ON THE MARTINGALES UPCROSSINGS INEQUALITY

BY
M. V. MENON AND V. SESHADRI

In this note we present a very simple proof of the upcrossings inequality (see [6], and the note at the end) for martingale sequences-one of the basic results in the theory of martingales-which does not make use of the notion of optional random variable, as is done in the usual proofs of the inequality.

Let X_{1}, X_{2} be random variables forming a sub-martingale sequence relative to the increasing σ-fields \mathscr{F}_{1} and \mathscr{F}_{2}. Let $a<b$.
Then $\left(X_{1}-a\right)^{+},\left(X_{2}-a\right)^{+}$is also a sub-martingale. Hence letting Y denote $\left[\left(X_{2}-a\right)^{+}-\left(X_{1}-a\right)^{+} / b-a\right]$, we have

$$
\begin{equation*}
\int_{A} Y \geq 0, \quad \text { for each } A \in \mathscr{F}_{1} \tag{1}
\end{equation*}
$$

(Here, and in the sequel, all random variables under consideration are assumed to be defined on (Ω, \mathscr{F}, P) and integration is understood to be with respect to P.)

Define

$$
\left.\begin{array}{rlrl}
U & =1, & & \text { if }\left(X_{1}-a\right)^{+} \leq 0,
\end{array} \quad\left(X_{2}-a\right)^{+} \geq b-a\right)
$$

Note that $\left\{\left(X_{1}-a\right)^{+} \leq 0,\left(X_{2}-a\right)^{+} \geq b-a\right\}=\left\{X_{1} \leq a, X_{2} \geq b\right\}$. Thus U represents the number of upcrossings of $[a, b]$ by X_{1}, X_{2}.

Now, since $U=0$ on $\left\{X_{1}>a\right\}$,

$$
\begin{equation*}
0=\int_{A \cap\left\{X_{1}>a\right\}} U \leq \int_{A \cap\left\{X_{1}>a\right\}} Y, \quad A \in \mathscr{F}_{1} \tag{2}
\end{equation*}
$$

Next, $Y \geq 0$ on $\left\{X_{1} \leq a\right\}$. Therefore, since $U=0$ on $\left\{\left(X_{2}-a\right)^{+}<b-a\right\}$, we have, in particular,

$$
\begin{equation*}
U \leq Y \quad \text { on } \quad\left\{X_{1} \leq a\right\} \cap\left\{\left(X_{2}-a\right)^{+}<b-a\right\} . \tag{3}
\end{equation*}
$$

Lastly, $U=1$ on $\left\{X_{1} \leq a\right\} \cap\left\{\left(X_{2}-a\right)^{+} \geq b-a\right\}$, whereas $Y \geq 1$ on it. Hence

$$
\begin{equation*}
U \leq Y \quad \text { on } \quad\left\{X_{1} \leq a\right\} \cap\left\{\left(X_{2}-a\right)^{+} \geq b-a\right\} \tag{4}
\end{equation*}
$$

Thus from (2), (3), and (4), we obtain $\int_{A} U \leq \int_{A} Y, A \in \mathscr{F}_{1}$, which is equivalent to

$$
\begin{equation*}
E\left(U \mid \mathscr{F}_{1}\right) \leq E\left(Y \mid \mathscr{F}_{1}\right)=E\left[\left.\frac{\left(X_{2}-a\right)^{+}-\left(X_{1}-a\right)^{+}}{b-a} \right\rvert\, \mathscr{F}_{1}\right] \tag{5}
\end{equation*}
$$

Next, let us say that a sub-martingale X_{1}, \ldots, X_{n}, relative to an increasing family of σ-fields $\mathscr{F}_{1}, \ldots, \mathscr{F}_{n}$, is of length n-'length' referring to the number of
random variables in the sequence. Let U be the number of upcrossings of $[a, b]$ by X_{1}, \ldots, X_{n}. We prove the sub-martingale inequality

$$
\begin{equation*}
E\left(U \mid \mathscr{F}_{1}\right) \leq E\left[\left.\frac{\left(X_{n}-a\right)^{+}-\left(X_{1}-a\right)^{+}}{b-a} \right\rvert\, \mathscr{F}_{1}\right] \tag{6}
\end{equation*}
$$

by induction on the length.
(6) has already been proved to hold for a sub-martingale sequence of length 2. Suppose it holds when the length is not greater than $n-1$.

On $\left\{X_{1}>a\right\}, U$ equals the number of upcrossings by the sequence X_{2}, \ldots, X_{n}, which is of length $n-1$. Hence, by the induction assumption, and relation (1), we have that (6) holds on $\left\{X_{1}>a\right\}$.

Next, define X_{n+1} to be identical with X_{n}. Let N be the first value of i for which $X_{i} \geq b$ and $i<n+1$. Should no such i exist, define N to be $n+1$. Let V and W be the respective upcrossings by the sequences X_{1}, X_{N} and X_{N}, \ldots, X_{n+1}. Let k be a positive integer such that $2 \leq k \leq n+1$. Clearly, we have on $\left\{X_{1} \leq a\right\}$, and $\{N=k\}$ that

$$
V \leq\left[\left(X_{k}-a\right)^{+}-\left(X_{1}-a\right)^{+}\right] /(b-a)
$$

and, by the induction assumption,

$$
E\left(W \mid \mathscr{F}_{k}\right) \leq E\left[\left(\left(X_{n}-a\right)^{+}-\left(X_{k}-a\right)^{+}\right) /(b-a) \mid \mathscr{F}_{k}\right] .
$$

Hence, on $\left\{X_{1} \leq a\right\}$, since $U=V+W$, we have

$$
E\left(U I_{\{N=k\}} \mid \mathscr{F}_{1}\right) \leq E\left\{I_{\{N=k\}}\left(\left(X_{n}-a\right)^{+}-\left(X_{1}-a\right)^{+}\right) /(b-a) \mid \mathscr{F}_{1}\right\} .
$$

Summing the last relation over k from 2 to $n+1$ yields (6) on $\left\{X_{1} \leq a\right\}$, since (6) has already been shown to hold on $\left\{X_{1}>a\right\}$, the induction argument is complete.

Remark. The most used form of the martingale inequality [1] follows, of course from (6) by taking expectations.

Reference

1. K. L. Chung, A course in probability theory, Harcourt Brace, \& World Inc., (1968), p. 304.

University of Missouri, Columbia, Missouri
McGill University, Montreal, Quebec

