Health parameters in tail biters and bitten pigs in a case–control study

C. Munsterhjelm1†, O. Simola2, L. Keeling1, A. Valros3 and M. Heinonen3

1Department of Animal Environment and Health, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden; 2Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland; 3Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland

(Received 28 February 2012; Accepted 3 September 2012; First published online 29 November 2012)

Health in relation to tail-biting behaviour was investigated on a problem farm. Quartets (n = 16) of age- and gender-matched fattening pigs including a tail biter (TB, n = 16), a victim (V, n = 16), a control in the same pen (Ctb, n = 10) and a control in a pen where no tail biting was observed (Cno, n = 14) were chosen by direct behavioural observation. Haematological and clinicochemical analyses, autopsy and histological examination of 16 different tissues were carried out. Tail lesion severity was evaluated both macroscopically, on the basis of inspection, and histologically, in the sagittally cut tail. Category effects were tested using Friedman’s ANOVA by Ranks, Cochran’s Q or a repeated-measure GLM and, if significant, pair-wise tests were conducted using Wilcoxon Signed Ranks or McNemar’s Test. The number of received tail bites correlated better with histological than with macroscopic tail lesion scoring because of deep inflammation beneath healthy skin in some cases. Most individuals had mild inflammatory lesions in internal organs suggestive of generalized activation of the immune system, and 30% of the animals were anaemic, possibly because of systemic spread of infectious agents. V had more severe respiratory organ lesions and higher serum protein concentrations than all other categories of pigs. Liver- and muscle-specific enzymes (alanine aminotransferase, alkaline phosphatase and creatine kinase) differed between categories. In conclusion, most animals had signs of generalized activation of the immune system, possibly because of systemic spread of infectious agents. V pigs suffered from more severe inflammatory lesions than TB, Ctb or Cno. Deep infections may exist under healthy skin in the tail of bitten pigs.

Keywords: tail biting, health, histology, haematology, clinical chemistry

Implications

Tail biting in growing pigs is a major problem in intensive pig production systems. It has considerable impact on animal welfare as well as on farm economy. This paper is a part of a larger experiment comparing individual characteristics in relation to tail-biting activity and frequency of being bitten. The results show that respiratory disease is associated with victimization, but the mechanism needs to be clarified in further research. Effective measures of prevention of tail biting would have a profound effect on pig welfare.

Introduction

Tail biting in pigs is a behavioural abnormality with considerable impact on animal welfare as well as on farm economy. Despite a fairly good understanding of the predisposing factors at the herd level and widespread use of routine tail docking, the problem is far from solved. Scientists have emphasized a need to identify individual characteristics in both biters and victims in order to understand the mechanism behind tail biting, and to eventually find effective measures of prevention (Edwards, 2006).

Previous research on the basis of epidemiological data has identified correlations between disease and tail-biting prevalence at the farm level, suggesting that unhealthy animals might not resist being bitten, or that discomfort from being sick may cause tail biting (Moinard et al., 2003). These studies have, however, only noted clinical disease and visible tail damage in living animals. Few attempts have been made to test the latter hypothesis by identifying tail biters (TB).

Tail wounds from biting appear to cause infections elsewhere in the body. Associations between tail damage and other pathological lesions have been reported repeatedly in slaughtered pigs (Elbers et al., 1992; Huey, 1996). This kind of material, however, only includes acute tail damage.
market-sized pigs. Most healed cases as well as severe ones leading to death or culling are not included.

This study aimed to identify health differences in pigs classified according to tail-biting activity. Behavioural observations and sampling were both completed within a few days in order to collect all information during the actual tail-biting outbreak.

Material and methods

Animals and husbandry

The study was conducted on an 800-pig fattening farm in western Finland with a history of substantial tail-biting problems. The farm raised mixed-breed pigs, originating from several different farms, from about 25 to 30 kg to slaughter according to an all-in all-out scheme. Pigs were not tail-docked, as the procedure is prohibited in Finland. The study animals were collected from two consecutive batches between May and October 2009 (Table 1). They were chosen from five rooms with different group size (6 to 20 individuals), pen equipment and feeding method. The animals were fed a standard dry commercial feed for growing/finishing pigs either manually twice a day (two rooms) or ad lib from a feeder (three rooms). All pens were part-slatted with more than half of the floor solid. The dimension of the slats fulfilled Finnish legislation with a maximum of 18 mm spacing between slats of at least 80 mm. No bedding was provided, but a small in-mouth behaviour (taking the tail in the mouth without chewing or biting) and tail biting. The latter was further classified according to the receiver's behavioural reaction as mild (e.g. screaming, running away; for further details see Brunberg et al., 2011). The third stage included observations on an individual level in the most promising pens identified in the previous stages, 8 × 15 min per individual during 2 or 3 days. Both the performer and the receiver individuals were noted in order to identify frequent TB and receivers of bites (V), as well as docking, as the procedure is prohibited in Finland. The study was designed as a case–control with quartets (n = 16) of animals forming the experimental unit (Table 1).

Behavioural observations and selection of case–control quartets

The study was designed as a case–control with quartets (n = 16) of animals forming the experimental unit (Table 1).

The uniting factors within the quartets were gender, approximate age (the animals arrived on the farm as a batch of equally sized individuals) and room. Six of the quartets consisted of barrows and the other 10 of gilts. The total number of animals was 56, including 16 TB, 16 victims (V) and 10 controls in the same pen referred to as the ‘biting pen’ (Ctb), as well as 14 controls in a pen from the same room but without tail-biting activity (Cno). Six Ctb and two Cno were missing owing to the problems related to identifying suitable non-bitten animals.

The animals were chosen using direct behavioural observations according to a three-stage process, outlined in more detail in Brunberg et al. (2011). The process aimed to identify a sufficient number of quartets to be euthanized immediately upon identification, that is, during the actual tail-biting outbreak. Initially, the whole farm was scanned in order to identify pens with signs of ongoing tail biting and appropriate controls. At this stage, any signs of an outbreak were noted, including restlessness and tails tucked under; however, the most useful information proved to be visible tail lesions and the caretakers’ comments. Second, pen-level observations of behaviour were carried out for 2 × 30 min (in some cases 3 to 4 × 30 min, if needed for clarification of the tail-biting status) during 1 or 2 days. The observations were carried out by one person standing in front of the pen taking notes on paper using all occurrence sampling, according to an ethogram including tail-in-mouth behaviour (taking the tail in the mouth without chewing or biting) and tail biting. The latter was further classified according to the receiver’s behavioural reaction as mild (no reaction), moderate (e.g. avoiding, low grunting) or severe (e.g. screaming, running away; for further details see Brunberg et al., 2011). The third stage included observations on an individual level in the most promising pens identified in the previous stages, 8 × 15 min per individual during 2 or 3 days. Both the performer and the receiver individuals were noted in order to identify frequent TB and receivers of bites (V), as well as

Table 1 Characteristics of matched quartets of behaviourally categorized tail biters, victims and controls from biting and non-biting pens

<table>
<thead>
<tr>
<th>Quartet</th>
<th>Month</th>
<th>Gender</th>
<th>Weight (kg; mean ± s.e.)</th>
<th>Days on farma</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>May</td>
<td>M</td>
<td>30.0 ± 2.1</td>
<td>4</td>
<td>Cno missing</td>
</tr>
<tr>
<td>2</td>
<td>May</td>
<td>F</td>
<td>34.3 ± 1.7</td>
<td>5</td>
<td>Cno missing</td>
</tr>
<tr>
<td>3</td>
<td>May</td>
<td>M</td>
<td>46.7 ± 2.6</td>
<td>7</td>
<td>Ctb missing</td>
</tr>
<tr>
<td>4</td>
<td>May</td>
<td>F</td>
<td>35.3 ± 3.3</td>
<td>11</td>
<td>Ctb missing</td>
</tr>
<tr>
<td>5</td>
<td>May</td>
<td>M</td>
<td>40.3 ± 0.9</td>
<td>12</td>
<td>Ctb missing</td>
</tr>
<tr>
<td>6</td>
<td>May</td>
<td>F</td>
<td>37.3 ± 1.5</td>
<td>12</td>
<td>Ctb missing</td>
</tr>
<tr>
<td>7</td>
<td>June</td>
<td>F</td>
<td>55.5 ± 2.5</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>June</td>
<td>M</td>
<td>75.0 ± 2.7</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Sept</td>
<td>F</td>
<td>30.3 ± 2.2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Sept</td>
<td>F</td>
<td>36.3 ± 5.1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Sept</td>
<td>F</td>
<td>29.0 ± 2.0</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Sept</td>
<td>M</td>
<td>32.8 ± 0.6</td>
<td>14</td>
<td>Ctb missing</td>
</tr>
<tr>
<td>13</td>
<td>Oct</td>
<td>F</td>
<td>47.0 ± 3.4</td>
<td>34</td>
<td>Ctb missing</td>
</tr>
<tr>
<td>14</td>
<td>Oct</td>
<td>F</td>
<td>49.5 ± 7.6</td>
<td>34</td>
<td>Ctb missing</td>
</tr>
<tr>
<td>15</td>
<td>Oct</td>
<td>F</td>
<td>55.2 ± 4.9</td>
<td>35</td>
<td>Ctb missing</td>
</tr>
<tr>
<td>16</td>
<td>Oct</td>
<td>M</td>
<td>47.5 ± 3.8</td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

M = castrate; F = female; Cno = control pig in an adjacent pen without tail biting; Ctb = control pig in the biting pen.
aPigs arrived at ~10 to 12 weeks of age.
Characteristics of the quartets are given in Table 1 and of the animals. Categorization and general characteristics of the animals.

The animal's BW ranged from 23.0 to 82.5 kg at autopsy. Characteristics of the quartets are given in Table 1 and of the animals.

Results

Categorization and general characteristics of the animals.

The animal’s BW ranged from 23.0 to 82.5 kg at autopsy.

Characteristics of the quartets are given in Table 1 and of the animals.

Pathological examinations.

The head of the pig was detached immediately after death for removal of the brain. The carcass was transported to the University of Helsinki and placed in a cool room 4 to 8 h after death. An autopsy was performed the next day according to standard procedures, including examination of the spinal column. The following tissues were sampled for histological examinations: liver, spleen, kidney, lung, heart, pancreas, both adrenals, cutaneous and glandular part of stomach, jejunum, ileum, colon, joint capsules from the knee and elbow, tail, hypophysis and sacral spinal cord. Histological samples were processed routinely for histopathology, stained with haematoxylin–eosin, and observed using standard techniques.

Tail lesions were classified both macroscopically, by inspection of the tail, and histologically, by cutting the tail end sagittally, as 0 = no, 1 = healed, 2 = mild, 3 = moderate and 4 = severe lesion. The macroscopic classification was defined as 0 = no visible lesion, 1 = scar tissue at the tail tip, 2 = wounds not deeper than subcutis, 3 = wounds deeper than subcutis or moderate infection, 4 = part of the tail missing, severe infection or abscess. Histological findings were classified as 0 = no lesions other than hyperkeratosis; 1 = evidence of healed lesion including a rounded and fibrotic tip of the tail with missing dermal hair follicles and possibly abnormal shape of the last observed tail vertebra (e.g. lack of the distal epiphysis); 2 = epidermal lesions, erosion, crusts or pustules and perivascular dermal inflammation; 3 = lesions extending into the deep dermis or the subcutis; and 4 = lesions extending to the muscle layer and/or bone.

Statistical analyses.

PASW 18 software (SPSS Inc., Chicago, IL, USA) was used for all statistical analyses. The distribution of continuous and categorical variables was investigated using Kolmogorov–Smirnov and Shapiro–Wilk tests, as well as Q–Q plots. One individual was excluded from the clinical biochemical analyses because of haemolysis (category C, Kramer and Hoffmann, 1997), and one outlier from CK data (category C, CK = 9367).

For normally distributed variables, a repeated-measures GLM with category as a within-subjects factor was fitted. If the within-subjects test chosen according to sphericity (Huynh and Mandeville, 1979) was significant ($P < 0.05$), pair-wise Student's t-tests were conducted. For nonparametric variables, Related-samples Friedman's Two-Way ANOVA by Ranks were applied to test the null hypothesis that the observations in the four categories came from the same distribution.

A P-value of < 0.05 was selected to reject the null hypothesis and allow for pair-wise testing of differences between the groups using the Wilcoxon Matched-Pairs Signed-Rank Test. Category effects on dichotomous variable were tested using Cochran's Q-test, and if significant ($P < 0.05$), McNemar’s test was used for pair-wise comparisons.

Results

Categorization and general characteristics of the animals.

The animal’s BW ranged from 23.0 to 82.5 kg at autopsy.
categories of animals in Table 2. BW did not differ between the categories (Table 2.)

Evaluation of tail lesions
The distribution of histologically classified tail lesions is given in Table 3 and category averages for histological and macroscopic scoring in Table 4. Histological and macroscopic tail damage scores were highly correlated (r = 0.90, P < 0.001, n = 47). In the five cases where there were histological signs of healed tail trauma, this was also visible macroscopically. In the two pigs with macroscopic evidence of healed trauma, additional deep acute lesions were identified only upon histological examination.

The number of observed bites on the tail correlated better with histologically than with macroscopically evaluated tail damage (r = 0.62, P < 0.001, n = 51 v. r = 0.50, P < 0.001, n = 48, respectively). Looking at the behavioural reaction by the bitten pig, the histological score correlated best to the number of received bites, causing a mild reaction (RTB1 (received tail bites); r = 0.61, P < 0.001), followed by severe reaction (RTB2; r = 0.46, P = 0.001) and no reaction (RTB0; r = 0.39, P < 0.01). The macroscopic tail damage score was uncorrelated to RTB0, but moderately correlated to RTB1 and RTB2 (r = 0.48, P = 0.001 for both).

Haematology
Results of the statistical analyses on blood parameters and clinical chemistry are given in Table 5. MCV, ALAT, ALP, CK and serum protein concentration differed significantly between categories (P < 0.05).

A HGB below 100 was chosen as a limit for anaemia (Friendship et al., 1984). Accordingly, of the animals, three TB (21% of animals in the category), five V (33%), five Cb (63%) and four Cno (29%) were anaemic. No category effect was given in Table 3 and category averages for histological and category prevalences have previously been found to correlate only upon histological examination.

Discussion
This study aimed to identify health differences in pigs classified according to tail-biting activity. Disease and tail lesion prevalences have previously been found to correlate at the farm level (Moinard et al., 2003), indicating that sickness-induced discomfort may eventually lead to tail-biting behaviour (Fritchen and Hogg, 1983). This did not seem to be the case on the present farm, as TB did not suffer from more or different pathological conditions than control pigs. Nevertheless, disease cannot be ruled out as a cause for tail biting on this farm. Pathological lesions were also very common in bitters. Individual factors may interact with sickness to induce

Health parameters in tail biters and bitten pigs

"Table 2 BW and tail-biting activity in pigs categorized by tail-biting behaviour"

<table>
<thead>
<tr>
<th></th>
<th>Tail biter (n = 16)</th>
<th>Victim (n = 16)</th>
<th>Control, biting pen (n = 10)</th>
<th>Control, other pen (n = 14)</th>
<th>Friedman's test P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg; mean ± s.e.)</td>
<td>43.7 ± 3.6</td>
<td>42.5 ± 3.0</td>
<td>42.4 ± 4.9</td>
<td>43.2 ± 4.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Received tail bites (nr)</td>
<td>1 (0–6)</td>
<td>11 (1–31)</td>
<td>0 (0–4)</td>
<td>0 (0–1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Performed tail bites (nr)</td>
<td>36 (8–65)</td>
<td>0 (0–3)</td>
<td>0 (0–1)</td>
<td>0 (0–1)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*During 8 × 15 min of individual observation; given as median (min–max).

Means with different superscripts differ significantly (P < 0.05) in pair-wise comparisons.

"Table 3 Distribution of histological tail lesions in pigs categorized by tail-biting activity"

<table>
<thead>
<tr>
<th></th>
<th>Tail biter (n = 16)</th>
<th>Victim (n = 16)</th>
<th>Control, biting pen (n = 10)</th>
<th>Control, other pen (n = 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No lesion</td>
<td>4 (29%)</td>
<td>0</td>
<td>3 (33%)</td>
<td>10 (71%)</td>
</tr>
<tr>
<td>Evidence of old trauma</td>
<td>2 (14%)</td>
<td>0</td>
<td>1 (11%)</td>
<td>2 (14%)</td>
</tr>
<tr>
<td>Mild lesion</td>
<td>1 (7%)</td>
<td>1 (7%)</td>
<td>1 (11%)</td>
<td>2 (14%)</td>
</tr>
<tr>
<td>Moderate lesion</td>
<td>4 (29%)</td>
<td>2 (13%)</td>
<td>3 (33%)</td>
<td>0</td>
</tr>
<tr>
<td>Severe lesion</td>
<td>3 (21%)</td>
<td>12 (80%)</td>
<td>1 (11%)</td>
<td>0</td>
</tr>
</tbody>
</table>

*Number of pigs (percentage within the category).
Table 4 Prevalences of and category effects on macroscopic tail lesions, and histological findings in pigs categorized by tail-biting activity

<table>
<thead>
<tr>
<th></th>
<th>Tail biter (n = 16)</th>
<th>Victim (n = 16)</th>
<th>Control, biting pen (n = 10)</th>
<th>Control, other pen (n = 14)</th>
<th>Test statistic (d.f. = 3)</th>
<th>P-value</th>
<th>Test</th>
<th>Proportion of animals affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macroscopic tail lesion score</td>
<td>1.7<sup>a</sup></td>
<td>3.4<sup>b</sup></td>
<td>2.1<sup>ab</sup></td>
<td>0.5<sup>a</sup></td>
<td>8.82</td>
<td>0.03</td>
<td>F</td>
<td>71%</td>
</tr>
<tr>
<td>Histological tail lesion score</td>
<td>2.0<sup>a</sup></td>
<td>3.7<sup>b</sup></td>
<td>1.8<sup>ac</sup></td>
<td>1.4<sup>c</sup></td>
<td>8.31</td>
<td>0.02</td>
<td>F</td>
<td>68%</td>
</tr>
<tr>
<td>Respiratory organ inflammation severity score</td>
<td>0.9<sup>a</sup></td>
<td>1.7<sup>b</sup></td>
<td>1.0<sup>a</sup></td>
<td>1.1<sup>a</sup></td>
<td>9.55</td>
<td>0.02</td>
<td>F</td>
<td>78%</td>
</tr>
<tr>
<td>Respiratory organ inflammation type score</td>
<td>0.9</td>
<td>1.3</td>
<td>0.9</td>
<td>1.1</td>
<td>4.07</td>
<td>>0.1</td>
<td>F</td>
<td>78%</td>
</tr>
<tr>
<td>Nephritis score</td>
<td>0.4</td>
<td>0.6</td>
<td>1.0</td>
<td>0.5</td>
<td>4.81</td>
<td>>0.1</td>
<td>F</td>
<td>42%</td>
</tr>
<tr>
<td>Adrenalinis score</td>
<td>0.9</td>
<td>0.6</td>
<td>1.0</td>
<td>0.9</td>
<td>4.81</td>
<td>>0.1</td>
<td>F</td>
<td>45%</td>
</tr>
<tr>
<td>Gut lesion score</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
<td>4.81</td>
<td>>0.1</td>
<td>F</td>
<td>71%</td>
</tr>
<tr>
<td>Stomach, glandular part lesion score</td>
<td>0.8</td>
<td>1.4</td>
<td>0.9</td>
<td>0.6</td>
<td>4.17</td>
<td>>0.1</td>
<td>F</td>
<td>38%</td>
</tr>
<tr>
<td>Stomach, cutaneous part lesion score</td>
<td>0.8</td>
<td>0.9</td>
<td>0.4</td>
<td>0.7</td>
<td>1.37</td>
<td>>0.1</td>
<td>F</td>
<td>27%</td>
</tr>
<tr>
<td>Follicular hyperplasia, spleen</td>
<td>38%</td>
<td>25%</td>
<td>33%</td>
<td>36%</td>
<td>2.54</td>
<td>>0.1</td>
<td>Q</td>
<td>33%</td>
</tr>
<tr>
<td>Hepatitis, mild multifocal</td>
<td>81%</td>
<td>63%</td>
<td>67%</td>
<td>64%</td>
<td>3.80</td>
<td>0.1</td>
<td>Q</td>
<td>69%</td>
</tr>
<tr>
<td>Inflammation in the central nervous system</td>
<td>38%</td>
<td>50%</td>
<td>56%</td>
<td>36%</td>
<td>3.24</td>
<td>0.1</td>
<td>Q</td>
<td>44%</td>
</tr>
<tr>
<td>Posterior spinal cord inflammation</td>
<td>25%</td>
<td>13%</td>
<td>22%</td>
<td>21%</td>
<td>1.74</td>
<td>>0.1</td>
<td>Q</td>
<td>20%</td>
</tr>
</tbody>
</table>

Test: F = Friedman; Q = Cochran’s Q.

Tail lesion scores: 0 = no lesion, 1 = healed trauma, 2 = mild, 3 = moderate, 4 = severe lesion.

Respiratory organ inflammation severity scores: 0 = no lesion, 1 = mild, 2 = moderate, 3 = severe.

Respiratory inflammation type, nephritis and adrenalinis scores: 0 = no lesion, 1 = acute, 2 = chronic.

Gut: 0 = no lesion, 1 = reactive lymph tissue, 2 = enteritis.

Stomach, glandular part: 0 = no lesion, 1 = hyperceratosis, 2 = acute gastritis, 3 = chronic gastritis.

Stomach, cutaneous part: 0 = no lesion, 1 = hyperaemia, 2 = hyperceratosis, 3 = acute gastritis, 4 = chronic gastritis.

Note: Values are given as category means or percentage of affected animals.

^{a,b,c}Means with different superscript letters differ significantly (P < 0.05) in pair-wise comparisons.
Health parameters in tail biters and bitten pigs

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Category effects on blood parameters and clinical chemistry in pigs categorized by tail-biting activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood parameter</td>
<td>Unit</td>
</tr>
<tr>
<td>WBC</td>
<td>$\times 10^9/l$</td>
</tr>
<tr>
<td>RBC</td>
<td>$\times 10^{12}/l$</td>
</tr>
<tr>
<td>HB</td>
<td>g/l</td>
</tr>
<tr>
<td>HCT</td>
<td>%</td>
</tr>
<tr>
<td>MCV</td>
<td>fl</td>
</tr>
<tr>
<td>MCH</td>
<td>pg</td>
</tr>
<tr>
<td>MCHC</td>
<td>%</td>
</tr>
<tr>
<td>PLT</td>
<td>$\times 10^9/l$</td>
</tr>
<tr>
<td>s-Albumin</td>
<td>g/l</td>
</tr>
<tr>
<td>s-GLUT1</td>
<td>$\times 10^9/l$</td>
</tr>
<tr>
<td>s-Aspartate transaminase</td>
<td>IU/l</td>
</tr>
<tr>
<td>s-Creatinine</td>
<td>mmol/l</td>
</tr>
<tr>
<td>s-Total protein</td>
<td>g/l</td>
</tr>
<tr>
<td>s-Urea</td>
<td>mmol/l</td>
</tr>
<tr>
<td>s-Alanine transaminase</td>
<td>IU/l</td>
</tr>
<tr>
<td>s-Amylase</td>
<td>IU/l</td>
</tr>
<tr>
<td>s-γ-Glutamyltransferase</td>
<td>IU/l</td>
</tr>
<tr>
<td>s-Total protein</td>
<td>g/l</td>
</tr>
<tr>
<td>s-Urea</td>
<td>mmol/l</td>
</tr>
</tbody>
</table>

r.m.s.d. = root mean squared deviation for the within-subjects effect in the GLM; χ² = chi-squared statistic for Friedman’s test with d.f. = 3; WBC = white blood cell count; l = litre; GLM = repeated measures general linear model with category as within-subjects factor; RBC = red blood cell count; HB = haemoglobin concentration; g = gram; HCT = haematocrit; MCV = mean corpuscular volume; f = femto; MCH = mean corpuscular haemoglobin; p = pico; MCHC = mean corpuscular haemoglobin concentration; PLT = platelet count; ALAT = alanine aminotransferase; IU = international units; ALP = alkaline phosphatase; ASAT = aspartate aminotransferase; s = serum; CK = creatine kinase; GGT = γ-glutamyltransferase; mm = milli.

Note: Values are given as category means. a,b,cMeans with different superscript letters differ significantly (P < 0.05) in pair-wise comparisons.

tail-biting behaviour. Moreover, it is uncertain if the chosen biters were the actual initiators of the behaviour. Tail biting is known to spread visually (Blackshaw, 1981), and characteristics of followers may differ from those of the instigators.

A high infection pressure seemed to be present on the farm, as suggested by both pathological findings and a high prevalence of anaemia characterized by low MCHC, which is an indication of chronic inflammation (Friendship and Henry, 1992). Although this may have masked some differences associated with tail-biting activity, several measures indicated that the health status of the victims was worse as compared with all the other categories of pigs. Tail and respiratory organ lesions were more severe, serum protein concentration higher and WBC counts numerically higher, indicating that V were more severely challenged by (bacterial) infections (Odink et al., 1990). As freedom from disease is assigned high priority when assessing animal welfare (e.g. Duncan and Fraser, 1997), these findings emphasize the detrimental effects of being tail bitten.

Pathological examinations in the present animals indicated that respiratory organ disease was, at least in many cases, secondary to infected tail lesions. The most common route of bacterial spread was venous (Sihvo et al., 2011). Previously, macroscopic lung infections have been reported to associate with tail lesions in pig carcasses examined at the slaughterhouse (Elbers et al., 1992; Huey, 1996).

Respiratory organ disease may also be a predisposing factor for being bitten, as suggested by Moinard et al. (2003). The mechanism may be a reluctance or inability of ill pigs to avoid tail biting. Chronic immune activation – obviously frequent in this study – will elicit a non-specific ‘sickness response’ behaviourally manifested by, for example, fatigue, increased pain sensitivity, depressed activity and anorexia (Hart, 1988).

Serum activity of ALAT and ALP were higher in TB and Cb, and also higher in Cno than V. Levels of ALP were within the reference range given by Friendship et al. (1984), whereas ALAT activity was considerably higher. The significance of the high activity is uncertain. Comparison with reference values is complicated by a number of factors, including that the values may be out of date and therefore no longer applicable for modern breeds (Lumsden, 1998). In the present animals, sedation (Evans, 1994) and freezing of the serum (Kramer and Hoffmann, 1997) are further possible sources of systematic errors.

The reason for the observed differences between the categories of pigs in ALAT and ALP is also not clear. Both enzymes are liver-specific, although ALAT activity in pigs is low (Boyd, 1983), and the bone is the primary source of ALP in growing animals (Kramer and Hoffmann, 1997). There might be a weak correlation with hepatitis prevalence, as category averages of enzyme activities seem to follow a similar pattern. Alternatively, pathological processes may play a role as reported by Odink et al. (1990), who found decreasing ALAT and ALP activity (among others) with increasing severity of inflammatory lesions in slaughter pigs.

The link between being a victim and decreasing ALP activity may also be decreased feed intake (Baetz and Mengeling, 1971). Inappetence is associated with being tail bitten (Niemi et al., 2011) and a part of the ‘sickness response’ (Hart, 1988). In the present animals, BW did not
Munsterhjelm, Simola, Keeling, Valros and Heinonen
differ between categories. Nevertheless, growth may have been
temporarily decreased in V because of respiratory dis-
ease or tail biting, as reported by Wallgren and Lindahl
(1996) and Niemi et al. (2011).
A few differences between C tb and C no indicate that
environmental effects on health existed in tail-biting pens.
CK activity was higher in C tb than C no and V. Category
averages for ASAT seemed to follow a similar pattern to CK.
A combination of elevated CK and ASAT, previously reported
in pigs by Friendship et al. (1984), suggests that exercise
and/or tissue damage was the cause (van der Meulen et al.,
1991), and that the damage was not acute (Tennant, 1997).
The pathological examinations gave no obvious reason for
the findings. Nevertheless, restlessness is associated with
tail biting and may explain the findings.
Erythrocyte volume (MCV) was larger in C tb than C no but
still within reference values by Friendship et al. (1984).
Inflammatory processes may decrease MCV (Odink et al.,
1990), whereas increasing environmental disease pressure
or erythrocyte regeneration in anaemia may increase it
(Friendship and Henry, 1992). Pathological findings did not
explain the difference in MCV between the two control
categories.
The pathological investigations indicated that the appearance of (bitten)
tails might not be the most accurate
measure of tail-biting activity or tail lesions. We noted,
in accordance with Simonsen et al. (1991), that severe
inflammatory changes may exist under healthy-looking skin.
In conclusion, no associations between health status and
tail-biting activity could be established on this farm with
widespread tail biting and apparently high infection pressure.
Being a victim of tail biting was associated with severe
inflammatory lesions in the respiratory organs. Deep infections
may exist under healthy skin in bitten tails.

Acknowledgements
This research was funded by The Nordic Joint Committee
for Agricultural Research. The authors wish to thank the farm,
the non-author researchers and Susanna Takaluoma for help and
hard work during the experiment, and Satu Sankari for carrying
out the blood work. Above all, we would like to acknowledge
Anne Larsen for very professional technical assistance during
the long hours of data collection.

References
American Journal of Veterinary Research 32, 1491–1499.
Blackshaw JK 1981. Some behavioural deviations in weaned domestic pigs:
persistent inguinal nose thrusting, and tail and ear biting. Animal Production 33,
315–332.
Boyd JW 1983. The mechanisms relating to increases in plasma enzymes and
isoenzymes in diseases of animals. Veterinary Clinical Pathology 12, 9–24.
Brunberg E, Wallenbeck A and Keeling LJ 2011. Tail biting in fattening pigs:
associations between frequency of tail biting and other abnormal behaviours.
Doumas BT, Watson WA and Biggs H 1971. Albumin standards and the
measurement of serum albumin with brom cresol green. Clinica Chimica Acta 31,
87–96.
Edwards SA 2006. Tail biting in pigs: understanding the intractable problem. The
Elbers ARW, Tielen MJM, Snijders JMA, Cromwijk WAJ and Hunneman WA
I. Prevalence, seasonality and interrelationship. Preventive Veterinary Medicine
14, 217–231.
Evans RJ 1994. Porcine haematology: reference ranges and the clinical value of
Fabiny DL and Erlichhausen G 1971. Automated reaction rate method for
determination of serum creatinine with Centrifichem. Clinical Chemistry 17,
696–700.
Friendship RM and Henry SE 1992. Cardiovascular system, hematology and
clinical chemistry. In Diseases of swine, 7th edition (ed. AD Leman, BE Straw,
WD Mengeling, S D Allaire and DJ Taylor), pp. 51–11. Iowa State University Press,
Ames, Iowa, USA.
biochemistry reference values for Ontario swine. Canadian Journal of
Comparative Medicine 48, 390–393.
Fritchen R and Hogg A 1983. Preventing tail-biting in swine (anti-comfort
syndrome). Historical materials from University of Nebraska-Lincoln extension
G75-245. University of Nebraska, USA.
Gutmann I and Bergmeyer HU 1974. Determination of urea with glutamate
dehydrogenase as indicator enzyme. In Methods of enzymatic analysis (ed. HU
Biobehavioral Reviews 12, 123–137.
Huey RJ 1996. Incidence, location and interrelationships between the sites of
abscesses recorded in pigs at a bacon factory in Northern Ireland. The Veterinary
Record 138, 511–514.
Huynh H and Mandeville GK 1979. Validity conditions in repeated measures
designs. Psychological Bulletin 86, 964–973.
International Federation of Clinical Chemistry (IFCC) 1983/4. IFCC methods for
the measurement of catalytic concentration of enzymes, Part 5. IFCC method for
alkaline phosphatase (orthophosphoric-monoesterphosphohydrolase, alkaline
optimum, EC 3.1.3.1). Journal of Clinical Chemistry & Clinical Biochemistry 21,
731–748.
IFCC 2002/3. IFCC primary reference procedures for the measurement of
catalytic activity concentrations of enzymes at 37°C, Part 2. Reference procedure
for the measurement of catalytic concentrations of creatine kinase. Clinical
Chemistry and Laboratory Medicine 40, 635–642.
IFCC 2002/5. IFCC primary reference procedures for the measurement of
catalytic activity concentrations of enzymes at 37°C, Part 2. Reference procedure
for the measurement of catalytic concentration of aspartate aminotransferase.
Clinical Chemistry and Laboratory Medicine 40, 718–724.
IFCC 2002/6. IFCC primary reference procedures for the measurement of
catalytic activity concentrations of enzymes at 37°C, Part 5. Reference procedure
for the measurement of catalytic concentration of aspartate aminotransferase.
Clinical Chemistry and Laboratory Medicine 40, 725–733.
IFCC 2002/7. IFCC Primary reference procedures for the measurement of
catalytic activity concentrations of enzymes at 37°C, Part 6. Reference procedure
for the measurement of catalytic concentrations of gamma-glutamyltransferase.
Clinical Chemistry and Laboratory Medicine 40, 734–738.
biochemistry of domestic animals, 5th edition (ed. JJ Kaneko, JW Harvey and
Veterinary Clinical Pathology 27, 102–106.
Moinard C, Mendl M, Nicol CJ and Green LE 2003. A case control study of
on-farm risk factors for tail biting in pigs. Applied Animal Behaviour Science 81,
333–355.
of tail biting in fattening pigs. In Book of abstracts of the 24th NJF Congress,
Association of Agricultural Scientists, Uppsala, Sweden.
Haematological and clinicohemical profiles of healthy swine and swine

