect Paris’s probability axioms (P1)–(P3). If we take
Non-Dominance as a rationality requirement for credences, we can then conclude that
having a probabilistic transform is a necessary condition for rationality.

It is natural to ask at this point whether the probability axioms also provide a
sufficient condition for rationality. If we pose the question in this form, however, the
answer will have to be no. There are plenty of cases where holding a certain credence
whose canonical transform is probabilistic makes one irrational. We don’t need to move
to non-classical logics to find examples of this. Imagine you have an urn in front of you,
which you know contains five red balls and five black balls. You extract a ball from
the urn after it has been shaken. We would like to say that, if you are rational, then Pf
should transform your credence into a probability that assigns value 1/2 to the sentence
“the next extracted ball will be red.” Any other credence, whether it has probabilistic
transform or not, seems irrational in this case, as it would go against your evidence.

So we must reformulate our question. What we want to ask is: is having a credence
whose transform respects the probability axioms a sufficient condition for avoiding the
kind of irrationality that follows from a violation of Non-Dominance? In other words,
is every cr with a probabilistic transform safe from accuracy-domination?

We can think of the question above as a sanity check on the assumptions we
used to prove our accuracy theorem. If it turns out that some intuitively reasonable
credences with probabilistic transforms are accuracy-dominated, we should probably
conclude that our measures of inaccuracy are inadequate, or that the Non-dominance
requirement is too demanding. Joyce [7] seems to view the question in this way when he
discusses it in the context of his own accuracy argument for probabilism, in the classical
setting. Indeed, he responds by arguing that no inaccuracy measure can be reasonable
if it makes some probabilistic credence accuracy-dominated, and defines his measures
of inaccuracy accordingly. But the fundamental problem is only pushed back by this
answer. A new question arises: why should we require our measures of inaccuracy to
protect probabilities from domination, and not some other class of credences?

Although Joyce [7] does attempt to answer this second question, I will not spend
more time on his reply here. Instead, I want to look at how this same problem affects
arguments for non-classical versions of probabilism. Here Joyce’s reply sounds much
less appealing: compared to the classical case, there is even less of a consensus that
any class of credences is so intuitively rational that we ought to tailor our inaccuracy
measures around it. Perhaps this is the reason why Williams [20] seems unwilling to
pursue this strategy in his generalisation of Joyce’s argument. Instead, he responds to
the overdemandingness problem by trying to contain the damage it may cause. It would
be fatal for his argument if it turned out that every reasonable inaccuracy measure made
some (non-classically) probabilistic credences accuracy-dominated. Luckily, Williams
is able to show that this is not the case by showing that there is an inaccuracy measure,
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known as the Brier score, under which all (non-classical) probabilities are safe from
accuracy-domination.11

I want to extend this result and show that, for a class of inaccuracy measures
that respect the assumptions of Theorem 5.8, all credences whose transformed is
probabilistic are safe from accuracy-domination. Interestingly, this class contains many
proper scoring rules, including the Brier score, while still being strictly smaller than the
class of all inaccuracy measures which we consider reasonable. Once again, this result
is the generalization of a theorem due to Lindley [9].

We start by defining the class of rules for which we will prove that credences with a
probabilistic transform avoid accuracy-domination.

Definition 6.9. (Single-valued score) An inaccuracy measure f is single-valued iff for
every p ∈ [0, 1] the equation:

Pf(x) = p,

in unknown x has a unique solution.

In proving our result we rely on the following theorem by Paris [12]. We only report
the theorem’s statement here, adapting its notation to the present context.

Theorem 6.10 (Paris [12]). Assume we are in a logical setting such that:

1. The set of truth-values is {0, 1}.
2. |= is given the no-drop characterization (25).
3. For each possible worldw ∈W , the corresponding truth-value assignment function

�·�w : F → {0, 1} satisfies (TV1) and (TV2).

Let P : F → R. Then P obeys Paris’s probability axioms (P1)–(P3) on F if and only if,
for every finite subset G ⊆ F , we have that P � G is a convex combination of the set of
restricted truth-value assignments {�·�w � G : w ∈W }.

Since we have been restricting ourselves to the logical settings that satisfy the
assumptions of Theorem 6.10, we can use it to prove the following result.

Theorem 6.11. Under the assumptions (a), (b), and (d ) listed in Section 3 and the
assumption (c∗) in Section 4, let f be a reasonable single-valued scoring rule and cr
a credence such that its canonical transform Pf ◦ cr obeys Paris’s probability axioms
(P1)–(P3). Then cr is not accuracy-dominated on any finite set G ⊆ F when accuracy is
measured according to f.

Proof. Assume f is single-valued, and assume P = Pf ◦ cr respects (P1)–(P3). Let
G ⊆ F be a finite set of sentences. Then by Paris’s Theorem 6.10 we know that P � G
can be written as a convex combination of the set of restricted valuations {�.�w � G :
w ∈W }, that is:

P(A) =
n∑
i=1

�i�A�wi for all A ∈ G, (75)

where {�.�w1 , ... , �.�wn} is the set of restricted valuations, and �i ≥ 0 for all i = 1, ... , n.
We can think of the �i as defining a standard probability function Π over a possibility

11 Williams [20] also addresses a number of other concerns related to the lack of a sufficiency
result. I will not discuss them here as I have nothing to add to his responses.
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space consisting of the worlds {w1, ... , wn}12:

Π(wi) = �i .

It then makes sense to ask for the expected score of assigning credence x to A according
to Π. This quantity is given by:

ExpΠ[f(x,A)] = ExpΠ(A)f(x, 1) + ExpΠ(1 – A)f(x, 0), (76)

where A is used as an indicator variable over {w1, ... , wn}. Because of our regularity
assumptions, we know that ExpΠ[f(x,A)] is continuous as a function of x in
[x0, x1], and its derivative is positive for x > xT and negative for x < x0. So
ExpΠ[f(x,A)] must have some minimum in [x0, x1], which we can find by looking at its
derivative:

ExpΠ(A)f′(x, 1) + ExpΠ(1 – A)f′(x, 0), (77)

=

⎛
⎝ ∑
i : wi (A)=1

�i

⎞
⎠f′(x, 1) +

⎛
⎝1 –

⎛
⎝ ∑
i : wi (A)=1

�i

⎞
⎠

⎞
⎠f′(x, 0). (78)

This derivative equals zero just in case∑
i : wi (A)=1

�i =
f′(x, 0)

f′(x, 0) – f′(x, 1)
,

that is, just in case P(A) = Pf(x). But as f is single-valued, this is true for exactly
one x, since Pf(x) ∈ [0, 1] whenever x ∈ [x0, x1] by Lemma 5.5. We conclude that
x = cr(A) uniquely minimizes expected score according to Π on each A ∈ G.

Now assume by way of contradiction that cr � G is accuracy-dominated on G by
some other function cr′. So the inequality:

f(cr, wi) ≥ f(cr′, wi)

holds on each wi , and is strict for at least one i. But then the inequality must also
hold for Π’s expectations of these scores; that is, thinking of f(cr, w) and f(cr′, w) as
random variables over {w1, ... , wn}:

ExpΠ[f(cr, w)] ≥ ExpΠ[f(cr′, w)]

⇐⇒
n∑
i=1

�if(cr, wi) ≥
n∑
i=1

�if(cr′, wi)

⇐⇒
n∑
i=1

⎡
⎣�i m∑

j=1

f(cr(Aj), �Aj�wi )

⎤
⎦ ≥

n∑
i=1

⎡
⎣�i m∑

j=1

f(cr′(Aj), �Aj�wi )

⎤
⎦ ,

where G = {A1, ... , Am}. We can swap the order of the sums to obtain:
m∑
j=1

n∑
i=1

�if(cr(Aj), �Aj�wi ) ≥
m∑
j=1

n∑
i=1

�if(cr′(Aj), �Aj�wi ).

12 The wi are really equivalence classes of possible worlds. More precisely, wi is the class of all
w ∈W for which �·�w � G = �·�wi
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We can remove from the above inequality all terms associated to the Aj ’s for which
cr(Aj) = cr′(Aj), since they will be equal on both sides. Then for the inequality to
hold, it must be that for at least one of the remaining Aj we have:

n∑
i=1

�if(cr(Aj), �Aj�wi ) ≥
n∑
i=1

�if(cr′(Aj), �Aj�wi )

⇐⇒ ExpΠ
[
f(cr(Aj), Aj)

]
≥ ExpΠ

[
f(cr′(Aj), Aj)

]
,

but this is a contradiction, given that cr(A) uniquely minimizes expected score
according to Π on each A ∈ G.

This theorem shows that, in the non-classical settings we have been working with,
single-valued inaccuracy scores make all credences whose canonical transform respects
(P1)–(P3) safe from domination. It’s easy to see that all proper inaccuracy measures
which respect our regularity assumptions are single-valued, given that when f is proper
in the sense of Definition 2.1, Pf is just the identity function. Although we cannot
dispel the worry that, under some reasonable inaccuracy measures, some credences
whose transform is probabilistic are accuracy-dominated, we have at least shown that
for a large class of these measures (which includes all those that are proper) this does
not happen.

§7. Some open questions. A number of non-classical logics have not been discussed
in this paper. This is because the generalization of Lindley’s argument, if it is possible,
is not as straightforward in these settings. I will not provide such a generalization in
this paper. But I want to use this section to discuss the kind of additional adjustments
that such a task might require, and highlight the difficulties it presents.

An example of a logical setting whose truth-values are {0, 1} but the conditions
(TV1) and (TV2) are not satisfied is the Gap Supervaluation one (see Appendix for
a definition). Here the three axioms (P1)–(P3) do not characterize closed convex
combinations of truth-value distributions. Paris [12] shows that in this case the axioms
should be:

|= A =⇒ P(A) = 1,

A |= =⇒ P(A) = 0,
(DS1)

A |= B =⇒ P(A) ≤ P(B), (DS2)

P

(
m∨
i=1

Ai

)
=

∑
S

(– 1)|S|–1P

(∧
i∈S
Ai

)
, (DS3)

where A,B,A1, ... , Am ∈ F , and S ranges over the non-empty subsets of {1, 2, ... , m}.
And even this result holds only for specific languages, as Williams [20] notes. In
supervaluation settings, more sophisticated axioms seem necessary in order to account
for variation in the expressive power of the language.

Other logical settings, such as the Finite and Infinite Fuzzy (see Appendix for their
definition) violate our assumptions by having truth-values outside of {0, 1}. Here the
axioms (P1)–(P3) do pick out closed convex combinations of truth values [3, 11].
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However, extending Lindley’s argument to non-classical settings with truth values
beyond {0, 1} requires a more radical modification of his inaccuracy measures.

The origin and score assumption (c) needs additional credence values to represent
the certainty of a proposition being in any of the different truth statuses. For example,
in a Finite Fuzzy setting with truth statuses S = {0, 1/n, 2/n, ... , (n – 1)/n, 1} we need
values x0, x1/n, ... , x((n–1)/n), x1 so that xi is the only admissible value for cr(p) when
�p�w = i for all w ∈W . New questions arise concerning these additional values, and
how they should be distributed: should there be a requirement that x1/2 be equidistant
from x0 and x1, or can it be placed anywhere between them, as long as it is greater
than x1/4 and lower than x3/4? The fact that x0, x1 should maintain a special status is
suggested by their role in the first axiom.

The regularity (d) assumptions and, more importantly, the definition of Pf (6),
should also be adapted to take the new truth-values into account. In fact, the value of
the original transform depends only on the derivatives f′(x, 0), f′(x, 1), which does
not seem right in this context. Whether it’s possible to generalize the definition of Pf
to include more than two truth-values, and what this generalization would look like,
remain open questions.

§8. Conclusion. Philosophers have argued for probabilism in many ways. Among
them, accuracy-based arguments provide some of the most interesting justifications,
but their assumptions are not at all uncontroversial. Thus it is interesting to explore
how much we can relax these assumptions, while still deriving from them some
meaningful epistemic norms. Lindley’s argument answers this question differently
depending on one’s position regarding the nature of credence. Those who see credences
as a mere convention for discussing human beliefs and who do not distinguish
between structurally similar credence functions, will find that Lindley’s assumptions
are sufficient to derive probabilism as they intend it. Those who maintain that,
on the contrary, numeric representations capture some key features of belief, will
have to face just how strong of a foundation is needed to support full-blown
probabilism.

In this paper I have adapted Lindley’s argument for probabilism as a necessary
condition for rationality to a number of unconditional, non-classical settings that were
excluded from the original result. I have also specified a class of inaccuracy measures
for which Lindley’s version of probabilism is sufficient to avoid accuracy-domination.
These generalisations are relevant for three main reasons. First, they allow to justify
probabilism as a theory of rationality for all fields of research where it might be
appropriate to step outside the boundaries of classical logic. Secondly, they might
give philosophers in these fields some reason to prefer a no-drop characterisation of
non-classical logical consequence, since this is fruitfully connected with probabilistic
epistemology. Lastly, they highlight a strong connection between our measures of
inaccuracy and the underlying logic. This connection is visible in the way Lindley’s
origin and score assumption was adapted to the {0, 1}-valued non-classical case, and in
the issues caused by the multiplicity of truth values in the supervaluational and fuzzy
settings. It remains to be seen whether Lindley’s argument can be generalised to multi-
valued settings of this kind, and whether it can support (some form of) conditional
probability in the non-classical case. This paper may be considered as a starting point
for future work on this topic.
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§A. Appendix.
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Fig. A.1. Solutions of the first two inequalities. In this example x = 0.6, y = 0.4, and f is the
Brier score (MATLAB figure).
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Fig. A.2. Solutions of the whole system. In this example x = 0.6, y = 0.4, and f is the Brier
score (MATLAB figure).
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1.1. Figures.

1.2. Proof of Lemma 5.6—Boundary cases. The proof above doesn’t work for
boundary cases, for example when �A�w = 1 in all possible worlds. This is because
cr(A) = x = x1 in this case, so by defining cr′(A) = x + d1 we might go outside the
interval [x0, x1] of admissible values (first point of Lemma 5.5). Let’s once again take
the LP Gluts setting as an example for our proof.

In this case, the possible worlds are limited to the following:

World A B A ∧ B A ∨ B
w1 true true true true
w2 true both both true
w3 true false false true
w4 both true both true
w5 both both both both
w6 both false false both

Giving rise to the following inaccuracy measures:

f(x, 1) + f(y, 1) + f(p, 1) + f(s, 1), (A.1)

f(x, 1) + f(y, 1) + f(p, 1) + f(s, 1), (A.2)

f(x, 1) + f(y, 0) + f(p, 0) + f(s, 1), (A.3)

f(x, 1) + f(y, 1) + f(p, 1) + f(s, 1), (A.4)

f(x, 1) + f(y, 1) + f(p, 1) + f(s, 1), (A.5)

f(x, 1) + f(y, 0) + f(p, 0) + f(s, 1). (A.6)

But since we know x = x1, by origin and scale assumptions we have f′(x, 1) = 0. And
not only that, because the fact that �A ∨ B�w = 1 in all these worlds means that for
cr to be acceptable it must be cr(A ∨ B) = s = x1. Thus any admissible cr′ must be
defined as follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
cr′(A) = cr(A) = x = x1,

cr′(B) = cr(B) + d2 = y + d2,

cr′(A ∧ B) = cr(A ∧ B) + d3 = p + d3,

cr′(A ∨ B) = cr(A ∨ B) = s = x1,

for some d2, d3 ∈ R.
Proceeding as in the main proof, we obtain the following variation of accuracy in

moving from cr to cr′:

f′(y, 1)d2 + f′(p, 1)d3, (A.7)

f′(y, 1)d2 + f′(p, 1)d3, (A.8)

f′(y, 0)d2 + f′(p, 0)d3, (A.9)
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f′(y, 1)d2 + f′(p, 1)d3, (A.10)

f′(y, 1)d2 + f′(p, 1)d3, (A.11)

f′(y, 0)d2 + f′(p, 0)d3. (A.12)

And through the same reasoning we find that to avoid accuracy domination it must
be:

f′(y, 1)f′(p, 0) = f′(p, 1)f′(y, 0). (A.13)

This is equivalent to:

P(y) = P(p). (A.14)

But by Lemma 5.5 we know P(x) = 1 = P(s) in this case. Combining this with (A.14)
we get P(x) + P(y) = P(p) + P(s) as needed. Other boundary cases are dealt with
similarly.

1.3. Other non-classical settings. Here are defined the nonclassical settings men-
tioned in Sections 4 and 7. The definitions follow those in Williams [20].

• Kleene gaps:
– S := {true, neither, false}.
– The truth-value mapping �.�w is defined by:

�A�w =

{
0, if w(A) = false, neither,
1, if w(A) = otherwise.

– The connectives ∧,¬ follow the rules:

w(A ∧ B) =

⎧⎪⎨
⎪⎩

true, if w(A) = true and w(B) = true,
false, if w(A) = false or w(B) = false,
neither, otherwise.

w(¬A) =

⎧⎪⎨
⎪⎩

true, if w(A) = false,
false, if w(A) = true,
neither, if w(A) = neither.

• Intuitionism See Williams’ paper [20, pp. 518–519].
• Finite Fuzzy

– For some choice of n, S = {m/n : m ∈ N and 0 ≤ m ≤ n}.
– The truth-value mapping �.�w is defined by: �A�w = w(A).
– The connectives ∧,∨,¬,→ follow the rules:

w(A ∧ B) = min(w(A), w(B)),

w(A ∨ B) = max(w(A), w(B)),

w(¬A) = 1 – w(A),
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w(A→ B) =

{
1 – (w(A) – w(B)), if w(A) ≥ w(B),
1, otherwise.

• Infinite Fuzzy Like Finite Fuzzy but S = [0, 1].
• Supervaluations:

– S := {f : D → {true, false}} where D is a set of delineations (see [20,
p. 518]).

– The truth-value mapping �.�w is defined by:

�A�w =

⎧⎪⎨
⎪⎩

1, if w(A) is the function that maps every admissible
delineation to true,

0, otherwise.

– The connectives ∧,¬ follow the rules:

w(A ∧ B)(x) =

{
true, if w(A)(x) = true and w(B)(x) = true,
false, otherwise.

w(¬A)(x) =

{
true, if w(A)(x) = false,
false, otherwise.

• Degree Supervaluations
– S defined as above.
– The truth-value mapping �.�w is defined by:

�A�w = d where d is the proportion of delineations that w(A) maps to true.

– The connectives ∧,¬ are defined as above.
• Finite Fuzzy gaps: Like Finite Fuzzy, but �A�w = 1 if w(A) = 1, �A�w = 0

otherwise.
• Infinite Fuzzy gaps: Like Infinite Fuzzy, but �A�w = 1 if w(A) = 1, �A�w = 0

otherwise.
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