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Introduction. In structures having high strength-to-weight ratios such as those used in
aerospace applications, the presence of mechanical imperfections can reduce the capability of
the structure to perform as intended. Thus, it becomes essential to account for the localized
intensification of the stresses around through or surface cracks, which might trigger fracture
under applied loads. This type of study is currently receiving great research emphasis.

Although a considerable amount of effort has been expended on the stress analysis of
cracks in initially flat plates subjected to either extensional and/or bending loads (a review of
which can be found in [1]), theoretical treatment of cracks in initially curved plates or shells
has not received adequate attention in the past. The presence of curvature in a shell generates
deviation from behaviour of flat plates, in that stretching loads will induce both extensional
and bending stresses, while bending loads will also lead to both types of stresses. One of the
simplest shell geometries is that of a spherical shell, where the curvature radius R is everywhere
constant. The first investigation on the stresses in a spherical shell containing a crack was
made by Ang et al. [2), who associated the problem with that of an initially flat plate resting
upon an elastic foundation. The equivalence of the two problems was made by identifying
the foundation modulus with E4/R?* where E is the Young’s modulus and # the shell thickness.
However, the general character of the crack-tip stress field in a shell was not well understood
until Sih and Setzer [3] pointed out that the functional relationships of the local extension-
bending stresses are identical with those obtained by superimposing the individual extensional
and bending stresses of an initially flat plate. The extensional and bending effects are inter-
laced only through the intensity of the local stress field. In another paper, Folias [4] gave a
separate treatment to the spherical shell problem by utilizing singular integral equations with
Cauchy type kernels, as devised by Knowles and Wang [5], for solving crack problems in-
volving flat plates. The formulation in [4]} relies upon certain approximations in the kernels
for small la = [12(1 —v)]*a/(RK)* and assumptions on the behaviour of the density functions
based on the known flat plate solution. As a result, the obtained solution is valid only for an
extremely narrow range of Aa. This will be illustrated in the present work.

In order to extend the results of [4] to cover a significant range of Aa, a new method for
handling shell problems with cracks is presented. With the aid of Fourier transforms, an
integral representation for the solution of the governing differential equations of a spherical
shell is obtained. Application of the boundary conditions reduces the problem to two coupled
Fredholm integral equations in two unknown functions, which are solved numerically with a
high degree of accuracy. One of the advantages of the method is that the singular portion of
the stress solution can be readily extracted from the density functions and determined in closed

t This study was supported by the National Aeronautics and Space Administration under Grant NGR-39-
007-025 with Lehigh University.
1 1t should be noted that the parameter 4 used in this paper is equal to 4/a in [4).
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elementary form. Numerical results for the stresses and displacements in a cracked spherical
shell are also displayed graphically.

Shallow shell equations. The linear, first-order (thin) shallow shell theory will be employed
with the assumptions that the crack is not too long compared with the radius of curvature and
that the shallowness of the shell allows terms of order (H/L)? to be neglected in comparison
with unity. The parameters H and L are explained in Fig. I. The points in the shell will be

Through
Crack

FiGc. 1. Geometry of Shallow Spherical Shell with a Crack at the Apex.

identified by the coordinates of their projections in the xy-plane so that a crack lying at the
apex of the shell may be taken as the segment y =0,|x| < a.
By the shallow shell theory of Reissner [6], the coupled differential equations are

1 Eh
Vi os VA0 = plx, Y)ID, V4@~ Viw =0, ()
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where w(x, y) is the normal displacement and ®(x, y) is the stress function, which is identical
in character to the Airy stress function used in generalized plane stress problems. In (1), V2
is the Laplacian operator 8%/0x2+9%/dy?, D is the flexural rigidity of the shell defined as
ERP[12(1 —v?), and p(x, y) is the normal loading applied to the concave side of the shell. The
Poisson’s ratio is denoted by v. As usual, the membrane stress resultants are derived from
d(x, y)as
2 2 2

*® N o= ‘e ’e

Ny="2, , Ny= —em
¥ oyt Yo ax? ¥ dx dy

)

The constitutive relations expressing the moments and transverse shear resultants in terms of
the normal displacement are

v D 62w+ 0w v D 02w+ 0w ¥ D1 )(72w 3)
M,=-Dl-—4+v=—), M, ==D|—+v—), o= —D(l=v)=
x ox*  oy? ! dy? ox? ¥ oxdy

and

0. = —Di(Vzw), 0,= —Di(\?zw). 4)
0x dy

From the ordinary strain-stress relations, the in-plane displacements u(x, y) and u(x, y) can
be obtained in the usual manner.

Since the first-order shell theory permits only four conditions at an edge, say y =0, the
quantities Q, and M., cannot be specified individually, but they must be combined in the

Kirchhoff sense, i.c.,
oM 3 o3
V= Qut—2 = ‘D[J+(2—v) r ]

dy ox3 dx dy?
oM o o? ©)
- o _pl9Y o0 2" |
V=0t = D[ay3+(2 v)axzay]

Hence, the admissible boundary conditions at the edge y = 0 consist of selecting one member
from each of the following pairs:

ow
(My’ a_v> > (Vy, W), (Ny’ U), (ny7 u)‘ (6)
Further, if the problem is symmetric about the xz-plane, then the additional conditions
d
a—‘;=u=Vy=N”=0 for y=0 o))

can be used to simplify the mathematical analysis.

Preliminary remarks and calculations. In treating this problem, the solution may be
divided into two parts, namely the *“ undisturbed * solution for the shell without a crack which
can be computed from (1) for a particular function p(x, y) but leaves residual moments and
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membrane stresses along the prospective crack site, and a ** perturbation ™ solution, which
nullifies these residuals and decays rapidly as distance from the crack is increased. The rate
of decay will depend on the magnitude of the parameter 1a and is taken to be sufficiently rapid
such that the perturbation solution is effectively zero, except in a small region surrounding the
crack within which the shell is shallow. This will be loosely referred to as the regularity
condition, which requires w(x, y) and ®(x, y) with their first derivatives to be bounded as
(x*+y%)* > 0. The solution for the uncracked shell can usually be found without difficulty.
Therefore, the major task of the shell problem lies in determining the perturbed stress field
which corresponds to the homogeneous solution of (1), i.e., with p(x, y) = 0.

For the purpose of demonstrating the essential results of a cracked shell, it suffices to
consider the perturbation solution for the case when the crack is opened out symmetricallyt
with respect to the xz-plane. Owing to the conditions stated in (7) and assumptions made on
the decay of the perturbed stress solution, an equivalent problem involving a semi-infinite
shell occupying the space y = 0 may be set up with mixed boundary conditions along the edge
y =0. More specifically, the conditions on the crack at y = 0 are

My(xa 0)= M(x), Vy(x9 0)=0, (8)
Ny(x,0)=N(x),  N.(x,0=0.
For | x| < a and along the rest of the line y = 0, it is necessary to have
0
lim(a—w) = 1(x,0) = V(x,0)= N (x,0) =0 for |x|>a. )
y—0 y

Note, from the above expressions, that ¥, and N, vanish for all values of x at y = 0.
The coupled shallow shell equations can be conveniently solved by application of the
Fourier cosine and sine transforms

L. <]

flc(sa Y)=f

0

Jilx, yycos(sx)dx,  fi(s,y) = Jw f2(x, y)sin(sx)dx, (10)
0

in which s is the real-valued transform parameter. According to the appropriate inversion
theorem [7], (10) implies that

2( 2(*
fl(xa ,V)=;'IL flc(s: y)COS(SX)dS, fz(x, y)=;J‘0 f;(s: y)sin(sx)ds. (“)

Assuming that the displacement function w(x, y) and the stress function ®(x, y) satisfy
the regularity condition as mentioned earlier and applying (10), we find that the solution to
(1) in the transformed domain is given by

w(s, y) = F (s)exp(—say)+ Fy(s)exp(—spy)+ Fy(s)exp(—sy)  (y=0), } (12
(s, y) = iA*RD[F (s)exp(—say)— Fy(s)exp(—sPy)+ Fa(s)exp(—sy)]  (y20),

t The formulation of the anti-symmetric problem follows along the same line of reasoning and will not be
dealt with here.
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in which the parameters «, f and A stand for
afs) = [1—=i(A/s)°T}, () =[L+i/s)*]F, A =[121—v)P*(RI)~H. (13)

Similarly, appropriate sine and cosine transforms may be applied to the quantities in equations
(2) to (5). In terms of the functions Fi(s)(j =1, 2,..., 4), the equations (2) for y = 0 are

NZ = i(As*RD[?F y(s)exp (— say) = B2F (s) exp (= sBy) + Fu(s) exp (= sy)]. |
Ny=— i()ts)zRD[Fl(s) exp(—sap)—F,(s)exp(—sBy)+ Fu(s)exp(—sy)], ¢ (14)
N3, = —i(4s)’RD[aF ((s)exp(—say) — BF(s)exp(—sBy) + Fo(s)exp(—sy)], J
and the equations (3) become
M¢S = s*D[(L —va®)F,(s)exp (—say)+(1 —vB*)F,(s)exp (—sBy)
+(L—~v)F;(s)exp(—sy)],
M; = s>D[(v—a®)F (s) exp (—say) +(v—B*)F(s) exp(—spy) - (15)
—(L=v)Fy(s)exp(—sy)],
M3, = —(1—v)s*D[oaF ((s)exp(—say)+ BF,(s)exp (—sBy) + F3(s)exp(—sy)], |

which are valid only for y = 0. The Fourier transforms of the Kirchhoff shear resultants take
the forms

Vs = s>D{[(2—v)a? = 1]F (s)exp(—say) +[(2—v)B* — L]F (s) exp (~sBy)
+(L=v)Fy(s)exp(—sy)},

I

(16)
Vy = s*D{afa®—(2—v)]F (s) exp (—say) + B[B* —(2—v)]F(s) exp (—sBy)
—(1=v)Fy(s)exp(—sy)},
for y = 0 and the in-plane displacements u and v are transformed into
Ehu® = iA*sRD[(a® +v)F (s)exp(—say)— (B2 + V)F(s)exp(—spBy)
+1+WFs)exp(=sp)] (2 0), an

Ehv® = iA*sRD{a[a® —(2—~V)]F (s)exp(—say) +[B* —(2—v)]F,(s)exp(—sBy)
—(L+v)Fy(s)exp(—sy)}  (y20).
The above expressions N¢, Ny, etc. can be easily inverted back to the physical domain by means
of (11).
At this point, the number of unknown functions Fi(s) (j =1, 2, ..., 4) may be reduced
by appealing to the symmetry conditions on ¥V, and N, in (8) and (9). Since

Vs, 0) = Ni,(s,0) =0

the third equation in (14) and the second equation in (16) may be used to eliminate Fi(s)

E2
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(j =3, 4) as follows:
(1=Vv)F4(s) = —a(B> = V)F(s)— p(a® —V)F(s),
Fy(s) = —aF(s)+BF(s).

Hence, equations (14) to (17) may be expressed in terms of only two unknowns Fi(s) (j = 1, 2).
From the remaining boundary conditions specified in (8), (9) and the first equation (11),
Fi(s) (j = 1, 2) may be shown to be governed by the coupled dual integral equations

(18)

Jw (at/s)F,(s)cos(sx)ds =0 (x > a),

. 19)
J (B/s)Fy(s)cos(sx)ds =0 (x> a),

0

and
°° (L= B = o =)o+ LB~ ) w(1 — BY)F a9} cos () ds.
=—imm(x) (x<a), +  (20)
”: [-DF @~ -PFO] cos(e)ds = () (x<a) |
in which U
m(x) = %x)’ n(x) = %))

It should be noted that the present problem is also symmetric about the yz-plane.

While the analysis leading up to the foregoing integral representations is somewhat
straightforward, it is offered here merely for the sake of completeness. The reduction of
equations (19) and (20) to a system of standard integral equations which are suitable for
numerical evaluation will now be carried out.

Reduction of coupled dual integral equations. One approach to the mixed boundary
problem described herein is to reduce (19) and (20) to two coupled integral equations, which can
be evaluated along the crack —a <x <a. To this end, the functions uy(x) (j =1, 2) are
introduced:

u(x)= 7% J.: (afs)F,(s)cos(sx)ds,  uy(x)= %J‘: (B/s)F,(s)cos (sx)ds. 21

As is apparent from (19), u;(x) (j = 1, 2) vanish for x > a and hence the Fourier inversion
theorem [7] yields

(a/s)F,(s) = Ja u,(x) cos(sx) dx, (BIs)F,(s) = r u,(x)cos(sx) dx. 22)
0 0
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In order to avoid certain difficulties associated with the singularities that arise in the
solution for a line crack, it is essential to restrict the behaviour of the crack opening displace-
ments or the functions u;(x) at the end-points x = +a. Guided by the form of u/(x) being
proportional to (a*— x?)?* for the flat plate solution [8] A = 0, we may take the desired repre-
sentations to be

tdt
(07— x <a),
uyx) = f WO e <9 @3)
0 (x> a),
for j=1,2. Now, inserting (23) into (22) and making use of the identity

' cos (sx)

\/(tz z) = '}nJO(St)a

where J, is the zero-order Bessel function of the first kind, we see that the functions Fy(s) in
(20) may thus be replaced by ¥,(¢). The result of integrating (20) once in x gives

J " Ip) f awl(two(st)tdwﬁ,(s)r W) o(st)t df]sin (sx) ds = — f " m(n) dn,l
v} 0 0 1) (24)

f: [pz(s)f:m(mo(st)tdr~ﬁz(s)f:wz(t)10(st)tdt] sin(sx)ds = ’L o, |

in which p(s) (j = 1, 2) are the complex conjugate of p(s). In the sequel, the overbar will be
used to denote the complex conjugate of a function.

The next objective is to reduce (24) to a system of coupled Fredholm equations of the
second kind. For this purpose, introduce

qi(s)=pi)—ie; (=12,
with real
@, = —(34+v)A%2 and a, = A%2,
such that g,(s) is of order s™% as s —» 0. Now, by virtue of the discontinuous integral [9]
0=x<9),

. 0
J:) Jo(st)sin(sx) ds = {(xz_ )t 0<t<x),

(24) may be written as

X d X a o0 .
L oy [,(0) = ¥2(0)] 7(7‘—;) = —L m(n)dn—f XL J 4:(s\Jo(st)sin(sx)ds

j Va0t dtf q,(s)Jo(st)sin(sx)ds
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and

r i[9, () + (0] \/(—'4}— i f () dn— f "o f " a5V o(stysin(sx) ds
° x*—t%) 0 0 0

+J‘a Yo (0t dtJ‘ao G2(s)Jo(st) sin(sx) ds. (25)
0 0

These are recognized as Abel integral equations of the special typet:

f H(t) = TG zd =h(x) (0<x<a), (26)

and the function H(t) can be inverted as
2(*d dx
== = - >
H() =~ f HO g 0zt>a), @
Applying (27) to (25) and introducing the dimensionless quantities

E=tla, n=1la, Y=V @) (=12,

we immediately obtain

d 1 _
i[O~ 0] = ~ /() f moad j [PA(E, n)Y¥4(m)+ o, ¥ di,
J(E 0 8)
i, [ ,()+ W] = i 2 (©) f L f [P2(&, m¥1()— P& ¥ di,
n J¢ J
for 0 £ £ £ 1. Here, the symmetric kernels
P&, n)=/(&n) J sqy(s/a)Jo(Es)o(ns)ds (061,05 51), (29)

for j = 1, 2, are continuous on the square domain of definition [0, 1]x [0, 1] and are positive
definite. By splitting the kernels in (29) as

P )= “1[Q1 (& m+i0,,(E ], Py)(¢,n) = “2[Q21(f, m+iQ,2(¢, '7)]

and defining
$:1(8) = i[¥1(D-FAD]. 620 = ¥ i) +T:(0), (30)

+ With the change of variables X = x2 and T = ¢2, (26) and (27) can be readily converted to the regular pair
of Abel integral equations [10]
J‘x F(T)dT

P =, FO =1 U0,
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the following system of coupled Fredholm integral equations is found:

[ _ _2J(§)j¢ m(xa) dx
¢|(f)+u . [Q:11(E, Md2(n)+Q12(&, M (n)]dn = 7, Jo \/(éz—xz)’

0=¢l<1) 6D

P

1
[01(&, 1)~ QaalE, M)balm)] diy = >

0

o J( [ n(xa)dx
¢:(0) J T Jo \/(éz__xz)’ J
where Q (¢, n) (j, k = 1, 2) is given by

Q;1(&, ) = Re [o; ' /(Gn) f : 5q,(s/a)J o(¢s) o(ns) ds],
(32)

sz(fa n) =Im [O‘j-l \/(é'l)j0 Sij(S/a)Jo(fs)Jo('ls) ds],

for0 £ ¢ =<1,0 <y = 1. Equations(31)and (32) render ¢ () (j = 1, 2) fully determinate once
m(x) and n(x) are specified on the crack surface. The case of constant moment m, and stress
resultant n, applied to the crack will be considered for numerical calculation later on.

The improper integral representations for Q,(¢, n) (=1, 2) in (32), however, are in-
convenient for numerical purposes because of the infinite range of integration and the oscilla-
tory character of the integrands concerned. Alternative representations, which improve the
rate of convergence of the numerical solution, are readily deduced by expressing g;(s) in (32)
in terms of g/s), i.e.,

SZ jj - qj(s) (] = la 2)’ (33)

i
lnj

g j(s) =

so that g;(s) = O(s~®) as s = co. 1n (33), the constants c; and n} are

Cl=1§3v14’ c2=—§l‘,
and
1+45v 5
2 — AZ’ 2 — _12.
A TEE "2=%

On putting (33) into (32) and using the identities [9]

j T I E s ds = — (Wi HP ) 0 <E< ),

o s2—in?
in which J, and H{" can be expressed in terms of the Kelvin functions ber, bei, ker and kei as

Jo(ix) = berx—ibeix,  —idnH(ix) = ker x—ikeix,
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the kernels Q;(¢, n) become, for0=¢<1,0=sn =1,
Q6 m) =05 J(én){a’c,[ber (a&n ) ker (ann,)—bei (agn;) kei(ann,)]
~Re U 59,5105 ds]}

(34)
Q6 M) = —a;  J(En) {azcj[ber (a&n;)kei(ann;)+bei(aénj)ker(ann;)]

+Im [ j ) sg (sfa)J o(Es)J o{ns) ds]} .
0

Returning to (22) and (23), we deduce that the original system of coupled dual integral
equations (19) and (20) admit the representations

(a/s)F 1(s) = ——{ 1(D)J 1 (sa)— J Jy(a é)——[\/'((,i)]édé}

na 2(8)
1979 = 200,60 [ sz ] S Jeae]
where 0 < s < o0 and P; are linked to ¢; for j = 1, 2 through (30). The remaining functions
F(s) (j = 3, 4) can be found from the algebraic equations (18). The forms of the equations
(35) are particularly suited for treating the singular terms of the moments and stress resultants,
since the integration in a small region surrounding the crack tip can be performed analytically.
The details will be discussed in the following section.

(35)

Stress resultants and moments near crack tip. The mathematical theory of crack propa-
gation [1] is mainly concerned with the state of affairs in the crack tip region, where extension
of the crack is imminent. Within the framework of the theory of elasticity for an initially
sharp crack, the stress resultants and moments at the ends of the crack exhibit mathematical
singularities. It is the singular character of these quantities that has been shown to play a
major role in developing the criterion of brittle fracture.

With reference to (35), it is not difficult to verify that only the leading terms identified
with ¥ (1) (j = 1, 2) contribute to the singular portion of N,, N,, ..., and M,, M,,.... The
desired explicit expressions of Fi(s) (j=1,2,...,4) are

oF (s) = dma¥ () (@) +...,  Fy(s) = dna¥,(1)J (sa)+... (36)

and

(1=V)F3(s) = —4na[(B* =¥ (1) +(@® ~v)¥o (D], (sa) +.. } 37

Fo(s) = —3ma[¥,(D)— 5D (s0) +.

which are derived from (18). With a view toward exhibiting the unbounded portion of the
solution at the crack tips, (36) and (37) are put into (14) and (15) with ¥ (1) replaced by ¢ (1)
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by means of (30). The results are then expanded asymptotically for large values of s. This
gives

. mi'a 2 2 _ 1 ;
N:= 2 RD| —}4%y*¢ (1) +(1=sy)d,(1)+0 —s)]exp(—sy)Jl(as)+...,
. mita - 1
N,=TRD %y* 0 (D+(1+sy)d,(1)+0 ;)]exp(—sy)]o(as)+..., L (38)
4
Ny, =21 RD[iizyzfi)l(l)+SY¢2(1)+0(§>]6Xp(—sy)Jl(as)+. .

and

g2
s = =220l (4,0 cof ) Jere o+ ..,
nila

M; = 7 D{[3+v—(l-—v)sy]¢>,(l)+i(1—v)lzyzd)z(l)+0(§)}exp(—sy).fo(as)+...,>(39)

2
My, =20 D{[z—(1~v)sy]¢l(1)+&<1—vazqsz(l)+o(§)}exp<-sy)11(as)+... :

By recourse to (11) and with the aid of known Bessel integral-identities [9], the membrane
stress resultants and moments may be evaluated in closed form in terms of elementary functions
of the polar coordinates (r, ), (r,, 8,) and (r2, 05), as indicated in Fig. 2. The computations

y .
‘ Crack Tip

Zone

FiG6. 2. Polar Coordinates measured from the Crack.
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just described lead to the expressions:

Ma

N,=— 2\/( [{ilz 2¢1(1) d’z(l)}{\/( 1 2)+ COS[O %(0 +02)]}
1 F
}:I+0(1),

RD[{M Y, (1)+¢2(1)}{‘/(‘ "2) 17 os [0 %(ol+oz)]}

}:I+O(1),

RD[}AZyZ(};l(l){gsin [0—-4(, +02)]}

+¢z(1){

i*a

& 2\/("1 r2)
+¢2(1){

Aa

Ny =30
+¢z<1){r"
1

N
(40)

E—

> cos [3(0; + 02)]}]+ o),
2

and
(1-v)A%a

2\/("1
—¢1(1){£};—2 sin[3(6, +92)]}]+0(1),

M, = 44 [{¢ )+ 2@(1)}{“‘ "2, T cos [0 %(91'*‘92)]} 1

"2

M ATa
NS
—(1—v)¢1<1){ﬂ sin [s<ol+oz)]}]+0<1),
rr

[{(3+V)¢1(1)+tt(1—V)/lzyzqh(l)}{\/(rl Jnurd)  ; L cos[0- 5(01+02)]}
@D

ia . .2 r.
My = ml)[{2¢1(1)+%(1 —V)4 y2¢z(l)}{a sin [0 —4(6, +02)]}

—(1—v)¢1(1){% cos [%(01+02)]}]+0(1).

J

Note that all the quantities in (40) and (41) grow beyond bounds as r,r, —» 0. The order of the
singularities at the crack tips inherent in the stress resultants is the same as that of the moments.
The latter conclusion is consistent with the singular solutions obtained for the stretching and
being of flat plates.

In order to expose the pertinent parameters, which are used in the current theory of
brittle fracture, attention will be restricted to a small region embracing the right hand side
crack vertex (a, 0), as shown in Fig. 2. By taking the limits r - a, 8+ 0, r, — 2a and 6, - 0,
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(40) and (41) further reduce to

ky s(9 1 sinolsinwl ‘
\/(2r,) sy 2

0, 0, . 30,
=211 —sin— 1, ¢ 42
\/(2 1)cos [ +smzsm D :I, 42)
ks coso smo cos361
\/(2 ry) 2 27 )
and
K, 0, .0, . 30, )
= - 1—sin—-sin ==
M, \/(2 l)(1 v)cos2[ sin 2sm > |
- 01 . 301
M,= \/(2 1)cos-—|:(3+v) (l—v)smisnnT], : (43)
0, 0, 30,
M 1- — 0§ —
xy = \/(2 1)sm [2+( v)coszcos 2] J

Here, the coefficients k£, and K, may be referred to as the intensity-factors of their respective
stress resultant and moment fields. For the present problem of a spherical shell, k£, and K,
are coupled through the functions ¢,(1) (j = 1, 2) appearing in (30) as follows:

k, = $2*RD¢y(1)\Ja, K, =3$A’D¢,(1)/a. (44)

In other words, an interaction exists between bending and stretching such that application of
one type of loading induces stresses of the other type.

The foregoing results illustrate the qualitative features of the spherical shell solution.
It is seen from (42) and (43) that the r,- and 0,-dependence coincide with those found for the
stretching and bending of flat plates. Hence, the curvature effect governed by A enters into

the local solution only through the intensity-factors k, and K,. It is now apparent that as the
curvature of the shell becomes increasingly large, the formal appearance of (42) and (43)

remains unchanged, while k; and K, are de-coupled to the separate solutions for an initially
flat plate under stretching and bending. Another important point to be noted is that the
bending part of the solution is based upon the satisfaction of the approximate Kirchhoff shear
condition on the crack edge. Thus, the differences between the approximate and exact
boundary conditions on the crack might be anticipated to be very similar to the changes found
between [11] and [5, 12] for the bending of an initially flat plate.t In both types of solution,
i.e., [11] and [5, 12], the stress singularity remained of the inverse square-root type but in the
case where the physical boundary conditions are actually satisfied on the crack [5, 12], the
distribution of bending stress around the crack point became identical with that predicted for
an initially flat plate subjected solely to extension. The similar improved solution for the

t The plate bending theory used in [11] was originated by Poisson-KirchhofT and in [5, 12] by Reissner.
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spherical shell, however, is a considerably more difficult problem. Nevertheless, it is reason-
able to assume that the difference reflected for the flat plate case will also hold if a more refined
theory were developed for the spherical shell.

The numerical results of k, and K| are obtained by solving the coupled Fredholm integral
equations (31) on a computer. Two examples of basic interest are treated:

Case (1). Stretching load: N(x) = Ny, M(x) =0,

ky = ®,(1)Ng+/a, K ®,(1)Ny\/a, (45)

3 h
b V201 -vY)]

where
(1) = (az/ne)p, (1) (i =1,2).

Case (2). Bending load: N(x) =0, M(x) = M,,

b, 1200

1
h3+v) ®,(1)M,/a, K, = _v(Dl(l)Mo Ja, (46)

3+

where
D(1) = ~(ay/mo)p (1) (j=1,2).

Graphs of the normalized intensity-factors versus the curvature parameter da are plotted in
Figs. 3 and 4. The solid curves represent the solutions of the coupled Fredholm integral
equations (31), while the dotted curves correspond to the results given in [4].

In Case (1), the crack is opened out by a uniform stretching load N,. Because of the
interaction between extension and bending, both k, and K, exist as in (45). The solid curves
in Figs. 3a and 3b show that the magnitude of k; and K, increases monotonically with Aa.
Further, the values of the membrane stress-intensity factor k, are much higher than the
bending moment-intensity factor K,. In Fig. 3a, the dotted curve taken from [4] is accurate
only for 0 £ Aa £ 0.46. Beyond this range, it differs significantly from the more refined results
indicated by the solid curve. For the bending moment-intensity factor K, in Fig. 3b, the dotted
curve is observed to be valid only for values of Aa up to 0.26. As Aa increases, the solution in
[4] suggests that there is a change in the mode of bending behaviour of the shell since K|
changes sign.

Similar results for the case when the crack is subjected to a uniform bending moment M,
are displayed in Figs. 4a and 4b. In this example, the moment-intensity factor K, dominates
whereas the strength of the membrane stress-intensity factor k, is relatively low. The approxi-
mate solutions of k, and K, in [4] given by the dotted curves are seen to deviate appreciably
from the present results even for small values of a.

In general, for either type of loading, k, and K| in a spherical shell are increased over
their values in a flat plate, A = 0.

https://doi.org/10.1017/50017089500001166 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500001166

CRACK-LIKE IMPERFECTIONS IN A SPHERICAL SHELL

®
1

MEMBRANE STRESS - INTENSITY FACTOR k,/NoJO_

1.0
N
! ! | | A
0 0.4 0.8 .2 1.6 2.0

CURVATURE PARAMETER X\a

FiG. 3a. Membrane Stress-Intensity Factor Curves for Stretching Load.
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FiG. 3b. Moment-Intensity Factor Curves for Stretching Load.
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FiG. 4a. Membrane Stress-Intensity Factor Curves for Bending Load.
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FiG. 4b. Moment-Intensity Factor Curves for Bending Load.
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Displacements and deflection slopes of crack surface. With the aim of gaining a quanti-
tative insight into the deformed shape of the crack, it is essential to compute numerically the
normal displacement v(x, 0) and the deflection slope dw/dy as y - 0 for —a < x <a. More
precisely, for the two examples considered earlier, numerical results have been obtained as
follows:

Case (1). N(x) = No, M(x) =0,

0= (o2 ona <o @)
(3) g (o-5) voror <o (48)
Case (2). N(x)=0, M(x) = M,,
o0 =50 (2-5) Vomon  G<a )
—(%) = e f:/a<62—;‘—2)_*\/<@®1(5) & (<o (50)

Consider the case of the crack being stretched open by a uniform load N,. Fig. 5 shows a
plot of the dimensionless form of (47) versus the normalized distance x/a for various values of
Aa. As Aaincreases, the normal displacement curves may be seen to increase in magnitude and
to display more marked variation along the crack. Since the load is symmetric, the normal
displacement is maximum at the center x = 0 and tapers off to zero at both ends of the crack
x = Fa. On account of the shell curvature, the stretching load also produces rotation of the
crack surface about the x-axis. The magnitude of this rotation decreases with the curvature

parameter Aa as indicated in Fig. 5b and is zero along the entire crack for A = 0, which corre-
sponds to the limiting case of a flat plate.

Now, let the crack be bent open by a uniform moment M,. In this case, a considerable
amount of rotation of the crack surface can be observed from Fig. 6a. The curvature para-
meter Aa appears to have a little effect on the variation of dw/dy for —a < x < a. The curves
in Fig. 6b represent the normal displacements of the crack caused by the bending moment M,
and they diminish in magnitude as 1 - 0.

Conclusion. On the basis of the first-order shallow shell theory, the problem of a spherical
shell weakened by a through crack subjected to stretching and bending loads is solved. The
method of analysis, in which the mixed boundary value problem is reduced to the solution of
two coupled Fredholm integral equations, has proved successful, by carrying out the numerical
calculations on a computer. It has been found that the stresses in a shell are in general larger
than those obtained in a flat plate.
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F1G. 5a. Normalized Displacement versus Distance on Crack for Stretching Load.

https://doi.org/10.1017/50017089500001166 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500001166

CRACK-LIKE IMPERFECTIONS IN A SPHERICAL SHELL 85

? N(x) = No
0.201 M(x)=0

0.15

0.10

0.05

/—— Aa =02

1 [ |

0.2 0.4 0.6 0.8 1.0
DISTANCE ON CRACK x/a

DEFLECTION SLOPE (I-v) a,(dw/dy)/ ) a ng

o

FiG. Sb. Deflection Slope as a Function of Distance on Crack for Stretching Load.
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F1G. 6a. Deflection Slope as a Function of Distance on Crack for Bending Load.

https://doi.org/10.1017/50017089500001166 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500001166

CRACK-LIKE IMPERFECTIONS IN A SPHERICAL SHELL

A N(x)=0
M(x) =Mo

o
()]

o
D

o
o

/— Aa=0.2

] ] | I
0.2 0.9 0.6 0.8 1.0

DISTANCE ON CRACK x/a

NORMAL DISPLACEMENT Ehd,v/X RDm,

o

Fic. 6b. Normalized Displacement versus Distance on Crack for Bending Load.
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It should be remarked that a number of related spherical shell problems of practical
interest can be solved using the same approach. Moreover, the same type of analysis can also
be applied to the case of a pressurized cylindrical shell with a crack.
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