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We perform direct numerical simulations of spiral turbulent Taylor–Couette (TC) flow
for 400 6 Rei 6 1200 and −2000 6 Reo 6 −1000, i.e. counter-rotation. The aspect
ratio Γ = height/gap width of the domain is 42 6 Γ 6 125, with periodic boundary
conditions in the axial direction, and the radius ratio η= ri/ro = 0.91. We show that,
with decreasing Rei or with decreasing Reo, the formation of a turbulent spiral from
an initially ‘featureless turbulent’ flow can be described by the phenomenology of the
Ginzburg–Landau equations, similar as seen in the experimental findings of Prigent
et al. (Phys. Rev. Lett., vol. 89, 2002, 014501) for TC flow at η=0.98 an Γ =430 and
in numerical simulations of oblique turbulent bands in plane Couette flow by Rolland
& Manneville (Eur. Phys. J., vol. 80, 2011, pp. 529–544). We therefore conclude
that the Ginzburg–Landau description also holds when curvature effects play a role,
and that the finite-wavelength instability is not a consequence of the no-slip boundary
conditions at the upper and lower plates in the experiments. The most unstable axial
wavelength λz,c/d≈ 41 in our simulations differs from findings in Prigent et al., where
λz,c/d≈ 32, and so we conclude that λz,c depends on the radius ratio η. Furthermore,
we find that the turbulent spiral is stationary in the reference frame of the mean
velocity in the gap, rather than the mean velocity of the two rotating cylinders.
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FIGURE 1. Simplified phase space of low Reynolds TC flow. The blue line is the stability
boundary at η= ri/ro = 0.91, as considered in this study, calculated with equation (8) of
Esser & Grossmann (1996). The intermittent, spiral turbulence, and ‘featureless turbulent’
regimes are schematics, indicating the approximate locations of the phases at η = 0.91,
similar to the phase diagram at lower radius ratio (η= 0.84) in Andereck, Liu & Swinney
(1986). The horizontal and vertical dashed-dotted lines represent the simulations that are
performed in this paper. The inset shows the stability boundaries for varying η.

1. Introduction

The coexistence of spatially and/or temporally intermittent turbulent and laminar
flow regions is one of the most captivating phenomena in fluid mechanics (Barkley &
Tuckerman 2005; Barkley 2016). In Taylor–Couette (TC) flow, the flow between two
independently rotating concentric cylinders, not too far above the onset of instabilities
these patterns manifest themselves as distinctive intertwined bands of laminar and
turbulent spirals. Although already observed by Coles (1965) and Van Atta (1966),
and famously commented on by Feynman (1964), the origin and dynamics of these
patterns remain elusive.

Figure 1 presents a simplified phase space of TC flow with inner cylinder Reynolds
numbers Rei 6O(103), (where Rei=uid/ν, with gap width d, inner cylinder velocity ui

and kinematic viscosity ν) and a counter or co-rotating outer cylinder with −3000 6
Reo 6 1000 (where Reo = uod/ν, with outer cylinder velocity uo). In figure 1, at high
inner cylinder Reynolds number Rei, the flow occupies the ‘featureless turbulent’ state.
With decreasing Rei, a coherent, spatio-temporal intermittent, turbulent domain appears
– spiral turbulence. On further decreasing Rei, the spiral structure loses coherence and
breaks up into intermittent turbulent spots. Below the Taylor stability boundary (Taylor
1923) the flow becomes entirely laminar. The radius ratio dependence of the stability
boundary Rei,cr at which the flow undergoes a transition from laminar to intermittently
turbulent was derived by Esser & Grossmann (1996) as(

Rei

Rei,lc
−

Reo

ηRei,lc

)2 r2
n − r2

p

r2
p

(1+ η)2

(1− η)(3+ η)
= f

(
a

dn

d

)−4

, (1.1)
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where the critical Reynolds number for the case of a resting outer cylinder is
Rei,lc(η) = (1+ η)2/(2ηα2((1− η)(3+ η))1/2) with α = 0.1556, and rp = ri +

(d/2)f (a(dn/d)), the radius of neutral stability rn= ro((Rei − ηReo)/(Rei − η
−1Reo))

1/2,
dn = rn − ri, a(η) = (1 − η)(

√
(1+ η)3/(2(1+ 3η)) − η)−1 and the function f (x) = x

if x < 1 and f (x) = 1 if x > 1. Equation (1.1) is shown as the blue line in figure 1.
Similar diagrams at different η are found in figure 2(a) of Prigent et al. (2002) and
figure 1 in Andereck et al. (1986).

1.1. Spiral turbulence
The first studies on spiral turbulence in TC flow go back to Coles (1965) and Van
Atta (1966), who noticed a ‘catastrophic’ transition to turbulence if the outer cylinder
rotates faster than the inner cylinder. In contrast, for pure inner cylinder rotation
they observed a transition by ‘spectral evolution’, meaning that the complexity of the
flow gradually increases with increasing inner cylinder Reynolds number. However,
the ‘catastrophic’ transition does not lead to a ‘featureless turbulent’ flow directly,
but rather forms a state of distinct turbulent and laminar domains, which at specific
conditions form regular patterns – spirals. The angular velocity of the spiral was
found to be very close to ωs = 2(ωi + ωo), where ωi and ωo are the inner and outer
cylinder angular velocities, respectively. Furthermore, Van Atta (1966) observed strong
hysteresis of the spiral turbulence region when approaching the stability boundary
from either the ‘featureless turbulence’ regime or the Couette flow regime. Later,
Hegseth et al. (1989) observed that the pitch angle of the spiral is non-uniform, and
showed that this fits well into a framework of phase dynamics, with the phase being
represented by the mean azimuthal position of the spiral. The boundary conditions at
the top and bottom play therein a crucial role.

More recently, the help of direct numerical simulations (DNSs) has led to a further
understanding of the fluid flow inside the turbulent structure. Meseguer et al. (2009)
discovered that the turbulent spiral originates at the inner cylinder, where vortical
structures detach from the wall and spread out radially towards the outer cylinder. For
smaller aspect ratios Γ 6 15 (with Γ = L/d the height of the cylinder divided by the
gap width) where no turbulent spiral is formed, turbulent bursts were attributed to a
secondary instability mechanism of the laminar flow (Coughlin & Marcus 1996). We
note however that laminar spirals do form at low Γ , as they also play a central role
in the bursting mechanism (Hamill 1995).

By means of conditional averaging over the spiral turbulence domain, Dong (2009)
revealed that a strong angular gradient of the streamwise velocity prevails in the spiral
structure. Subsequently, Dong & Zheng (2011) found that the spiral domain consists of
elongated vortical structures and that the linearly unstable region of the laminar flow
contains vortices with a streamwise vorticity. Furthermore, Burin & Czarnocki (2012)
simulated spiral turbulence with a stationary inner cylinder, such that the entire flow
is linearly stable. Finally, Barkley & Tuckerman (2007) and Tuckerman & Barkley
(2011) studied, with the use of DNS, turbulent bands in transitional plane Couette
(PC) flow.

1.2. A pattern forming turbulent spiral
A new and remarkable insight into the dynamics of the turbulent spiral came from
Prigent et al. (2002). Their experimental observations of stripes in PC flow and
spirals in TC flow at very high radius ratio η = ri/ro = 0.98 reveal a turbulence
intensity modulation of these flow states that fits in every respect the phenomenology
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of the (complex) Ginzburg–Landau (GL) amplitude equations (van Saarloos 1994;
Cross & Greenside 2009). Thereby, the spiral fits the dynamical behaviour of a
finite-wavelength instability, originating from the ‘featureless turbulent’ state. The GL
equation describes the time evolution of a complex amplitude A(x, t) of a physical
field variable u(x, t)

τ0∂tA(x, t)= εA+ ξ 2
0 ∂

2
x A− g0|A|2A, (1.2)

where τ0 is the time scale, ξ0 is the length scale and g0 sets the magnitude scale of
the structure; ε is the reduced bifurcation parameter ε= (Rei,c−Rei)/Rei,c, where Rei,c

is the critical inner cylinder Reynolds number at which the bifurcation occurs upon
reducing Rei and the pattern emerges. By rescaling (1.2), one finds that the intensity
of the pattern |A|2 = O(ε1). Note that Prigent et al. (2002, 2003) coupled two GL
equations to account for the coexistence of spirals with opposing helicity and added
a noise term, to account for the turbulent fluctuations in the background velocity field.

In principle, for a bifurcation to travelling waves, the coefficients on the right-hand
side of (1.2) are expected to acquire imaginary parts, in other words, to be complex.
These imaginary parts model the shift of the frequency of the modes with ε,
wavenumber and amplitude. We will not probe these effects here. In fact, as we
shall see, the patterns are actually stationary in the frame moving with the mean flow,
which indicates that it may be most appropriate to think of the patterns as stationary.
This is natural to expect considering that the equations are invariant under continuous
translation in the azimuthal and axial directions.

Further work on the GL description of laminar Taylor spirals has been carried out
by Goharzadeh & Mutabazi (2010), who measured the GL coefficients. Rolland &
Manneville (2011) carried out underresolved simulations of oblique bands in Couette
flow. Also, the amplitude in their simulations, defined as the modulus of the first
Fourier mode of the streamwise velocity, does obey the phenomenology of the GL
model.

In this paper, we set out to investigate spiral turbulent TC flow by means of DNS.
In contrast to the experiments of Prigent et al. (2002), which were carried out in
the limit of very small curvature (η = 0.98), in our DNSs, curvature effects do play
a role (η = 0.91). To quantify this, we refer to the curvature Obukhov length Lc =

uτ/κωi, with uτ the friction velocity and κ=0.39 the von Kármán constant, as defined
in Bradshaw (1969). This length differentiates the flow regions in a turbulent flow
where the production of turbulent kinetic energy is governed by shear and where it is
governed by curvature of the streamlines. For values above approximately (r− ri)/Lc >
0.1, the effects of curvature are pronounced. We find that for η= 0.91, 0.5d/Lc≈ 0.2.
For η= 0.98, 0.5d/Lc ≈O(10−3).

Further, we employ periodic boundary conditions in the axial direction, and thereby
exclude effects originating from the end plates, which are responsible for the no-slip
axial boundary conditions in experiments. We study the fluid mechanics of the
turbulent spirals and investigate whether the GL description of the spirals holds in
our simulations.

The paper is organized as follows: in § 2 we present the description of TC flow and
the details of the numerical solver. In § 3.1 we study the appearance and disappearance
of the spiral structure, followed by § 3.2, in which we look at the impact of the
turbulent spiral on the global transport of momentum. In § 3.3 we study the velocity
of the spiral pattern. Section 3.4 then presents the GL description of the spiral. The
paper ends with conclusions (§ 4).
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2. Taylor–Couette flow and numerical procedure
The TC set-up consists of two concentric, independently rotating cylinders with radii

ri and ro. The gap width d is defined as d= ro− ri, the radius ratio η= ri/ro and the
aspect ratio as Γ =L/d, where L is the height of the cylinders. In this paper we keep
the radius ratio fixed at η= 0.91. The aspect ratio Γ varies in the range 426Γ 6 125.
For every DNS we simulate the full azimuthal circumference of the TC set-up.

The Navier–Stokes equations that govern the shear-driven fluid flow in between
the two concentric rotating cylinders are formulated in cylindrical coordinates and
dimensionless form, namely

∂t̂ûr + û · ∇̂ûr −
û2
θ

r̂
=−∂r̂P̂+

1
Rei − Reoη

(
∇̂

2ûr −
ûr

r̂2
−

2
r̂2
∂θ̂ ûθ

)
, (2.1)

∂t̂ûθ + û · ∇̂ûθ +
ûrûθ

r̂
=−

1
r̂
∂θ̂ P̂+

1
Rei − Reoη

(
∇̂

2ûθ −
ûθ
r̂2
+

2
r̂2
∂θ̂ ûr

)
, (2.2)

∂t̂ûz + û · ∇̂ûz =−∂ẑP̂+
1

Rei − Reoη
(∇̂2ûz), (2.3)

∇̂ · û= 0. (2.4)

The differential operators are defined as: (u · ∇)f = (ur∂r + uθ(1/r)∂θ + uz∂z)f and
∇

2f = (1/r)∂r(r∂rf ) + (1/r2)∂2
θ f + ∂2

z f . The boundary conditions are uθ |ri = riωi and
uθ |ro = roωo, (uz, ur)|ri = 0 and (uz, ur)|ro = 0. In the axial direction we employ periodic
boundary conditions. Here, Rei = riωid/ν and Reo = roωod/ν are the inner and outer
cylinder Reynolds numbers, respectively, where by definition ωi > 0. Note that the
equations can also be written in terms of the Taylor number and a geometric Prandtl
number, highlighting the analogy with Rayleigh–Bénard convection (Grossmann,
Lohse & Sun 2016). The velocity vector u comprises (uθ , uz, ur), respectively the
streamwise, spanwise and wall-normal velocity, which in this paper are normalized
by the inner cylinder azimuthal velocity uθ,i. Hatted symbols represent dimensionless
variables, where velocity, length and time are made dimensionless as, respectively,
u= ri|ωi −ωo|û, r= dr̂ and t= (d/(ri|ωi −ωo|))t̂ and pressure is made dimensionless
accordingly, P= ρr2

i |ωi −ωo|
2P̂.

The equations are spatially discretized to second order and are solved on a finite
difference grid (Verzicco & Orlandi 1996). Time integration is performed with a
fractional-step third-order Runge–Kutta scheme. For more details of the numerical
code we refer the reader to van der Poel et al. (2015) and Ostilla-Mónico et al.
(2013). Grid independence checks are carried out to ensure sufficient numerical
resolution. Time convergence is controlled by monitoring the torque on both cylinders,
which is expressed in dimensionless form as the Nusselt number Nuω,

Nuω =
Jω

Jωlam
=

T (2πLρ)−1

2νr2
i r2

o
ωi −ωo

r2
o − r2

i

, (2.5)

where Jω = r3(ν∂r〈ω〉A(r),t + 〈urω〉A(r),t) is the angular velocity flux, 〈.〉A(r),t represents
averaging over a cylinder surface A(r) and time t, Jωlam = 2νr2

i r2
o((ωi −ωo)/(r2

o − r2
i ))

is the laminar angular velocity flux and T is the torque.
Alternatively to Nuω, we define the friction factor Cf ,

Cf =
G

(Rei − ηReo)2
=

2πNuωJωlam

ν2(Rei − ηReo)2
, (2.6)
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where G=T /(ρν2L) is the dimensionless torque; Cf is thus the ratio of the wall stress
over the kinetic energy of the flow.

3. Results and discussion
3.1. Turbulent spirals: their formation and disappearance

When the destabilizing effects of inner cylinder rotation become large compared to
the stabilizing effects of outer cylinder rotation, TC flow can enter the ‘featureless
turbulent’ regime, see figure 1. Although the flow is turbulent throughout the domain,
the term ‘featureless turbulence’, as mentioned in Andereck et al. (1986), is deceiving,
since the mean flow does contain structures with streamwise vorticity, i.e. the turbulent
Taylor vortex (Huisman et al. 2014).

We run a DNS of the ‘featureless turbulent’ regime, with Rei = 800 and
Reo=−1200, of which three snapshots of the streamwise/azimuthal velocity at varying
radii are presented in figure 2 (a–c). As initial conditions for all our simulations we
use the laminar solution of TC flow (Grossmann et al. 2016) plus small spatial
perturbations to the radial velocity component ur = 0.1riωi sin(2πz/L), with z the
axial coordinate and the axial velocity component uz = 0.1riωi sin((r − ri)2π/d)(1 −
| sin(2πz/L)|) sin(2πz/L). The resolution is set to Nθ × Nz × Nr = 768 × 1280 × 80
at Γ = 64, such that we resolve the global Kolmogorov scale ηk = 0.03d, where
ηk = (ν

3/εν)
1/4, with εν the mean kinetic dissipation rate. The spacing of the finite

size grid at the wall in the radial direction is 0.44y0, where y0 is the viscous length
scale y0= ν/

√
τw/ρ, with ν the kinematic velocity, ρ the fluid density and τw the wall

shear stress. With varying Γ , we change Nz = 1280(Γ /64) while Nθ ×Nr = 768× 80
for all simulations.

In figure 2 we observe long, thin, meandering patterns in the azimuthal velocity
uθ . The structures have a length scale ≈ (0.5 − 1.0)d in the axial direction and are
more distinct close to the inner cylinder at r= ri+ 0.25d, whereas they become more
diffuse closer to the outer cylinder at r = ri + 0.75d. The nodal plane of neutral
stability (defined by the laminar azimuthal velocity being zero uθ,lam = 0), is at rn =

ro

√
((Rei − ηReo)/(Rei − η−1Reo))≈ 1.04ri for Rei = 800 and Reo =−1200, such that

the inner region of the domain r< 1.04ri is linearly unstable and the outer region of
the domain r > 1.04ri is linearly stable (Lord Rayleigh 1916). This is confirmed in
figure 3(a), where we present contours of the instantaneous azimuthal velocity uθ =
uθ(θ, z, r, t) in a small portion of the axial–radial plane at Rei= 800 and Reo=−1200.
We find vortical structures, with a streamwise vorticity and length scale ≈ (0.5− 1.0)d
close to the inner cylinder. These structures resemble Taylor vortices, although they do
not close the entire circumferential direction of the domain, see figure 2. The region
r > rn does exhibit chaotic fluid flow motion, triggered by the instabilities from the
inner region. This is reminiscent of the so-called inner–outer region interaction as
described by Coughlin & Marcus (1996). As such, we find that, for Rei = 800, the
entire domain is filled with chaotic (turbulent) fluid motion, and hence falls into the
‘featureless turbulent’ part of the above phase space, see figure 1.

Starting from this state (figure 2a–c), we decrease Rei to Rei = 750 (figure 2d–f ),
while keeping Reo = −1200. We run the simulations until the flow is statistically
stationary, i.e. when the dimensionless torque 〈Nuω〉t, calculated at both cylinders, is
constant to within 1 %, where 〈.〉t indicates time averaging over 50t̂. Resulting from
the decrease in shear, the flow starts to laminarize at the outer cylinder, see figure 3(b).
However, the flow remains turbulent throughout the majority of the domain, as seen in
figure 2(d–f ). Interestingly, we find in these turbulent parts of the flow, in the contours
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FIGURE 2. Snapshots of the azimuthal velocity uθ , close to the inner cylinder (r =
ri + d/4), at the centre (r = ri + d/2) and close to the outer cylinder (r = ri + 3d/4) for
Reo =−1200 and for different Rei = 800 (a–c), 750 (d–f ), 700 (g–i) and 524 ( j–l). The
horizontal axis gives the angle θ . On the vertical axis the axial coordinate z is normalized
with the gap width. From a chaotic turbulent base flow (a–c), the finite-wavelength
instability forms (panels d–f and in particular g–i). Further away from the transition an
isolated stripe (spiral) breaks down in connected and isolated turbulent spots ( j–l).

of uθ(θ, z, r, t), the appearance of diagonal coherent patterns. At this Rei, the patterns
exist at opposing angles and ‘nucleate’ at varying places.

Subsequently, we further lower Rei to Rei= 700 (figure 2, g–l) for which one well-
defined turbulent spiral pattern emerges. At r= ri+ 0.75d, the spiral contains turbulent
motion, whereas the region in between the turbulent spiral bands is laminarized and
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FIGURE 3. Streamlines overlay snapshots of the azimuthal velocity uθ in the meridional
plane for Reo = −1200. The thickness of the streamlines represents the norm of the
velocity vector (ur, uz). We observe chaotic motion for all r in the ‘featureless turbulent’
flow (a). With decreasing Rei, laminarization occurs from the outer cylinder towards the
inner cylinder (b,c). The vertical dashed lines at (r− ri)/d≈ 0.4 give the location of the
nodal plane of neutral stability. The meridional snapshots where obtained at θ =π.

contains no vorticity, see figure 3(c). Note that the regions of maximal intensity of
the banded structure is shifted to the right somewhat as one moves outwards (this is
most clearly visible for Rei= 700). This is in agreement with the results of Meseguer
et al. (2009) for the structure of turbulent bands. Close to the inner cylinder, the spiral
also contains turbulent motions, however, the region in between the turbulent spiral
bands does contain Taylor-like vortices. Figure 3(c) presents a section of the turbulent
spiral corresponding to 06 z/d 6 3 in figure 2 (third row). For an extensive range of
530 6 Rei 6 700, the spiral remains present in the flow. Lowering Rei even further,
e.g. to Rei = 524 (see figure 2j–l), makes the spiral lose coherence. The flow then
contains intermittent ‘puffs’ of chaotic motion in an otherwise laminar base flow. We
have carried out several numerical simulations around Rei = 524, namely with Rei =

[490, 500, 510, 520, 522, 524, 526, 528, 530] in order to locate the critical Reynolds
number Rei,crit at which the turbulence can be sustained. For simulation times as long
as T≈ 1000(d/ri(ωi −ωo)), we find that the puffs are only sustained at Rei > 524. The
dynamics of the spatio-temporal intermittent, incoherent, ‘puffs’ is, however, not the
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FIGURE 4. (a) Dimensionless angular velocity transport Nuω versus the wavelength
λz/d of the turbulent spiral for different Reynolds numbers. Nuω decreases linearly with
increasing wavelength, which is attributed to the decrease in turbulence fraction in the
domain, with increasing axial wavelengths of the spiral. (b) The friction factor Cf for
different Reynolds numbers versus λz/d. (c) Cf versus the inner cylinder Reynolds number
Rei for Reo=−1200. An increase of Cf indicates transitional behaviour from the laminar
to the turbulent regime.

focus of this study. In the remainder, we will study the dynamics in that part of the
phase space where the spiral is still coherent.

3.2. Dynamics of the turbulent spiral
The influence of the turbulent spiral structure on the momentum transport is not
addressed in the literature. In this section we will study the global response for both
varying spiral wavelength λz and varying Rei, while we keep Reo =−1200. To vary
λz, we simulate 20 cases of varying aspect ratio 426Γ =L/d 6 125 of the TC set-up.
In the axial direction we employ periodic boundary conditions, such that λz = Γ /n,
with n a positive integer that represents the number of windings of the spiral around
the inner cylinder. We find a range of 266 λz/d 6 45, whereby up to three spirals fit
into the domain for a given Γ . When we examine the mean velocity and the mean
turbulent intensity, we do not find any influence of Γ on the flow for fixed λz/d. In
other words, the flow at Γ = 84 with two spirals of λz/d= 42 is statistically identical
to the flow at Γ = 42 with one spiral of the same λz/d= 42.
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FIGURE 5. Angular location θ of the turbulent spiral versus time t̂. The vertical axis
represents the angular position of the maximum turbulent intensity at z = L/2 and r =
ri+d/2. The horizontal axis represents dimensionless time t̂= t/T . 〈ω̂〉r,θ,z is the calculated
mean angular velocity in the domain. Excellent agreement between 1θ/1t̂=−0.355 and
〈ω̂〉r,θ,z =−0.354 reveals that the spiral is stationary in the reference frame of the mean
angular velocity 〈ω̂〉θ,z,r,t. Note that 1

2 (ω̂i+ ω̂o)=−0.326, solid black line, does not match
1θ/1t̂.

There is, however, a strong dependence of the global angular momentum transport
– expressed in dimensionless form in (2.5) – on the axial wavelength of the spiral.
Figure 4(a) presents Nuω versus λz/d for varying Rei. With increasing λz/d, the
turbulence fraction in the domain decreases, resulting in a predominantly diffusive,
less efficient, transport of momentum. Figure 4(b) presents the corresponding Cf
versus λz/d, see (2.6).

The graphical representation of Cf (Rei) is commonly referred to as the ‘Moody’
diagram (Moody 1944). Whereas the laminar part of the diagram can be derived
analytically, the turbulent part is empirically fitted with the celebrated Prandtl’s friction
law. For inner cylinder rotation, linearly unstable, TC flow, Cf (Rei) is monotonically
decreasing in the transition region between the laminar and turbulent flow (Lathrop,
Fineberg & Swinney 1992). For counter-rotating TC flow, where the transition to
turbulence is subcritical and ‘catastrophic’, we find that Cf (Rei) is increasing in the
transitional region, see figure 4(c). This is reminiscent of the transition scenario in
pipe flow, where the sudden appearance of spatio-temporally intermittent turbulence
leads to an increase in Cf (Re) (Pope 2000).

3.3. Angular velocity of the spiral
Surprisingly, the angular velocity of the spiral ωs has hitherto received only little
attention in literature. Van Atta (1966) was the first to investigate ωs and found that
it scales with the mean angular velocity of the two cylinders ωs ≈

1
2(ωi + ωo) for

Rei = O(103), Reo < −104. Later, Andereck et al. (1986) investigated ωs for much
lower Rei = O(103), Reo = −3500, and found ωs ≈ ωo. For laminar interpenetrating
spirals Goharzadeh & Mutabazi (2010) found that ωs = ωo. However, the analysis of
Prigent & Dauchot (2000) (for similar values of Rei,Reo as in this work) showed that
ωs= 0.98ωm− 0.02ωi, where ωm=

1
2(ωi+ωo). In our present DNSs we have access to

the full velocity field, in contrast to the experimental work. Thereby we monitor the
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FIGURE 6. Definition of the amplitude A. (a) Plot of the square root of the radial velocity
component squared

√
ur(θ, z, r, t)2 versus the angular position at r= ri+ d/2 and z= L/2

at an arbitrary instant in time when the flow is statistically stationary. The amplitude is
defined as A(z, r, t)= (

√
ur(z, r, t)2)max − (

√
ur(z, r, t)2)min. (b) The time dependent signal.

To obtain the converged amplitude, we employ time averaging and we average over spatial
coordinates (ri+ d/4)< r<(ri+ 3d/4) and for all z. This particular signal is acquired for
Rei = 660 and Reo =−1200.

position of the maximum turbulence intensity in the spiral and from the translation
of that position in time extract ωs, see figure 5. We find that ωs is not equal to the
mean rotation rate, 1

2(ωi + ωo), but instead equals the mean angular velocity in the
domain 〈ω〉= 〈ω〉θ,z,r,t. Note that the difference between 〈ω〉 and ωs is only minor and
could easily be missed in experiments. In fact, we think that the consistent mismatch
between ωm and ωs, as found in figure 5 in Prigent & Dauchot (2000), is explained
by the mismatch between ωm and 〈ω〉.

3.4. Amplitude modulation
3.4.1. The amplitude

To describe the turbulent spiral as a pattern forming instability above a critical
bifurcation point ε = 0, we introduce a perturbation A(z, t)e(ikz−iωt) to the base flow
ub. Here, we treat the instability in the axial coordinate direction only. Note that
the instability contains both parity symmetry (flipping of the streamwise or axial
coordinate directions) and translational symmetry. We define the perturbed physical
field u as the root mean square (r.m.s.) of the radial velocity component (in contrast
to Prigent et al. (2002), who define u as the r.m.s. of the axial velocity).

Figure 6(a) exhibits the instantaneous ur,rms over a line encircling the inner cylinder
at r = ri + 0.5d and z= L/d. We define the amplitude from the radial component of
velocity ur as A= (

√
u2

r )
max
− (
√

u2
r )

min which is a function of (r, z; t). We calculate
A at runtime and average over half the gap width (ri+ d/4) < r< (ri+ 3d/4) and the
full height z. Figure 6(b) presents the time signal of the spatially averaged squared
amplitude 〈A2

〉z,r. Significant fluctuations of 〈A2
〉z,r force us to also take long averages

of τ̂av ≈ 50. The width of the turbulent spiral 1s is approximately (ri + 0.5d)π.
We measure the amplitude versus the bifurcation parameter ε at a fixed aspect ratio

Γ = 64, and hence a fixed λz/d = 32. For a stationary, finite-wavelength instability,
for which the modulation of the amplitude is described by (1.2), we expect A2

∝ ε1

(Cross & Greenside 2009). Indeed, this scaling is found by Prigent et al. (2002), who

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

33
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.33


887 A18-12 P. Berghout and others

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

¯A
2 ˘ z

,r,
t

630 650 670 690 710 730 750 770 790 -2100 -1900 -1700 -1500 -1300 -1100
Rei

Rei,c = 863 Reo,c = -713

Reo

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4

(÷ 10-1) (÷ 10-1)(a) (b)

FIGURE 7. Amplitude scaling of the turbulent spiral with varying ε. (a) Scaling of the
amplitude squared A2 with varying Rei(Reo = −1200). The fit highlights that A2

∝ ε1,
with ε = (Rei,c − Rei)/Rei,c, as predicted by the GL equations. Extrapolation of the fit
gives Rei,c = 863, which compares very well with the experimental results in Prigent
et al. (2002) for η = 0.98. (b) Scaling of A2 with varying Reo(Rei = 680). We observe
an identical scaling for A2; A2

∝ ε1, now with ε = (Reo,c − Reo)/Reo,c and Reo,c =−713.
Error bars represent the standard deviation of 〈A2

〉z,r(t).

(for different η = 0.98) extracted a critical Rei,c = 857 ± 5 at which the instability
occurs. Figure 7(a) shows that we also observe A2

∝ ε1 over a range of ε, close to the
bifurcation point. With Reo =−1200 we obtain Rei,c = 863, in very close agreement
with Prigent et al. (2002), in spite of different η. For Rei>780, nucleation of domains
of opposing helicity, and the appearance of turbulence in the laminar spiral regions,
obscures the precise measurements of the amplitude of the turbulence intensity signal.
Prigent et al. (2002) were still able to extract the amplitude for these Re due to the
very long runtime in the experiments, which at these Γ are not accessible for DNSs.
As for Rei = 770, the amplitude is still 0.04, we conclude that the noise term is
certainly high.

In a similar manner, we also approach the boundary of the spiral turbulent regime in
figure 1 from the horizontal direction, i.e. by varying Reo and maintaining Rei = 680.
For decreasing Reo, the stabilizing stratification of centrifugal pressure increases, the
flow laminarizes and the spiral emerges. As such, we define ε = (Reo,c − Reo)/Reo.
Figure 7(b) convincingly indicates that, also for varying Reo, A2

∝ ε1, with Reo,c =

−713. This indicates that the turbulent spiral behaves as a finite-wavelength instability,
in spite of the curvature effects.

3.4.2. The instability diagram
By carefully varying the aspect ratio Γ we are able to study a variation in the axial

wavelength λz of the spiral in the domain 26 6 λz/d 6 45. Considering that we do
probe the amplitude of a stationary turbulent spiral versus the wavelength, and the
influence of the wavelength of the momentum transport, we do not imply that for a
certain aspect ratio only one such wavelength exists. In fact, it is most likely that
the wavelength of the spiral is sensitive to initial conditions, as also the wavelength
of the Taylor–Vortex is. With axially periodic boundary conditions, we do not find
any Reynolds number dependence of λz, neither on Rei nor on Reo, since λz = Γ /n.
In contrast, such a dependence was experimentally observed by Prigent & Dauchot
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FIGURE 8. Amplitude A of the finite-wavelength instability versus wavenumber k̂ for
varying reduced thresholds ε = (Rei,c − Rei)/Rei,c. We include all simulations, with
varying aspect ratios of 42 6 Γ 6 125. Note that for large aspect ratios multiple
spirals exist. Therefore, we cannot simulate smaller wavenumbers than indicated in the
graph. We observe consistent behaviour of the amplitude with increasing ε, following
the phenomenology of a finite-wavelength instability. We fit a second-order polynomial
through the data. From this fit we obtain the most unstable wavelength for each ε –
thus five values in total. We obtain 38.91d < λc < 42.52d with mean(λc) = 41.38d and
var(λc)= 1.74d. As we do not observe a systematic trend in the difference between the
data and the fit, but rather find that the error is of similar order for all wavenumbers k̂,
we conclude that a parabolic fit is justified.

(2000) for no-slip boundary conditions at the plates and a much larger system Γ =430.
Figure 8 presents the amplitude versus the wavenumber k = 2π/λz for increasing ε.
Note that Rei and Reo are identical to those in figure 4, except for Rei = 720, which
is excluded here due to the very high noise originating from the ‘featureless’ turbulent
flow.

The parabolic shape, with a maximum around λz,c/d = 41 ± 2, represents the
characteristic band of unstable wavenumbers for a finite-wavelength instability above
onset. Thereby, we do observe the dependence of A on the bifurcation parameter ε,
such that an increasing band of wavenumbers becomes unstable with increasing ε.
We conclude that the most unstable wavelength λz,c/d ≈ 41 for our simulations at
η= 0.91 differs from the most unstable wavelength λz,c/d≈ 32 found in Prigent et al.
(2002) at η= 0.98.

In knowing that the amplitude in figure 8 is described by A2
= (ε− ξ 2

0 (k− kc)
2)/g0,

we can also extract the interaction strength coefficient g0 = ε/maxk(A2) and
the coherence length coefficient ξ0 from the fits for varying ε. We find that
g0= 2.80± 0.11 and does not depend on ε, i.e. it does not depend on the magnitude
of the noise, as also found in Prigent et al. (2003). The curvature we find at kc
(i.e. ξ 2

0 /g0 ≈ 1.5) is comparable to the values observed by Prigent et al. (2002)
(i.e. ξ 2

0 /g0 ≈ 0.5), but unfortunately our data are not precise enough to extract the
coherence length ξ0 of the pattern with sufficient accuracy to study the trends with
ε. It is interesting to note that, in doing so, we are in principle able to extract
properties of the full amplitude and pattern (like ξ0) within the GL framework
from an analysis of a single mode with fixed wavenumber (the Landau–Hopf or
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Stuart–Landau framework) induced by varying the aspect ratio, and that the resulting
coherence length is much larger than our system size.

4. Summary and conclusions

In conclusion, we performed direct numerical simulations of counter-rotating Taylor–
Couette flow at 400 6 Rei 6 1200 and −2000 6 Reo 6−1000. For the aspect ratio Γ
of the domain 42 6 Γ = L/d 6 125 with periodic boundary conditions in the axial
direction, and the radius ratio η= ri/ro=0.91. In this regime we found the coexistence
of spatio-temporal intermittent laminar and turbulent domains, commonly referred to
as spiral turbulence (Coles 1965; Van Atta 1966).

The formation of the turbulent structure (i.e. spiral in TC) out of a turbulent base
flow is similar to the phenomenology of the (complex) Ginzburg–Landau equations
with a noise term (Prigent et al. 2002), in the limit of very low curvature (η= 0.98).
With these fully resolved simulations, we showed that the GL phenomenology also
holds for the spirals when curvature effects do play a role. We found that the GL
description for pattern formation holds close to the bifurcation point for both varying
Rei and varying Reo. This, once more, suggests the existence of a finite-wavelength
instability in a fully turbulent flow.

Also, we found that the pattern is stationary in the reference frame of the mean
angular velocity in the domain ωs = 〈ω〉. This is in contrast to findings by Prigent
& Dauchot (2000) and Andereck et al. (1986), who experimentally found that the
spiral moves with the mean velocity of the two rotating cylinders, i.e. ωs=

1
2(ωi+ωo).

However, note that the small difference between 〈ω〉 and 1
2(ωi+ωo) is hard to observe

in experiments at these low Reynolds numbers.
In contrast with Prigent et al. (2002) we have periodic boundary conditions in the

axial direction. As such, we only allow a wavelength which is an integer division
of the aspect ratio Γ . It is therefore very likely that we do not observe a Reynolds
number dependence of λz. In their experiment, Prigent et al. (2002), however, employ
no-slip boundary conditions on the vertical axis, and as such, allow for any wavelength
to exist. Despite the different boundary conditions we find strong agreement in the
critical Reynolds number at which the instability occurs (i.e. Rei,c= 863 for our DNS
and Rei,c = 857 for the experiments in Prigent et al. (2002)) as we also find similar
values of the interaction strength ξ 2

0 ≈ 1 for both. Whereas we obtain kc by altering
the aspect ratio, and Prigent et al. (2002) from analysis of monodomain regions in
the flow, we both find a parabolic trend of the amplitude with k, where kc does not
appear to depend on Re.

The most unstable wavelength of the instability is found to be λz,c ≈ 41d, thereby
differing from findings in plane Couette flow and in TC flow, where it is λz,c ≈ 32d
at very high η= 0.98. Apparently, λz,c is a function of the radius ratio η. This finding
may be an important clue for further theoretical investigations, and it may point the
way towards understanding the modulated turbulent states in terms of a stationary
bifurcation.

Whereas a formal derivation of the instability from the turbulent base flow seems
hopeless, since it requires a closed description of the turbulence, fully resolved
simulations help to uncover the characteristics and ingredients of the instability
when it appears or disappears in the flow. Future work could continue on this road,
by e.g. studying the response of the structure to abrupt changes in the boundary
conditions, or by studying the effects of initial conditions on the turbulent spiral.
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