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On Orbit Closures of Symmetric Subgroups in
Flag Varieties

Michel Brion and Aloysius G. Helminck

Abstract. We study K-orbits in G/P where G is a complex connected reductive group, P ⊆ G is a parabolic
subgroup, and K ⊆ G is the fixed point subgroup of an involutive automorphism θ. Generalizing work of
Springer, we parametrize the (finite) orbit set K \ G/P and we determine the isotropy groups. As a conse-
quence, we describe the closed (resp. affine) orbits in terms of θ-stable (resp. θ-split) parabolic subgroups.
We also describe the decomposition of any (K, P)-double coset in G into (K, B)-double cosets, where B ⊆ P
is a Borel subgroup. Finally, for certain K-orbit closures X ⊆ G/B, and for any homogeneous line bundle
L on G/B having nonzero global sections, we show that the restriction map resX : H0(G/B,L) → H0(X,L)
is surjective and that Hi(X,L) = 0 for i ≥ 1. Moreover, we describe the K-module H0(X,L). This gives
information on the restriction to K of the simple G-module H0(G/B,L). Our construction is a geometric
analogue of Vogan and Sepanski’s approach to extremal K-types.

Introduction

Let G be a connected reductive group over an algebraically closed field k; let B ⊆ G be a
Borel subgroup and K ⊆ G a closed subgroup. Assume that K is a spherical subgroup of G,
that is, the number of K-orbits in the flag variety G/B is finite; equivalently, the set K \G/B
of (K,B)-double cosets in G is finite. Then the following problems arise naturally.

1) Parametrize the set K \ G/B and, more generally, K \ G/P where P ⊇ B is a parabolic
subgroup of G.

2) Decompose any (K, P)-double coset into (K,B)-double cosets.
3) For connected K, describe the singularities of closures of double cosets or, equivalently,

of K-orbit closures in G/B. Are these closures normal?
4) For such an orbit closure X and a homogeneous line bundle L on G/B having non-zero

global sections, describe the K-module H0(X,L) and the image of the restriction map
resX : H0(G/B,L)→ H0(X,L). Is resX surjective?

In the case where K = B, the answers to Problems 1 and 2 are well known: by the
Bruhat decomposition, each (B, P)-double coset intersects the Weyl group W into a unique
coset of WP, the parabolic subgroup of W associated with P. And for w ∈ W , the double
coset BwP is the disjoint union of the BwτB where τ ∈ WP. Much is known concerning
Problems 3 and 4: the B-orbit closures in G/B are the Schubert varieties; they are normal,
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with rational singularities [12]. The spaces H0(X,L) are the Demazure modules; their
character is given by the Demazure character formula, and the maps resX are surjective.
Moreover, the higher cohomology groups Hi(X,L) vanish for i ≥ 1. Similar results hold
for the diagonal G-action on G/B× G/B [11].

For general spherical subgroups, no explicit solution of Problem 1 seems to be known;
but work of Springer [16] and Richardson-Springer [13], [14] gives detailed information
on K \ G/B in the case of a symmetric subgroup K, that is, K consists of all fixed points of
an involutive automorphism θ of G. An example is the diagonal action of G on G/B×G/B,
since the diagonal is the fixed point subgroup of the involution of G× G exchanging both
factors. But for arbitrary symmetric subgroup K of G, the K-orbit closures in G/B need not
be normal (an example is given in [1, p. 281]), and the maps resX need not be surjective.
This is mentioned in [1]; see 4.3 below for more detailed examples. On the other hand,
positive answers to Questions 3 and 4 are obtained in [1] for some singular orbit closures.

In the present paper, we give a solution of Problem 2 for a symmetric subgroup K = Gθ

(1.4), and we describe the isotropy subgroups of Gθ-orbits in G/P (2.2). As a consequence,
we characterize the affine (resp. closed) orbits (2.3, 3.2), in relation to θ-split (resp. θ-
stable) parabolic subgroups. Then we solve Problem 4 for certain Gθ-orbit closures X ⊆
G/B which we call induced flag varieties. They are the pull-backs under the projection
G/B → G/P of closed Gθ-orbits in G/P, where B ⊆ P and both are θ-stable. Of course,
each such X is smooth; we show that resX is surjective, and that the Gθ-module H0(X,L)
is obtained from H0(P/B,L) by parabolic induction. Furthermore, we obtain vanishing
of Hi(X,L) for i ≥ 1 (4.1). As a consequence, X is projectively normal in the embedding
given by any ample line bundle on G/B.

Our proof of these results concerning Problem 4 is only valid in characteristic zero.
In positive characteristics, it would be useful to know that the Gθ-module H0(G/B,L)
admits a good filtration (this was conjectured by Brundan [6, Conjecture 4.4 (ii)]). Our
analysis of restriction maps gives information on the restriction to Gθ of the simple G-
module H0(G/B,L): all isotypical components which are extremal in a precise sense arise
from the quotient H0(X,L) for some induced flag variety X (4.2).

This is related to work of Sepanski [15] on boundaries of K-types of a (g,K)-module
M. He considered the cohomology of u with coefficients in M, where u is the nilradical
of the Lie algebra of a θ-stable parabolic subgroup P of G, and he studied a “restriction of
cohomology” map τ : H∗(u,M) → H∗(uθ,M) [15, Section 3]. Let X be the pull-back in
G/B of the closed orbit Gθ/Pθ ⊆ G/P; then the map resX can be seen as a geometric version
of τ .

The simplest situation for restricting G-modules to Gθ is the “multiplicity-free” case,
considered in detail in [15, Section 4]. In this case, it turns out that all Gθ-orbit closures
in G/B are induced flag varieties; in particular, all orbit closures are smooth (4.2). In the
general case, most orbit closures are not induced flag varieties, but the latter can be used to
construct “short” desingularizations of the former; this will be developed elsewhere.
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Notation

Throughout the paper, the ground field k is algebraically closed of characteristic �= 2. We
denote by G a connected reductive group, by B a Borel subgroup of G, and by T a maximal
torus of B. The unipotent part of B is denoted by U . We denote by P a parabolic subgroup
of G containing B, and by L the Levi subgroup of P which contains T.

Let N be the normalizer of T in G, and let W = N/T be the Weyl group. Let Φ (resp.
Φ+; Φ−) be the set of roots of (G,T) (resp. of positive roots, that is, roots of (B,T); of
negative roots). The set of simple roots is denoted by∆.

Let g, b, t, . . . be the Lie algebras of G, B, T, . . . . We have the decomposition g =
t⊕
⊕

α∈Φ gα; for each α ∈ Φ, we choose a non-zero root vector Xα ∈ gα.
Let θ be an automorphism of order 2 of G; let Gθ ⊆ G be the fixed point subgroup. Then

Gθ is reductive by [17, Section 8]; let Gθ,0 be its connected component containing 1. For
the θ-action on g, the fixed point subspace gθ is the Lie algebra of Gθ by [2, Corollary 9.2].
Let τ : G→ G be the map g 
→ g−1θ(g); observe that θ(x) = x−1 for all x ∈ τ (G).

1 First Results on Double Cosets

1.1 Preliminaries

We begin by collecting several lemmas on involutions of reductive groups, to be used later.
Although these results are known (see [16] and [9]), we give complete proofs because they
are very short, or simpler than existing ones.

Lemma 1 Let Γ ⊂ G be a θ-stable connected unipotent subgroup. Then:

(i) The product map Γθ × τ (Γ)→ Γ is an isomorphism.
(ii) Γθ is connected.
(iii) τ (Γ) = {g ∈ Γ | θ(g) = g−1}.
(iv) For any subgroup Γ ′ ⊆ G containing Γ, the map G→ G/Γ sends Γ ′θ onto (Γ ′/Γ)θ.

Proof (i) follows from [2, Proposition 9.3], and it implies (ii). For (iii), let g ∈ U such
that θ(g) = g−1. By (i), we can write g = xy−1θ(y) for a unique x ∈ Γθ and some y ∈ Γ.
Then

xθ(y)−1 y = θ(y)−1 yx−1 = x−1θ(yx−1)−1 yx−1

whence x = x−1 by (i) again. Because Γ is unipotent and connected, it follows that x = 1.
For (iv), let g ∈ Γ ′ such that gΓ is in (G/Γ)θ . Then g−1θ(g) ∈ Γ. By (iii), we can find
γ ∈ Γ such that g−1θ(g) = γ−1θ(γ); then gγ−1 is in Γ ′θ.

Lemma 2 Any Borel subgroup B ⊆ G contains a θ-stable maximal torus of G, and any two
such tori are conjugate in U θ.

Proof Because θ(B) is a Borel subgroup of G, the group B ∩ θ(B) is connected, solvable
and contains a maximal torus of G. Thus, it contains a θ-stable maximal torus, by [17, 7.6].
Let T, T ′ be two such tori. There exists g ∈ U ∩ θ(U ) such that T ′ = gTg−1. Because T
and T ′ are θ-stable, g−1θ(g) normalizes T. But g−1θ(g) is in U ; it follows that g−1θ(g) = 1,
that is, g ∈ U θ.
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Lemma 3 The following conditions are equivalent:

(i) B is θ-stable.
(ii) Bθ,0 is a Borel subgroup of Gθ.

Proof By Lemma 2, we can choose a θ-stable maximal torus T of B.
(i)⇒(ii) Because B is θ-stable, the same holds for U . Let B− be the Borel subgroup of

G such that B− ∩ B = T; then B− and its unipotent part U− are θ-stable as well. Because
g = u⊕ t⊕ u−, we have

gθ = uθ ⊕ tθ ⊕ (u−)θ.

It follows that bθ and (b−)θ are opposite Borel subalgebras of gθ.
(ii)⇒(i) Observe that θ acts on Φ; if moreover B is not θ-stable, then we can find

α ∈ θ(Φ+) ∩ Φ−. Now Xα + θ(Xα) and X−α + θ(X−α) are eigenvectors of Tθ in gθ of
opposite weights. Because bθ is a Borel subalgebra of the Lie algebra of the reductive group
Gθ , it follows that one of these vectors is in bθ, in particular in b. This contradicts the
assumption that α ∈ Φ− and θ(α) ∈ Φ+.

Lemma 4 For a θ-stable maximal torus T of G, the following conditions are equivalent:

(i) T is contained in a θ-stable Borel subgroup of G.
(ii) Tθ,0 is a regular subtorus of G.

All θ-stable maximal tori T satisfying (i) or (ii) are conjugate under Gθ,0. If moreover Gθ is
connected, then Tθ is connected as well.

Proof (i)⇒(ii) We may assume that B is θ-stable. If there exists α ∈ Φ+ which vanishes
identically on Tθ,0, then, for all t ∈ T, we have α

(
tθ(t)
)
= 1, because tθ(t) ∈ Tθ,0. Thus,

α + θ(α) = 0, which contradicts the fact that θ(α) ∈ Φ+.
(ii)⇒(i) Observe that Tθ,0 is a maximal subtorus of Gθ . Let Γ be a Borel subgroup of Gθ

containing Tθ,0, and let B be a Borel subgroup of G containing Γ. Then Γ = Bθ,0, whence B
is θ-stable by Lemma 3. Furthermore, B contains T, because B contains the regular subtorus
Tθ,0.

If moreover Gθ is connected, then Bθ is connected (because it is contained in the nor-
malizer in Gθ of the Borel subgroupΓ). Because Bθ = U θTθ, it follows that Tθ is connected.

Let T ′ be another θ-stable maximal torus of G satisfying (ii). Then Tθ,0 and T ′θ,0 are
maximal subtori of Gθ,0, so that they are conjugate in this group. Taking centralizers in G,
we see that T and T ′ are conjugate in Gθ,0, too.

1.2 Parametrization of Orbits

Let B(G) be the flag variety of G. Recall that the set of Gθ-orbits in B(G) is in bijection
with the set of Gθ-conjugacy classes of pairs (B,T) where B ⊆ G is a Borel subgroup, and
T ⊆ B is a θ-stable maximal torus; the inverse bijection maps the Gθ-conjugacy class of
(B,T) to that of B. As a consequence, B(G) contains only finitely many Gθ-orbits (see [14,
1.2 and 1.3] for simple proofs of these results).

We begin by generalizing this to the variety P(G) of all parabolic subgroups of G.
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Proposition 1 There is a bijection from the set of Gθ-orbits in P(G) onto the set of Gθ-
conjugacy classes of triples (P,B,T) where

(i) P is a parabolic subgroup of G,
(ii) B is a Borel subgroup of P such that the product PθB is open in P, and
(iii) T is a θ-stable maximal torus of B.

The inverse bijection maps the Gθ-conjugacy class of (P,B,T) to that of P.

Proof Let P be a parabolic subgroup of G. For a Borel subgroup B of P, the product GθP is
a union of finitely many (Gθ,B)-double cosets. Because the quotient Gθ \ GθP is a P-orbit,
it is irreducible; thus, GθP contains a unique open (Gθ,B)-double coset. Replacing B by a
conjugate in P, we may assume that GθB is open in GθP. It follows that PθB = (GθB) ∩ P
is open in P. Furthermore, B contains a θ-stable maximal torus by Lemma 2. Thus, there
exists a pair (B,T) satisfying (ii) and (iii).

To complete the proof, it suffices to check that all such pairs are conjugate under Pθ,
the Gθ-isotropy group of the point P of P(G). Let (B ′,T ′) be another such pair. We can
write B ′ = pBp−1 for some p ∈ P. Then PθB and PθpB are open (Pθ,B)-double cosets
in the irreducible variety P. Thus, they are equal, and p is in PθB: we may assume that
p ∈ Pθ . Now T and p−1T ′p are θ-stable maximal subtori of B: by Lemma 2 again, there
exists b ∈ Bθ such that p−1T ′p = bTb−1. Then T ′ = pbT(pb)−1 and B ′ = pbB(pb)−1

with pb ∈ Pθ.

From now on we assume that T is a θ-stable maximal torus of G; then its normalizer N
is θ-stable, too. Set

V := {g ∈ G | g−1θ(g) ∈ N}.

Then V is the set of all g ∈ G such that the maximal torus gTg−1 is θ-stable. Clearly, V

is stable under left multiplication by Gθ and right multiplication by N . In fact, by [16]
and [9], any (Gθ,B)-double coset in G meets V, along a unique (Gθ,T)-double coset. As
an easy consequence of this result, we shall obtain a similar parametrization of the (Gθ, P)-
double cosets in G.

For g ∈ G, define an involution ψg of G by

ψg := Int(g−1) ◦ θ ◦ Int(g) = Int
(
g−1θ(g)

)
◦ θ.

Then Gψg = g−1Gθg. Observe also that

V = {g ∈ G | T is ψg-stable}.

Set finally

VP := {g ∈ V | GθgB is open in GθgP}.

Proposition 2 Any (Gθ, P)-double coset in G meets VP, along a unique (Gθ,T)-double coset.
Furthermore, VP is the set of all g ∈ V such that Pψg B is open in P.
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Proof Let O be a (Gθ, P)-double coset in G. Then O contains a unique open (Gθ,B)-
double coset OB. The latter meets V along a unique (Gθ,T)-double coset OP. Let g ∈ OP,
then GθgB is open in GθgP. This is equivalent to: Gψg B is open in Gψg P, and also to: Pψg B
is open in P. Indeed, the Gψg -variety Gψg P is the quotient of Gψg × P by the action of Pψg

defined as follows: x · (g, p) = (gx−1, xp). Thus, a subset E of P is open if and only if Gψg E
is open in Gψg P.

1.3 θ-Stable Levi Subgroups

In this subsection, we assume that P contains a θ-stable Levi subgroup. Let GP be the set
of all g ∈ G such that gPg−1 contains a θ-stable Levi subgroup. Clearly, GP is a union of
(Gθ, P)-double cosets, which we will parametrize.

Recall that L denotes the Levi subgroup of P which contains T. We begin with the easy

Lemma 5 L is θ-stable, and any θ-stable Levi subgroup of P is conjugate to L in Ru(P)θ .

Proof Let M be a θ-stable Levi subgroup of P. Then M is a Levi subgroup of P ∩ θ(P).
The latter contains L ∩ θ(L) as its Levi subgroup containing T. Thus, M and L ∩ θ(L) are
conjugate; in particular, dim L = dim M = dim L ∩ θ(L). It follows that L is θ-stable. The
proof of the other assertion is similar to that of Lemma 2.

Let S = Z(L)0 denote the connected center of L, and NG(S) resp. ZG(S) the normalizer,
resp. centralizer of S in G. Then L = ZG(S), NG(L) = NG(S), and these groups are θ-stable.
Let VS = {g ∈ G | g−1θ(g) ∈ NG(S)}, a union of

(
Gθ,NG(S)

)
-double cosets contained in

GP. Finally, let VS,P = VS ∩ VP.

Proposition 3 Any (Gθ, P)-double coset in GP meets VS along a unique (Gθ, L)-double coset.
The latter meets VS,P along a unique (Gθ,T)-double coset.

Proof Let g ∈ GP, then gPg−1 contains a θ-stable Levi subgroup of the form guLu−1g−1

for some u ∈ Ru(P). Then gu ∈ VS so that GθgP meets VS. If g and gu are in VS for u
as above, then gLg−1 and guLu−1g−1 are θ-stable Levi subgroups of gPg−1. By Lemma 5,
gug−1 ∈ Gθ . Thus, gu ∈ Gθg, which proves the first assertion.

Let g ∈ VS, then GθgP meets VP along a unique (Gθ,T)-double coset. Moving g in its
(Gθ, L)-double coset, we may assume that there exists u ∈ Ru(P) such that gu ∈ VP. Then
gPg−1 = guPu−1g−1 contains a θ-stable Levi subgroup, and contains the θ-stable maximal
torus guTu−1g−1. By Lemma 5, it follows that guLu−1g−1 is θ-stable, that is, gu ∈ VS. By
the first part of the proof, gu ∈ Gθg.

Set V S := Gθ \VS/L; then we have V S = Gθ \GP/P = Gθ \VS,P/T. The action of NG(S)
on VS by right multiplication induces an action of the Weyl group W (S) := NG(S)/ZG(S)
on V S. We interpret the orbit set V S/W (S) in terms of certain conjugacy classes of θ-stable
tori, as follows.

Let S be the set of all conjugates of S by elements of G. This is an affine variety, isomor-
phic to G/NG(S), on which θ acts. Let Sθ be the fixed point set of θ, then Sθ is the set of
conjugates of S by elements of VS. It is an affine variety, on which Gθ acts by conjugation.
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The bijective map VS/NG(S)→ Sθ : gNG(S) 
→ gSg−1 is Gθ-equivariant; thus, the induced
map V S/W (S) → Sθ/Gθ is bijective. In the case that P = B this was observed in [13,
Proposition 2.7].

For S a maximal k0-split torus of G, where k0 ⊆ k is a subfield of k and G, θ are de-
fined over k0, the sets VS and Sθ/Gθ are discussed in more detail in [8]. This includes a
characterization of Sθ/Gθ; the case where S is a maximal torus is treated in [7].

1.4 Fixed Points in Parabolic Subgroups

For a parabolic subgroup P ⊇ B, we describe the subgroup Pθ , and its image in the quotient
of P by its unipotent radical Ru(P). Recall that P is the semidirect product of Ru(P) with its
Levi subgroup L ⊇ T; we shall identify P/Ru(P) with L.

Theorem 1 With notation as above, Ru(P)θ is a connected unipotent normal subgroup of
Pθ. Furthermore, the quotient Pθ/Ru(P)θ (the image of Pθ in L) is the semidirect product of
L∩θ
(
Ru(P)

)
(the unipotent radical of L∩θ(P), a parabolic subgroup of L) with Lθ (a reductive

group).

Proof Set Q := θ(P), a parabolic subgroup of G containing T, and set M := θ(L), the
Levi subgroup of Q containing T. Then P ∩ Q is θ-stable and contains Pθ as its fixed point
subgroup.

We claim that P∩Q is the semidirect product of its unipotent radical Ru(P∩Q) with the
θ-stable connected reductive subgroup L ∩M. Furthermore, Ru(P ∩ Q) contains Ru(P) ∩
Ru(Q) as a θ-stable connected normal subgroup, and the quotient

Ru(P ∩ Q)/Ru(P) ∩ Ru(Q)

is the direct product of L∩Ru(Q) with Ru(P)∩M, where θ acts by exchanging both factors
(this analysis of P ∩ Q is implicit in [3, pp. 86–88].)

Indeed, both Ru(P)∩Q and P∩Ru(Q) are unipotent normal subgroups of P∩Q; because
they are normalized by T, they are connected. Furthermore, we have isomorphisms

(P ∩ Q)/
(
Ru(P) ∩ Q

)(
P ∩ Ru(Q)

)
∼= (L ∩ Q)/

(
L ∩ Ru(Q)

)
∼= L ∩M

and the latter is a connected reductive group. Thus, the unipotent radical of P ∩ Q is
(
Ru(P) ∩ Q

)(
P ∩ Ru(Q)

)
=
(

Ru(P) ∩ Ru(Q)
)(

Ru(P) ∩M
)(

L ∩ Ru(Q)
)
,

a product of three subgroups with trivial pairwise intersections. And Ru(P) ∩ Ru(Q) is a
normal subgroup of Ru(P ∩ Q), and contains all commutators [g, h] where g ∈ L ∩ Ru(Q)
and h ∈ Ru(P) ∩M. This proves the claim.

By that claim and Lemma 1(iv), Ru(P)θ =
(
Ru(P) ∩ Ru(Q)

)θ
is connected, and the

quotient

Pθ/Ru(P)θ = (P ∩ Q)/
(
Ru(P) ∩ Ru(Q)

)θ

is the semidirect product of the group of all pairs
(
g, θ(g)

)
where g ∈ L ∩ Ru(Q), with

(L ∩M)θ = Lθ. It follows that the image of Pθ in L is the semidirect product of L ∩ Ru(Q)
with Lθ. Furthermore, L∩Q is a parabolic subgroup of L, with unipotent radical L∩Ru(Q)
and Levi subgroup L ∩M.
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1.5 Decomposition of Double Cosets

With notation as in 1.2, let g ∈ V. We shall decompose GθgP into (Gθ,B)-double cosets.
Set Lg := L ∩ ψg(L), then Lg is a ψg-stable Levi subgroup of the parabolic subgroup L ∩

ψg(P) of L, and T is a ψg-stable maximal torus of Lg with normalizer N ∩ Lg . Furthermore,

Lψg = L
ψg
g . Set

Vg := {x ∈ Lg | x−1ψg(x) ∈ N ∩ Lg}.

By the results recalled in 1.2, the map Lψg \ Vg/T → Lψg \ Lg/B ∩ Lg is bijective.
Finally, denote by Ng the set of all n ∈ N∩L such that B∩Lg is contained in n(B∩L)n−1.

Then, by the Bruhat decomposition, the map Ng/T → L ∩ ψg(P) \ L/B ∩ L is bijective.

Proposition 4 With notation as above, we have

GθgP =
⋃

l∈Vg ,n∈Ng

GθglnB.

Furthermore, GθglnB = Gθgl ′n ′B if and only if: Lψg lT = Lψg l ′T and nT = n ′T. This defines
a bijection

Lψg \ Vg/T × Ng/T → Gθ \ GθgP/B.

Proof Observe that

Gθ \ GθgP/B = g−1Gθg \ g−1GθgP/B = Gψg \ Gψg P/B.

Now any (Gψg ,B)-double coset in Gψg P meets P, along a unique (Pψg ,B)-double coset.
Thus, we have

Gψg \ Gψg P/B = Pψg \ P/B = Im(Pψg ) \ L/B ∩ L

where Im(Pψg ) is the image of Pψg in L. But Im(Pψg ) = L ∩ ψg

(
Ru(P)

)
Lψg by Theorem 1.

For simplicity, set Q := ψg(P), QL := Q∩L (a parabolic subgroup of L, with Levi subgroup
Lg) and BL := B ∩ L (a Borel subgroup of L); then L ∩ ψg

(
Ru(P)

)
= Ru(QL). Each(

Ru(QL)Lψg ,BL

)
-double coset in L is contained in a unique (QL,BL)-double coset. The

latter meets Ng along a unique T-coset. This defines a surjective map

Im(Pψg ) \ L/B ∩ L = Ru(QL)Lψg \ L/BL → QL \ L/BL = Ng/T.

For n ∈ Ng , the fiber of this map over nT is

Ru(QL)Lψg \ QLnBL/BL = Ru(QL)Lψg \ QL/QL ∩ nBLn−1 = Lψg \ Lg/B ∩ Lg .

Indeed, as nBLn−1 contains B∩Lg , the image of QL ∩nBLn−1 in Lg = QL/Ru(QL) is B∩Lg .
Finally, each (Lψg ,B∩ Lg)-double coset in Lg meets Vg into a unique (Lψg ,T)-double coset.
Tracing through all identifications completes the proof.
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2 Combinatorics and Geometry of Orbits

2.1 Parabolic Subgroups Associated with Double Cosets

Any double coset GθgB defines two parabolic subgroups containing B: its right stabilizer,
that is, the set of all x ∈ G such that GθgBx = GθgB, and the right stabilizer of its closure
GθgB. We shall describe both parabolic subgroups in terms of the combinatorics of root
systems and involutions, which we recall below; as an application, we shall characterize the
set VP introduced in 1.2.

For each α ∈ Φ, let Uα ⊂ G be the corresponding root subgroup. Each simple root
α ∈ ∆ defines a parabolic subgroup Pα of semisimple rank one, generated by B and U−α.
We denote by Lα the Levi subgroup of Pα which contains T, and by Gα the quotient of Lα
by its center; then Gα is isomorphic to PSL(2). We shall identify Uα and U−α with their
images in Gα, and we denote by Tα the image of T; we set B±α = U±αTα.

Recall that any parabolic subgroup P ⊇ B is generated by the Pα’s that it contains. We
write P = PΠ where Π is the set of all α ∈ ∆ such that Pα ⊆ P. We denote by ΦΠ the
sub-root system of Φ generated by Π, and by WΠ its Weyl group; we also denote VP by VΠ.

Because T is θ-stable, θ acts on Φ by an involution, still denoted by θ. Recall from [16]
that α ∈ Φ is called real if θ(α) = −α, imaginary if θ(α) = α and complex if θ(α) �= ±α.
For real or imaginaryα, the group Lα is θ-stable, and θ acts on Gα; recall thatα is compact if
θ fixes Gα pointwise (then α is imaginary). Observe that α is compact (resp. non-compact
imaginary) if and only if θ(Xα) = Xα (resp. θ(Xα) = −Xα).

The following result is an easy consequence of [13, Section 4] or of Theorem 1.

Lemma 6 The image of Pθ,0α in Gα is

• Gα if α is compact,
• Tα if α is non-compact imaginary,
• a copy of the multiplicative group, distinct from Tα, if α is real,
• Bα if α is complex and in θ(Φ+),
• B−α if α is complex and in θ(Φ−).

As a consequence, α is compact (resp. α ∈ θ(Φ−); α ∈ θ(Φ+)) if and only if PθαB is equal to
Pα (resp. is a proper open subset of Pα; is closed in Pα).

For g ∈ V, the involution ψg = Int
(
g−1θ(g)

)
◦ θ acts on Φ as well; if wg denotes the

image in W of g−1θ(g) ∈ N , then ψg(α) = wgθ(α) for all α ∈ Φ. Thus, we can distinguish
between ψg-real, imaginary, complex, . . . roots. Let∆c be the set of all ψg-compact simple
roots.

Proposition 5 Let g ∈ V.

(i) The right stabilizer of GθgB is generated by the Pα where α ∈ ∆c.
(ii) The right stabilizer of GθgB is generated by the Pα where α is in∆c or in∆ ∩ ψg(Φ−).
(iii) GθgB is open in GθgP (that is, g ∈ VΠ) if and only if Π is contained in∆c ∪ ψg(Φ−).
(iv) GθgB is closed in GθgP if and only if Π is contained in ψg(Φ+).
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Proof As in 1.5, we may reduce to the case where g = 1; then ψg = θ.
(i) The right stabilizer of GθB is generated by the Pα (α ∈ ∆) such that GθB = GθPα.

This amounts to: PθαB = Pα, that is, α is θ-compact by Lemma 6.
(ii) Similarly, the right stabilizer of GθB is generated by the Pα (α ∈ ∆) such that

GθB = GθBPα = GθPα, that is, GθB is open in GθPα. This amounts to: PθαB is open in Pα,
or to: α is either θ-compact or in θ(Φ−).

(iii) is a direct consequence of (ii).
(iv) Observe that GθB is closed in GθP if and only if PθB is closed in P. If this holds,

then, intersecting with Pα for α ∈ Π, we have that PθαB is closed in Pα. By the Lemma, we
then have α ∈ θ(Φ+).

Conversely, ifΠ ⊆ θ(Φ+), we claim that B∩θ(B) is a Borel subgroup of P∩θ(P). Indeed,
the assumption implies that B ∩ θ(B) = B ∩ θ(P) = P ∩ θ(B). Thus, B ∩ θ(B) contains
both Ru(P) ∩ θ(P) and P ∩ θ

(
Ru(P)

)
. By the structure of P ∩ θ(P) given in the proof of

Theorem 1, it follows that B∩θ(B) contains the unipotent radical of P∩θ(P). Furthermore,
B∩ θ(B) contains B∩ L∩ θ(L); the latter is a Borel subgroup of the Levi subgroup L∩ θ(L)
of P ∩ θ(P). This proves the claim.

This claim and Lemma 3 imply that Bθ,0 is a Borel subgroup of Pθ . This implies in turn
that Pθ/Bθ is complete, hence closed in P/B. It follows that PθB is closed in P.

In the case where P = G, we obtain the following result, which is also a consequence of
[9, Proposition 9.2 and Lemma 1.7].

Corollary 1 With notation as above, GθgB is open (resp. closed) in G if and only if each
simple root is either ψg-compact or in ψg(Φ−) (resp. each simple root is in ψg(Φ+), that is, B
is ψg-stable).

2.2 Isotropy Groups

Let g ∈ VΠ. The Gθ-isotropy group of the point gP of G/P is Gθ ∩ gPg−1 = gPψg g−1. To
describe this group, or, equivalently, Pψg , we need more notation. Set

Πg := {α ∈ Π | ψg(α) ∈ ΦΠ}.

Then Πg contains Πc (the set of all ψg-compact roots of Π); we denote by ΦΠg , ΦΠc the
corresponding sub-root systems of Φ. Let Φc (resp. ΦC ) be the set of all ψg-compact (resp.
complex) roots.

Finally, recall that a parabolic subgroup Q of G is split with respect to an involution ψ if
the parabolic subgroup ψ(Q) is opposite to Q, that is, if Q ∩ ψ(Q) is a Levi subgroup of Q
and of ψ(Q).

Proposition 6

(i) The group Lg := L ∩ ψg(L) is equal to LΠg ; in particular, ΦΠg is ψg-stable. Furthermore,

ψg(Φ+
Πg
− Φ+

Πc
) = Φ−Πg

− Φ−Πc
.

Thus, ΦΠc is the set of all ψg-compact roots of ΦΠg , and PΠc ∩ Lg is a minimal ψg-split
parabolic subgroup of Lg .
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(ii) The group Pψg is the semi-direct product of a connected unipotent normal subgroup of
dimension

|Φ+
c − Φ

+
Πc
| +

1

2
|Φ+

C ∩ ψg(Φ+)| + |Φ+
Π − Φ

+
Πg
|

with the reductive subgroup L
ψg
g .

Proof (i) By Proposition 5(iii), we have Π ⊆ ψg(Φ− ∪Π) whence

Φ+
Π ⊆ ψg(Φ− ∪ ΦΠ).

It follows that B ∩ L is contained in ψg(P−) ∩ L. The latter is a parabolic subgroup of L,
with L ∩ ψg(L) as its Levi subgroup containing T. Thus, there exists a subset Π ′ ⊆ Π such
that L ∩ ψg(L) = LΠ ′ . Then we must have Π ′ = Πg .

Let α ∈ Πg −Πc. Then ψg(α) ∈ Φ−Πg
−ΦΠc by Proposition 5(iii) again. Thus, the coef-

ficients of ψg(α) on all elements of Πg − Πc are non-positive, one of them being negative.
It follows that ψg(Φ+

Πg
− Φ+

Πc
) consists of negative roots.

(ii) By Theorem 1, the group Lψg = L
ψg
g is a maximal reductive subgroup of Pψg , and

Ru(Pψg ) is an extension of L ∩ ψg

(
Ru(P)

)
by Ru(P)ψg . Furthermore, L ∩ ψg

(
Ru(P)

)
is the

unipotent radical of L ∩ ψg(P), a parabolic subgroup of L with Levi subgroup Lg . Thus, we
have

dim L ∩ ψg

(
Ru(P)

)
= |Φ+

Π − Φ
+
Πg
|.

To compute the dimension of Ru(P)ψg , we use the notation of the proof of Lemma 3. The
Xα (α ∈ Φ+ − ΦΠ) are a basis of the Lie algebra of Ru(P). Thus, a basis of the Lie algebra
of Ru(P)ψg consists of the Xα (where α ∈ Φ+

c − ΦΠ) together with the Xα + ψg(Xα) (where
α is complex and both α, ψg(α) are in Φ+ − ΦΠ).

Observe that

Φ+
c − ΦΠ = Φ

+
c −
(
ΦΠ ∩ ψg(ΦΠ)

)
= Φ+

c − ΦΠg = Φ
+
c − ΦΠc .

Finally, we check that the set of all complex roots α ∈ Φ+−ΦΠ such that ψg(α) ∈ Φ+−ΦΠ
is Φ+

C ∩ ψg(Φ+). Indeed, there is no complex α ∈ Φ+
Π such that ψg(α) ∈ Φ+ (otherwise,

ψg(α) ∈ Φ+
Π by the proof of (i), whence α ∈ ΦΠg ; but any complex root α ∈ ΦΠg satisfies

ψg(α) ∈ Φ−, by (i)). And for α ∈ Φ+−ΦΠ, the condition: ψg(α) ∈ Φ+−ΦΠ is equivalent
to: ψg(α) ∈ Φ+.

As an application, we describe the isotropy groups for the Gθ-action on G/B; this sharp-
ens [16, Proposition 4.8]. Let g ∈ V, then the Gθ-isotropy group of gB/B is

(gBg−1)θ = gBψg g−1.

By Proposition 5(i), the parabolic subgroup P∆c is the right stabilizer of GθgB, and more-
over g ∈ V∆c . Clearly, L∆c is ψg-stable, and its derived subgroup consists ofψg-fixed points.
It then follows from Theorem 1 that

P
ψg

∆c
= Ru(P∆c )

ψg L
ψg

∆c
.

Intersecting with B, we obtain the following
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Corollary 2 With notation as above, Bψg is the semi-direct product of the connected unipo-
tent normal subgroup

Ru(P∆c )
ψg (U ∩ L∆c )

with the diagonalizable subgroup Tψg , and we have

dim Ru(P∆c )
ψg =

1

2
|Φ+

C ∩ ψg(Φ+)|.

2.3 Affine Orbits

Let g ∈ VP. We give a criterion for the orbit GθgP/P ⊆ G/P to be affine. As Gθ is reductive
and the isotropy group Gθ∩gPg−1 is equal to gPψg g−1, this is equivalent to: Pψg is reductive.

This condition holds if P is ψg-split: then Pψg =
(

P∩ψg(P)
)ψg = Lψg . Another example

of an affine orbit occurs when the symmetric space G/Gθ is Hermitian, that is, there exists
a parabolic subgroup Q ⊆ G and a Levi subgroup M ⊆ Q such that Gθ,0 = M. Then
Qθ = M is reductive; the corresponding orbit GθQ/Q = Gθ/Gθ,0 is finite. In the general
case, we shall see that affine orbits arise from a combination of both examples.

Let∆n be the set of all non-compact imaginary simple roots for ψg . Write P = PΠ and
consider the Dynkin diagram ofΠ∪∆n. Let∆n be the union of all connected components
of this diagram which meet ∆n − Π, and let Π0 be the union of the other components.
Then ΦΠ∪∆n is the disjoint union of ΦΠ0 and Φ∆n

.

Proposition 7 With notation as above, Pψg is reductive if and only if g satisfies the following
three conditions:

a) ΦΠ is ψg-stable and contains all ψg-compact roots of Φ.
b) PΠ∪∆n is ψg-split.
c) ∆n is contained in∆n ∪Πc.

Then Pψg ,0 = L
ψg ,0
Π∪∆n

, both LΠ0 and L∆n
are ψg-stable, and the symmetric space L∆n

/L
ψg

∆n
is

Hermitian with Levi subgroup LΠc∩∆n
.

Proof We use the notation of 2.2. If Pψg is reductive, then |Φ+
Π − Φ

+
Πg
| = 0 whence ΦΠ is

ψg-stable. Furthermore, |Φ+
c −Φ

+
Πc
| = 0 whence ΦΠ contains all ψg-compact roots, and a)

holds. Finally, |Φ+
C ∩ ψg(Φ+)| = 0 whence

ψg(Φ+ − Φi) = Φ
− − Φi

where Φi ⊆ Φ denotes the subset of ψg-imaginary roots. It follows that Φi = Φ∆i where
∆i = ∆ ∩ Φi . Indeed, let β ∈ Φ+

i . Write β =
∑

α∈∆ nαα, then β −
∑

α∈∆i
nαα is fixed

by ψg and belongs to the convex cone generated by Φ+ − Φi . Thus, it also belongs to the
convex cone generated by Φ− − Φi . It follows that β −

∑
α∈∆i

nαα = 0.
Because ΦΠ contains all ψg-compact roots, we have Π ∪ ∆i = Π ∪ ∆n. Furthermore,

ΦΠ∪∆n is ψg-stable and

ψg(Φ+ − ΦΠ∪∆n ) = Φ− − ΦΠ∪∆n
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whence b) holds.
Let I be a connected component of the Dynkin diagram ofΠ ∪∆n, which meets Π and

∆n −Π. Let J be a connected component of I ∩Π, and let α be the sum of all simple roots
of J. Then α ∈ Φ+

Π and we can find β ∈ (∆n − Π) ∩ I which is connected to α. Thus,
α + β ∈ Φ+. It follows that ψg(α + β) = ψg(α) + β ∈ Φ+, whence α + β ∈ Φi and α is
imaginary. Because α ∈ ΦΠ = ΦΠg , Proposition 6 implies that α ∈ ΦΠc . Thus, I∩Π ⊆ Πc.
This implies c).

Conversely, assume that a), b) and c) hold. By b), we have Pψg ⊆ LΠ∪∆n , and the latter
is ψg-stable. Thus, we may assume that ∆ = Π ∪ ∆n. Let G∆n

be the connected adjoint
semisimple group with root system Φ∆n

; then ψg induces an involution of G∆n
, and we

have a ψg-equivariant quotient map q : G→ G∆n
. Because ψg fixes∆n pointwise, it acts on

G∆n
by conjugation by an element of q(T). Thus, G

ψg

∆n
contains q(T), and its roots are the

ψg-compact roots of Φ∆n
. By a) and c), this set of roots is ΦΠc∩∆n

. In other words,

G
ψg ,0

∆n
= q(LΠc∩∆n

).

Because q−1q(LΠc∩∆n
) = LΠ, it follows that Gψg ,0 ⊆ LΠ, that is, Pψg ,0 = Gψg ,0.

Corollary 3 The parabolic subgroup P is θ-split if and only if the orbit GθP/P is an open
affine subset of G/P. Then this orbit consists of all θ-split G-conjugates of P.

Proof Choose B ⊆ P such that GθB is open in GθP. Then, by Proposition 5(iii), each
α ∈ Π is either θ-compact or in θ(Φ−).

If P is θ-split, then θ(Φ+ − ΦΠ) = Φ− − ΦΠ. Thus, each α ∈ ∆−Π is in θ(Φ−). Now
Corollary 1 implies that GθB is open in G. Then GθP/P � Gθ/Pθ = Gθ/Lθ is an open
affine subset of G/P.

Conversely, if GθP/P is an open affine subset of G/P, then GθB is open in G. It follows
that all imaginary roots are compact, e.g. by Proposition 6(i). Applying Proposition 7 with
∆n = ∅, we see that P is θ-split. Let now Q be a θ-split conjugate of P. Write Q = gPg−1,
then GθgP is open in G, whence GθgP = GθP and g ∈ GθP. Thus, Q is conjugate to P in Gθ.

2.4 Examples

1) (see [13, 10.1]) Let G be a connected reductive group, B ⊆ G a Borel subgroup, and
T ⊂ B a maximal torus. Consider G = G × G with involution θ defined by θ(g1, g2) =
(g2, g1). Then Gθ is the diagonal diag(G). The maximal torus T = T × T and the Borel
subgroup B = B× B are θ-stable.

The map (g1, g2) 
→ g−1
1 g2 induces a bijection Gθ \ G/B → B \ G/B. More generally,

let P be a parabolic subgroup of G containing B; then P = P1 × P2 where P1 and P2 are
parabolic subgroups of G containing B, and we have a bijection Gθ \ G/P → P1 \ G/P2

which is compatible with the partial orderings given by inclusion of closures. Thus, our
results in this case can be derived more directly from the Bruhat decomposition.
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The root system of (G,T) is the disjoint union of two copies of the root system Φ of
(G,T); we shall denote these copies by Φ× 0 and 0×Φ. Let N be the normalizer of T in G;
then

V = {(g1, g2) | g−1
1 g2 ∈ N} = diag(G)(1× N).

For g = (g1, g2) ∈ V, let w be the image of g−1
1 g2 in W = N/T. Then ψg acts on G

by ψg(x1, x2) = (nx2n−1, n−1x1n), and on roots by ψg(α, 0) =
(
0,w−1(α)

)
, ψg(0, α) =(

w(α), 0
)

. In particular, there are no ψg-imaginary roots.
Let Π = (Π1 × 0) ∪ (0 × Π2) be a subset of the set of simple roots, and let g ∈ V.

By Proposition 5, g ∈ VΠ if and only if w(Π1) and w−1(Π2) are contained in Φ−. This
amounts to: w is the element of maximal length in its (WΠ1 ,WΠ2 )-double coset. Further-
more, we have PΠ = P1 × P2 and

P
ψg

Π = {(x1, x2) ∈ P1 × P2 | x1 = nx2n−1} � P1 ∩ wP2w−1.

And PΠ is ψg-split if and only if the parabolic subgroups P1, w(P2) are opposite. This is

also equivalent to: P
ψg

Π is reductive (this can be seen directly, or deduced from Proposition 7
together with non-existence of imaginary roots.)

2) (see [13, 10.2]) Let G = GLn with involution θ defined by θ(g) = (g−1)t ; then Gθ is
the orthogonal group On. Let B be the Borel subgroup of G consisting of upper triangular
matrices, and let T be the maximal torus of diagonal matrices. Then T is θ-stable, and B is
θ-split; we have θ(α) = −α for all α ∈ Φ.

For g ∈ V, we have w2
g = 1, and the map g 
→ wg induces a bijection from Gθ \ G/B =

Gθ \V/T onto the set of elements of W of order≤ 2, see [13, 10.2]. We identify W with the
symmetric group Sn, and Φ with the set of pairs (i, j) of distinct integers between 1 and n;
then∆ consists of the pairsαi = (i, i+1), 1 ≤ i ≤ n−1. We haveψg(i, j) =

(
wg( j),wg(i)

)
;

as a consequence, the ψg-imaginary roots are the pairs
(
i,wg(i)

)
.

We claim that there are no ψg-compact roots. To see this, let Γ be the copy of GL2 in
G associated with the the pair

(
i,wg(i)

)
. Then ψg stabilizes Γ, and acts there by inverse

transpose followed with conjugation by a symmetric monomial matrix. A matrix compu-
tation shows that ψg(Ei,wg (i)) = −Ei,wg (i) where Ei, j denotes the elementary n × n matrix;
this proves the claim. As a consequence, the imaginary simple roots are the pairs (i, i + 1)
such that wg(i) = i + 1; because w2

g = 1, these simple roots are pairwise orthogonal.

Let Π be a subset of∆ and let g ∈ V. By the claim and Proposition 5(iii), g ∈ VΠ if and
only if wg(i) < wg(i + 1) for any (i, i + 1) ∈ Π. If g ∈ VΠ, then it follows easily that Πg

consists of those pairs in Π that are fixed by wg . In particular, ΦΠ is ψg-stable if and only if
wg fixesΠ pointwise.

For any subsetΠ ′ of∆, the parabolic subgroup PΠ ′ is ψg-split if and only if wg stabilizes
Φ+ ∪ ΦΠ ′ (because ψg acts on roots by −wg). This amounts to: wg ∈ WΠ ′ . Using these

remarks, Proposition 7 simplifies as follows: for Π ⊂ ∆ and g ∈ VΠ, the group P
ψg

Π is
reductive if and only if wg fixes Π and is a product of simple transpositions with disjoint
supports.

3) (see [13, 10.5]) Let G = GLn with involution θ such that θ(g) = zgz−1 where
z = diag(1, . . . , 1,−1); then Gθ = GLn−1×k∗. Let B and T be as in the previous example;
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then T is θ-fixed, and B is θ-stable. One checks that a system of representatives of Gθ \V/T
consists of the

gi, j : (e1, . . . , en) 
→ (e1, . . . , ei−1, ei + en, ei+1, . . . , e j−1, ei − en, e j , . . . , en−1)

(1 ≤ i < j ≤ n)

together with the

gi,i : (e1, . . . , en) 
→ (e1, . . . , ei−1, en, ei, ei+1, . . . , en−1) (1 ≤ i ≤ n).

Furthermore, for i < j, the corresponding involution ψgi, j is conjugation by the
permutation matrix associated with the transposition (i j); and ψgi,i is conjugation by
diag(1, . . . , 1,−1, 1, . . . , 1) where −1 occurs at the i-th place. As a consequence, for a
subsetΠ of∆, we have: gi, j ∈ VΠ if and only if αi−1 and α j are not in Π.

We sketch a geometric interpretation of this result. Consider G/B as the variety of com-
plete flags

V = (V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = kn)

where each Vi is a linear subspace of dimension i. Observe that Gθ is the isotropy group in
G of the pair (�,H) where � is the line spanned by en, and H is the hyperplane spanned by
e1, . . . , en−1. For 1 ≤ i ≤ j ≤ n, set

Xi, j := {V ∈ G/B | � ⊂ V j and Vi−1 ⊂ H}.

Then one checks that the Xi, j are the Gθ-orbit closures in G/B. More precisely, denoting by
Oi, j the Gθ-orbit of gi, jB in G/B, we have

Xi, j = Oi, j = Oi, j ∪ Xi+1, j ∪ Xi, j−1

where Xa,b is empty if a > b. In particular, the closed orbits are the Xi,i = Oi,i (1 ≤ i ≤ n).

The right stabilizer of Gθgi, jB is the largest parabolic subgroup Pi, j = P ⊇ B such
that Xi, j is the pull-back of a subvariety of G/P under the projection G/B → G/P. As a
consequence, we see that Pi, j is generated by the Pα’s with α /∈ {αi−1, α j}.

3 Closed Orbits

3.1 Parametrization of Closed Orbits

For simplicity, we assume from now on that Gθ is connected; by [17], this holds if G is
semisimple and simply connected. In order to describe closed Gθ-orbits in G/P, it will be
convenient to choose a standard pair (B,T), that is, B ⊆ G is a θ-stable Borel subgroup,
and T ⊆ B is a θ-stable maximal torus (such pairs exist by [17, Theorem 7.5]). Then Tθ is
a regular subtorus of G by Lemma 4, and hence a maximal subtorus of Gθ. Furthermore,
Bθ is a Borel subgroup of Gθ by Lemma 3.

With notation as in 2.1, the θ-action on Φ stabilizes Φ+ and hence∆. Let P = PΠ be a
parabolic subgroup of G containing B; then θ(P) = Pθ(Π). Finally, for g ∈ V, recall that wg

denotes the image in W of g−1θ(g).

https://doi.org/10.4153/CJM-2000-012-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-012-9


280 Michel Brion and Aloysius G. Helminck

Proposition 8 For g ∈ V, the following conditions are equivalent:

(i) GθgP is closed in G.
(ii) P ∩ ψg(P) is a parabolic subgroup of G.
(iii) wg ∈WΠWθ(Π).

In particular, GθgB is closed in G if and only if wg = 1, that is, g−1θ(g) ∈ T (this follows
also from Corollary 1).

Proof (i)⇒(ii) Observe that Gψg P is closed in G, whence Gψg/Pψg is closed in G/P. Thus,
Pψg contains a Borel subgroup B ′ of Gψg . In turn, B ′ is contained in a Borel subgroup B ′ ′ of
P. Then B ′ ′ is ψg-stable by Lemma 3. Thus, P ∩ ψg(P) ⊇ B ′ ′ is a parabolic subgroup of G.

(ii)⇒(iii) Because P ∩ ψg(P) contains T, it contains a Borel subgroup xBx−1 for some
x ∈W . Then x ∈WΠ (because xBx−1 ⊆ P) and x(Φ+) ⊆ ψg(Φ+ ∪ΦΠ) (because xBx−1 ⊆
ψg(P)). But ψg = wgθ and Φ+ is θ-stable. Thus,

θw−1
g xθ(Φ+) ⊆ Φ+ ∪ ΦΠ.

Because θw−1
g xθ ∈ W , we must have θw−1

g xθ ∈ WΠ, that is, w−1
g x ∈ Wθ(Π). We conclude

that wg ∈WΠWθ(Π).
(iii)⇒(i) is checked by reversing the previous arguments.

The statement (i)⇔(ii) also follows from [9, Lemma 1.7].

To parametrize the closed double cosets, we need more notation. Let

q : N → N/T =W

be the quotient map; then q(Nθ) is a subgroup of W θ. Because Tθ is a regular subtorus of
T, we have

NGθ(Tθ) = NGθ (T) = Nθ.

It follows that q(Nθ) is isomorphic to the Weyl group W (Gθ,Tθ).
Finally, let

Q = P ∩ θ(P) = PΠ∩θ(Π)

be the largest θ-stable parabolic subgroup contained in P. Then θ acts on G/Q.

Proposition 9

(i) Any closed (Gθ, P)-double coset in G meets q−1(W θ), along a unique
(

Nθ, q−1(W θ
Π)
)
-

double coset. This defines a bijection from the set of closed Gθ-orbits in G/P, onto q(Nθ)\
W θ/W θ

Π.
(ii) The union of all closed Gθ-orbits in G/Q is the subset of all θ-fixed points; under the

projection G/Q → G/P, this subset is mapped isomorphically to the union of all closed
Gθ-orbits in G/P.
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Proof Let GθgP ⊆ G be a closed double coset. As it contains a closed (Gθ,B)-double
coset, we may assume that GθgB is closed in G, too. Then the Gθ-orbit GθgB/B is closed in
G/B; thus, it contains a fixed point of Bθ. So we may assume further that Bθ ⊆ gBg−1. Then
gBg−1 is θ-stable by Lemma 3. Furthermore, gBg−1 contains the regular torus Tθ, whence
it contains T. It follows that g ∈ NB; we may assume further that g ∈ N . Now, because
gBg−1 is θ-stable, we have θ(g) ∈ gB. Thus, g ∈ q−1(W θ). Conversely, if g ∈ q−1(W θ)
then GθgP is closed in G by Proposition 8.

Let now g ′ ∈ GθgP ∩ q−1(W θ). Then g ′ normalizes Tθ and hence g ′P/P is a Tθ-fixed
point in GθgP/P. The latter is a complete homogeneous space under Gθ . Thus, g ′ ∈
NGθ(Tθ)gP = NθgP. Because g and g ′ are in q−1(W θ), it follows that g ′ is in Nθg

(
P ∩

q−1(W θ)
)
= Nθgq−1(W θ

Π). This proves (i).
For the first assertion of (ii), let GθgQ be a closed double class. We may assume that

g ∈ q−1(W θ) by (i). Then g−1θ(g) ∈ T whence θ(gQ) = gQ: any closed Gθ-orbit in G/Q
consists of θ-fixed points. Conversely, let g ∈ G such that gQ ∈ G/Q is θ-fixed; we may
assume that g ∈ V. Then gQg−1 is θ-stable, whence g−1θ(g) ∈ Q. But g−1θ(g) ∈ N so that
g−1θ(g) ∈ N ∩ L ∩ θ(L), and wg ∈WΠ∩θ(Π). By Proposition 8, GθgQ is closed in G.

For the second assertion of (ii), observe that

W θ
Π =
(
WΠ ∩ θ(WΠ)

)θ
=W θ

Π∩θ(Π).

Thus, the map G/Q → G/P induces a bijection on the subsets of closed orbits. Further-
more, for g ∈ q−1(W θ), we have:

GθgQ/Q � Gθ/(gQg−1)θ = Gθ/
(
gPg−1 ∩ θ(gPg−1)

)θ

= Gθ/(gPg−1)θ � GθgP/P

because θ(gPg−1) = gθ(P)g−1. So the map GθgQ/Q→ GθgP/P is an isomorphism.

3.2 Standard Representatives

We begin by constructing a set of representatives for closed (Gθ, P)-double cosets in G or,
equivalently, for

(
q(Nθ),W θ

Π

)
-double cosets in W θ. An element w ∈ W θ will be called

standard if (wBw−1)θ = Bθ .

Proposition 10 For any w ∈W θ, the double coset q(Nθ)wW θ
Π contains a unique standard

u ∈W θ such that u(Π) ⊆ Φ+.

Proof By Proposition 8, GθwB is closed in G. Thus, GθwB/B is a closed Gθ-orbit in G/B,
with wB/B as a Tθ-fixed point. It follows that there exists x ∈ Nθ such that xwB/B is fixed
by Bθ . In other words, Bθ = (xwBw−1x−1)θ . Replacing w by q(x)w, we may assume that w
is standard. Then there exist unique u, v in W such that: u(Π) ⊆ Φ+, v ∈WΠ and w = uv.
Because θ stabilizes Π and Φ+, it follows that u and v are in W θ.

We claim that (wU w−1)θ = (uU u−1)θ ; then u will be a standard representative of w. For
this, denote by LΠ the Levi subgroup of PΠ containing T, and set UΠ = U ∩ LΠ. Observe
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that (wUΠw−1)θ ⊆ U . But wUΠw−1 ⊆ uLΠu−1, and uLΠu−1 ∩ U = uUΠu−1 because
u(Π) ⊆ Φ+. Thus,

(wUΠw−1)θ ⊆ (uUΠu−1)θ.

Furthermore,
wRu(PΠ)w−1 = uRu(PΠ)u−1

because v ∈ WΠ. As wU w−1 is the semi-direct product of the θ-stable normal subgroup
wRu(PΠ)w−1 with the θ-stable subgroup wUΠw−1, it follows that

(wU w−1)θ ⊆ (uU u−1)θ.

But (wU w−1)θ = U θ is a maximal unipotent subgroup of Gθ, which implies our claim.
Let u ′ be another standard representative of w such that u ′(Π) ⊆ Φ+. Then u ′B/B

is a Bθ-fixed point in GθuPΠ/B. Under the map G/B → G/PΠ, the latter is mapped to
GθuPΠ/PΠ, a complete Gθ-orbit with a unique Bθ-fixed point uPΠ/PΠ. Thus, u ′B/B is in
the fiber uPΠ/B, that is, u ′ ∈ uPΠ. Because u and u ′ are in W , we have u ′ ∈ uWΠ. It
follows that u ′ = u, as both u(Π) and u ′(Π) are contained in Φ+.

We now give two characterizations of standard elements. As in 2.2, denote by Φc (resp.
ΦC ) the set of all compact (resp. complex) roots for θ; there are no real roots because Φ+

is θ-stable. Let ∆i ⊆ ∆ be the subset of all imaginary simple roots; then θ acts trivially
on Φ∆i .

Proposition 11 For w ∈W θ, the following conditions are equivalent:

(i) w is standard.
(ii) Φ+

c ∪ Φ
+
C ⊆ w(Φ+).

(iii) w ∈W∆i and Φ+
∆i
∩ Φc ⊆ w(Φ+

∆i
).

Proof (i)⇔(ii) As in the proof of Proposition 8, observe that w is standard if and only if
U θ ⊆ wU w−1, that is, uθ ⊆ wuw−1. Furthermore, a basis of uθ consists of the Xα (α ∈ Φ+

c )
together with the Xα + θ(Xα) (α ∈ Φ+

C ). This basis is contained in wuw−1 if and only if
Φ+

c ∪ Φ
+
C ⊆ w(Φ+), because θ stabilizes Φ+

C and commutes with w.
(ii)⇒(iii) We argue by induction on the length l(w). The case where w = 1 is trivial.

Otherwise, we can find α ∈ ∆ and τ ∈ W such that w = sατ and l(w) = l(τ ) + 1 where
l is the length function on W . Then w−1(α) ∈ Φ−; thus, α /∈ Φ+

c ∪ Φ
+
C , that is, α is

non-compact imaginary. In particular, α ∈ ∆i ; as a consequence, τ ∈W θ. Furthermore,

Φ+ ∩ w(Φ+) =
(
Φ+ ∩ τ (Φ+)

)
− {α}.

Thus, Φ+
c ∪ Φ

+
C is contained in τ (Φ+). By the induction hypothesis, τ ∈ W∆i whence

w ∈W∆i as well. It follows that

Φ+
∆i ,c ⊆ w(Φ+) ∩ Φ∆i = w(Φ+

∆i
).

(iii)⇒(ii) If w ∈ W∆i then w stabilizes Φ+ − Φ∆i . The latter contains all positive
complex roots.
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Examples We determine the standard elements in the cases considered in Section 2.4.

1) The pair (B,T) is standard. As there are no imaginary roots, the identity is the
unique standard element. This agrees with the fact that the unique closed orbit of diag(G)
in G/P1 × G/P2 is the orbit of the base point, isomorphic to G/P1 ∩ P2.

2) ′ We modify slightly Example 2, because the pair (B,T) is not standard there, and
Gθ is not always connected. As in [13, 10.3], consider G = SLn with involution θ given
by θ(g) = Int(d0)(g−1)t , where d0 ∈ GLn maps each ei to en+1−i . Then Gθ is the special
orthogonal group for the quadratic form q(x1, . . . , xn) =

∑n
i=1 xixn+1−i . The pair (B,T) is

standard, and θ acts on roots by θ(αi) = αn−i . If n is odd, then the set ∆i is empty, and
the unique standard element is the identity. If n = 2n ′ is even, then∆i consists of the non-
compact root αn ′ ; thus, the standard elements are 1 and the transposition (n ′, n ′ + 1). This
agrees with the fact that SO2n ′ has two closed orbits in the Grassmanian of n ′-dimensional
subspaces of k2n ′ , associated with two types of null subspaces.

3) The pair (B,T) is standard, and all roots are imaginary; the compact roots are the
pairs (i, j) with 1 ≤ i, j ≤ n − 1. Thus, w ∈ Sn is standard if and only if w−1(1) <
w−1(2) < · · · < w−1(n − 1), that is, w is the image in Sn of gi,i for some i, 1 ≤ i ≤ n;
denote this image by wi .

If Π is the complement of {αi−1, α j} in ∆, then the standard elements w such that
w(Π) ⊂ Φ+ are 1, wi−1 and w j . They represent the three closed Gθ-orbits in G/PΠ =
G/Pi, j , consisting of all pairs (Vi−1 ⊂ V j) such that V j ⊂ H (resp. � ⊂ Vi−1; Vi−1 ⊂ H
and � ⊂ V j .)

Let πi, j : G/B → G/Pi, j be the projection. Geometrically, πi, j maps each complete flag
V to (Vi−1 ⊂ V j). Thus, the orbit closure Xi, j is the pull-back via πi, j of the closed orbit
Gθw jPi, j/Pi, j . The latter identifies, via the map (Vi−1 ⊂ V j) 
→ (Vi−1 ⊂ V j ∩ H), to the
variety of partial flags of dimensions i − 1, j − 1 in H. And each fiber of

πi, j : Xi, j → Gθw jP
i, j/Pi, j

is isomorphic to the complete flag variety for GLi−1×GL j−i+1×GLn− j , a Levi subgroup
of Pi, j .

Thus, each orbit closure of GLn−1 in GLn /B is an “induced flag variety”.

3.3 θ-Stable Parabolic Subgroups

As an application of the results in 3.1 and 3.2, we describe the Gθ-conjugacy classes of θ-
stable parabolic subgroups, and their relation to parabolic subgroups of Gθ .

Theorem 2 Let Q ⊆ G be a θ-stable parabolic subgroup; let Π be the subset of ∆ such that
Q is G-conjugate to PΠ. Then Π is θ-stable, and Q is Gθ-conjugate to wPΠw−1 for a unique
standard w ∈W θ such that w(Π) ⊆ Φ+.

As a consequence, Qθ ⊆ Gθ is a parabolic subgroup, Gθ-conjugate to (wPΠw−1)θ. Con-
versely, any parabolic subgroup of Gθ is Gθ-conjugate to (wPΠw−1)θ for some Π and w as
above.
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Proof Let g ∈ G such that Q = gPΠg−1. Moving g in its (Gθ,B)-double coset, we may
assume that g ∈ V. As Q is θ-stable, we have (wgθ)(PΠ) = PΠ. In terms of roots, this means
that (wgθ)(Φ+ ∪ ΦΠ) = Φ+ ∪ ΦΠ. Thus,

θwgθ(Φ+) ⊆ Φ+ ∪ Φθ(Π).

Because θwgθ ∈W , it follows that θwgθ ∈Wθ(Π) and that wg ∈WΠ, whence

θ(PΠ) = w−1
g (PΠ) = PΠ.

Thus,Π is θ-stable.
Now the θ-stable G-conjugates of PΠ are the θ-fixed points in G/PΠ, that is, the points

with closed Gθ-orbit by Proposition 8. By Propositions 9 and 10, there exists h ∈ Gθ and a
unique standard w ∈W θ such that w(Π) ⊆ Φ+ and that Q = hwPΠw−1h−1. Then

Qθ = h(wPΠw−1)θh−1 ⊇ hBθh−1

so that Qθ is a parabolic subgroup of Gθ (this follows also from Lemma 3).
Conversely, let Γ ⊆ Gθ be a parabolic subgroup. For a multiplicative one-parameter

subgroup λ : Gm → G, set

G(λ) := {g ∈ G | lim
t→0

λ(t)gλ(t−1) exists}.

Then G(λ) is a parabolic subgroup of G; moreover, all parabolic subgroups of G are ob-
tained in this way. Applying this to the connected reductive group Gθ, we obtain λ : Gm →
Gθ such that Γ = Gθ(λ). Then Q := G(λ) is a θ-stable parabolic subgroup of G, and
Qθ = Γ.

Remark Given a parabolic subgroup Γ of Gθ containing Bθ, there may exist several θ-
stable parabolic subgroups Q such that Qθ = Γ (e.g. if Γ = Bθ and there are several stan-
dard elements). And there may exist no parabolic subgroup P of G containing B such that
Pθ = Γ.

Consider for example G = SP4, the group which preserves the symplectic form ( , )
on k4 such that (e1, e4) = (e2, e3) = 1 and (ei , e j) = 0 if i + j �= 5. Let B (resp. T)
be the standard Borel subgroup (resp. maximal torus) of G. Let θ be the conjugation by
diag(1,−1,−1, 1), then Gθ = SL2× SL2 contains T, and the pair (B,T) is standard. Let α,
β be the simple roots of (G,T) whereα is short; then the roots of (Gθ,T) are±β,±(2α+β).
Let Γ be the parabolic subgroup of Gθ containing T, with roots β and ±(2α + β); then Γ
contains Bθ but is not contained in a proper parabolic subgroup P ⊇ B.

4 Orbit Closures and Restriction of Representations

4.1 Induced Flag Varieties

From now on, we assume that the characteristic of the ground field k is zero. As in Section 3,
we also assume that Gθ is connected, and we choose a standard pair (B,T). Let P be a θ-
stable parabolic subgroup containing B; let

π : G/B→ G/P
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be the projection. The pull-back under π of a closed Gθ-orbit will be called an induced flag
variety.

Recall that any closed Gθ-orbit in G/P can be written as GθwP/P for a unique standard
w ∈W θ such that w(Π) ⊆ Φ+. Because w ∈W θ, the group

Q := wPw−1

is a θ-stable parabolic subgroup of G, with

M := wLw−1

as a θ-stable Levi subgroup containing T. Furthermore, Qθ contains Bθ (because w is stan-
dard), and

B ∩M = w(B ∩ L)w−1

(because w(Π) ⊆ Φ+). It follows that (B ∩M)θ is a Borel subgroup of Mθ. The latter is a
Levi subgroup of Qθ.

Set
X := π−1(GθwP/P) = GθwP/B.

Then the image of X under π is the homogeneous space GθwP/P � Gθ/Qθ, and the fiber
π−1(wP/P) is isomorphic to wP/B = wL/B∩L. This isomorphism is Q-equivariant, where
Q acts on wL/B ∩ L through the quotient map Q→ Q/Ru(Q) � M. It follows that

X � Gθ ×Qθ (wL/B ∩ L) � Gθ ×Qθ (M/B ∩M)

where Qθ acts on the flag variety M/B ∩M through Mθ. This explains the terminology of
“induced flag variety”.

Let λ be a character of T; then it extends uniquely to a character of B, also denoted by λ.
Let Lλ be the associated line bundle on G/B. Then

H0(G/B,Lλ) = IndG
B (−λ)

(the induced module from B to G of the one-dimensional B-module with weight −λ).
This is a simple G-module with lowest weight −λ, if λ is dominant (against roots of B);
otherwise, H0(G/B,Lλ) = 0.

Theorem 3 Let X be as above and let λ be a dominant character of T.

(i) The restriction map

resX : H0(G/B,Lλ)→ H0(X,Lλ)

is surjective, and Hi(X,Lλ) = 0 for all i ≥ 1.
(ii) We have an isomorphism of Gθ-modules

H0(X,Lλ) ∼= IndGθ

Qθ H0(M/B ∩M,Lw(λ))

where Qθ acts on H0(M/B ∩M,Lw(λ)) via the quotient map Qθ → Mθ.
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(iii) The Mθ-module H0(M/B ∩M,Lw(λ)) is a direct sum of simple modules with Gθ-anti-
dominant lowest weights.

(iv) The kernel of resX is a direct sum of simple Gθ-modules with lowest weights of the form
µ + ν where µ is the lowest weight of a simple Mθ-submodule of H0(M/B ∩M,Lw(λ)),
and ν is the restriction to Tθ of a non-trivial sum of non-compact roots in w(Φ+ −ΦΠ).

Proof Under the isomorphism X � Gθ×Qθ (M/B∩M), the restriction of Lλ to X identifies
with Gθ ×Qθ Lw(λ), the Gθ-linearized line bundle whose restriction to M/B ∩M is Lw(λ).
This implies (ii).

Composing resX with the restriction map

r ′ : H0(X,Lλ)→ H0(wP/B,Lλ) � H0(M/B ∩M,Lw(λ)),

we obtain the restriction map

r ′′ : H0(G/B,Lλ)→ H0(M/B ∩M,Lw(λ)).

Observe that H0(M/B ∩M,Lw(λ)) is a simple M-module with lowest weight −w(λ). Fur-
thermore, r ′ ′ is non-zero (because Lλ is generated by its global sections) whence r ′′ is
surjective. Thus, the same holds for r ′. Decompose the Mθ-module H0(M/B ∩M,Lw(λ))
into a direct sum of simple submodules; each of them is of the form

IndMθ

(B∩M)θ (−ω) = IndQθ

Bθ (−ω).

By (ii), the Gθ-module H0(X,Lλ) decomposes into the direct sum of the corresponding
induced modules

IndGθ

Qθ IndQθ

Bθ (−ω) = IndGθ

Bθ (−ω).

Because r ′ is surjective, all these induced modules are non-zero. Thus, their lowest weight
vectors µ = −ω are Gθ-antidominant, which proves (iii). Furthermore, by surjectivity of
r ′ ′, the image of resX meets all these induced modules. Because the latter are simple, resX

is surjective.
To prove vanishing of Hi(X,Lλ) for i ≥ 1, observe that R jπ∗Lλ = 0 for all j ≥ 1,

because λ is dominant. Thus, we obtain isomorphisms

Hi(X,Lλ) � Hi(GθwP/P, π∗Lλ) = Hi(Gθ/Qθ, π∗Lλ).

The restriction of π∗Lλ to the Gθ-orbit Gθ/Qθ is the homogeneous vector bundle associ-
ated with the Qθ-module H0(M/B ∩ M,Lw(λ)). By (iii), this module is semisimple and
its lowest weights are Gθ-antidominant. So Hi(Gθ/Qθ, π∗Lλ) = 0 for i ≥ 1, by Bott’s
theorem.

Let I ⊂ OG/B be the ideal sheaf of X in G/B, then the kernel of resX is H0(G/B, I⊗Lλ).
To study the lowest weight vectors of this Gθ-module, we embed it into a larger module, as
follows. Let P− be the parabolic subgroup of G such that P− ∩ P = L; set Q− := wP−w−1.
Then G/B contains

Q−wP/B = wP−P/B
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as an open affine subset, stable under Q−. Thus, the restriction map

H0(G/B, I⊗ Lλ)→ H0(Q−wP/B, I⊗ Lλ)

is injective, and equivariant for the action of (Q−)θ. The latter is a parabolic subgroup
of Gθ, with unipotent radical Ru(Q−)θ and Levi subgroup Mθ (because Q− is a θ-stable
parabolic subgroup of G). Furthermore, (Q−)θ meets Qθ along Mθ, their common Levi
subgroup containing Tθ. Thus, Qθ and (Q−)θ are opposite parabolic subgroups of Gθ.

Let B− be the Borel subgroup of G such that B− ∩ B = T. Then B− is θ-stable, and
(B−)θ is the Borel subgroup of Gθ such that (B−)θ ∩ Bθ = Tθ. Because Bθ is contained in
Qθ, it follows that (B−)θ is contained in (Q−)θ. Thus, (B−)θ is the semidirect product of
Ru(Q−)θ with

(B− ∩M)θ = (B− ∩ wLw−1)θ =
(
w(B− ∩ L)w−1

)θ

(indeed, B− ∩ wLw−1 = w(B− ∩ L)w−1 because w(Π) ⊆ Φ+).
By the Bruhat decomposition, the product map

Ru(Q−)× wP/B→ Q−wP/B

is an isomorphism. Combining this with Lemma 1(i), we obtain a (Q−)θ-equivariant iso-
morphism

Ru(Q−)θ × τ
(
Ru(Q−)

)
× wL/B ∩ L � Q−wP/B

which restricts to an equivariant isomorphism

Ru(Q−)θ × {1} × wL/B ∩ L � (GθwP ∩ Q−wP)/B.

Let p2 : Q−wP/B→ τ
(
Ru(Q−)

)
and p3 : Q−wP/B→ wL/B∩L be the corresponding pro-

jection maps. Let I be the ideal of k[Ru(Q−)] (the algebra of regular functions on Ru(Q−))
consisting of functions that vanish at 1. Then the isomorphism above identifies I|Q−wP/B

with p∗2 I, and Lλ|Q−wP/B with p∗3Lλ. Thus, we obtain a (Q−)θ-equivariant isomorphism

H0(Q−wP/B, I⊗ Lλ) � k[Ru(Q−)θ]⊗ I ⊗H0(wL/B ∩ L,Lλ).

It identifies the subset of (B−)θ-eigenvectors in the left hand side (that is, the subset of
lowest weight vectors), with the subset of (B− ∩M)θ-eigenvectors in

I ⊗H0(wL/B ∩ L,Lλ) = I ⊗H0(M/B ∩M,Lw(λ)).

The latter being the tensor product of two Mθ-modules, each of its lowest weights is the
sum of a weight of Tθ in I with a lowest weight of H0(M/B ∩M,Lw(λ)).

To complete the proof, we check that the weights of Tθ in I are non-trivial sums of non-
compact roots in w(Φ+ − ΦΠ). Indeed, the T-variety Ru(Q−) is isomorphic to a module
with set of weights w(Φ− − ΦΠ). Thus, the Tθ-variety τ

(
Ru(Q−)

)
is isomorphic to a

module with weightsα|Tθ whereα is a non-compact element of w(Φ−−ΦΠ). Furthermore,
the weights of Tθ in I are non-trivial sums of opposites of weights in τ

(
Ru(Q−)

)
.
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For λ as above, let Vλ be the dual of the G-module H0(G/B,Lλ) and let Cλ ⊆ Vλ be
the G-orbit closure of a highest weight vector. If λ is regular, then Cλ is the affine cone
over G/B for its projective embedding associated with Lλ; this cone is smooth outside the
origin.

Recall that Cλ is normal, with a rational singularity at the origin (see [12] for a proof in
arbitrary characteristics). We shall see that the same holds for the affine cone X̃λ ⊆ Cλ over
X ⊆ G/B; because X is smooth, X̃λ is smooth outside the origin.

Corollary 4 Let X be as above and let λ be a regular dominant weight. Then X̃λ is normal,
with a rational singularity at the origin.

Proof Let

R =
∞⊕

n=0

H0(X,L⊗n
λ ) =

∞⊕

n=0

H0(X,Lnλ).

Because X is smooth, the algebra R is normal. The algebra S of regular functions over X̃λ is
the subalgebra of R generated by H0(X,Lλ). But

resX : H0(G/B,Lnλ)→ H0(X,Lnλ)

is surjective, and the graded algebra

∞⊕

n=0

H0(G/B,Lnλ)

is generated by its elements of degree 1. It follows that S = R, that is, X̃λ is normal.
Let p : Z → X̃λ be the blow-up of the origin. Then Z is the total space of the line bundle

over X, dual of the restriction of Lλ. It follows that Z is smooth, and that

Hi(Z,OZ) =
∞⊕

n=0

Hi(X,Lnλ)

for all i ≥ 0. By Theorem 3, we thus have Hi(Z,OZ) = 0 for i ≥ 1. This means that X̃λ has
rational singularities.

4.2 Restriction of Representations

We begin by applying Theorem 3 to the decomposition of simple G-modules into Gθ-
modules.

The map T → Tθ : t 
→ tθ(t) is surjective, and its restriction to Tθ is the map t 
→ t2.
Using this map, we shall identify the character group of Tθ with the set of all χ+θ(χ) where
χ is a character of T.

Corollary 5 Let ω be a Gθ-dominant character of Tθ and let λ be a dominant character of
T. Then we have for multiplicities:

[IndG
B (−λ) : IndGθ

Bθ (−ω)] ≥
[
IndM

B∩M

(
−w(λ)

)
: IndMθ

(B∩M)θ (−ω)
]
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with equality if λ+θ(λ)−2w−1(ω) is a sum of positive roots inΦΠ. Furthermore, if IndGθ

Bθ (−ω)
occurs in the Gθ-module IndG

B (−λ), then λ + θ(λ)− 2w−1(ω) is a sum of positive roots.

Proof The inequality follows from surjectivity of resX and the structure of H0(X,Lλ)
(Theorem 3(i) and (ii).)

Assume moreover that λ + θ(λ) − 2w−1(ω) is a sum of positive roots in ΦΠ. To prove

equality, it is enough to check that IndGθ

Bθ (−ω) does not occur in the kernel of resX . Oth-

erwise, we can write ω = −µ − ν where IndGθ

Bθ (µ) occurs in H0(M/B ∩ M,Lw(λ)), and
ν is a sum of roots in w(Φ+ − ΦΠ) (Theorem 3(iv).) In particular, µ is a weight of Tθ in
H0(M/B ∩M,Lw(λ)). But each weight of T in that module can be written as −w(λ) + χ
where χ is a sum of elements of w(Φ+

Π). It follows that

w(λ) + θ
(
w(λ)
)

+ 2µ = w
(
λ + θ(λ)

)
+ 2µ

is a sum of elements of w(Φ+
Π). Thus,

λ + θ(λ)− 2w−1(ω) = λ + θ(λ) + 2w−1(µ) + 2w−1(ν)

is a sum of positive roots, not all in ΦΠ, a contradiction.
The proof of the latter assertion is similar.

Define a polytope C(G, θ, λ) as the convex hull of the set of all Gθ-dominant weights ω

such that IndGθ

Bθ (ω) occurs in the Gθ-module IndG
B (λ). Applying Corollary 5 with Π = ∅,

we see that w(λ) is a vertex of C(G, θ, λ) and that the corresponding multiplicity is 1. More
generally, for a subset Π ⊆ ∆ such that w(Π) ⊂ Φ+, we see that C

(
wLΠw−1, θ,w(λ)

)

is a face of C(G, θ, λ) and that the multiplicity functions agree on that face. This will be
developed elsewhere, in relation to “moment polytopes” [4].

For a reductive subgroup K of G, the pair (G,K) is multiplicity-free if the multiplicity of
any simple K-module in any simple G-module is at most 1. Equivalently, a Borel subgroup
BK ⊆ K has a dense orbit in G/B.

By [10] or [5], any multiplicity-free pair with G semisimple and simply connected is a
product of (the simply connected cover of) one of the following indecomposable pairs:

(SLn,GLn−1), (SOn, SOn−1), (SO8, Spin7).

In particular, multiplicity-free pairs are symmetric; their associated polytopes are described
in [15]. We check that the corresponding orbit closures in flag varieties have a very nice
structure.

Proposition 12 If (G,Gθ) is multiplicity-free, then any Gθ-orbit closure X ⊆ G/B is an
induced flag variety; writing X = Gθ ×Qθ (M/B ∩M), the pair (M,Mθ) is multiplicity-free
as well. In particular, all Gθ-orbit closures in G/B are smooth.

https://doi.org/10.4153/CJM-2000-012-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-012-9


290 Michel Brion and Aloysius G. Helminck

Proof We may assume that the pair (G,Gθ) is indecomposable. In the case of
(SLn,GLn−1), our assertion has been checked in Example 3 in 3.2. Consider the case of
(SOn, SOn−1) where n = 2n ′ is even. Then G/B is the set of all flags

V = (V0 ⊂ V1 ⊂ · · · ⊂ Vn ′−1)

of null subspaces of k2n ′ of dimensions 0, 1, . . . , n ′ − 1. Let H ⊂ k2n ′ be the unique
hyperplane stabilized by SO2n ′−1. One checks that the SO2n ′−1-orbit closures of SO2n ′−1

in SO2n ′ /B are the
Xi := {V | Vi−1 ⊂ H}

for 1 ≤ i ≤ n ′. In particular, Xn ′ is the closed orbit, isomorphic to the flag variety of
SO2n ′−1. More generally, one checks that the map

πi : V 
→ (V0 ⊂ V1 ⊂ · · · ⊂ Vi−1)

makes Xi an induced flag variety with M/Mθ = SO2n ′−2i / SO2n ′−2i−1.
The case of (SOn, SOn−1) where n = 2n ′ + 1 is odd, is similar: the variety G/B is now

the set of all flags
V = (V0 ⊂ V1 ⊂ · · · ⊂ Vn ′)

of null subspaces of dimensions 0, 1, . . . , n ′. The orbit closures of SO2n ′ in SO2n ′+1 /B
are the varieties X1, . . . ,Xn ′−1 defined as above, plus two varieties X1

n ′ , X2
n ′ defined by:

Vn ′ ⊂ H (the unique hyperplane of k2n ′+1 stabilized by SO2n ′), and Vn ′ belongs to a fixed
orbit under SO2n ′ of n ′-dimensional null subspaces of k2n ′ (there are two such orbits).
Then X1

n ′ and X2
n ′ are the closed orbits, isomorphic to the flag variety of SO2n ′ ; the other

Xi ’s are induced flag varieties as above.
Finally, the analysis of (SO8, Spin7) follows from that of (SO8, SO7) by applying a triality

automorphism.

4.3 An Example Where resX is Not Surjective

As in Example 2 in 3.2, consider G = SLn with involution θ defined by θ(g) = (g−1)t . The
standard Borel subgroup B of G is the isotropy group of the flag

k1 ⊂ k2 ⊂ · · · ⊂ kn

where each ki is the span of the i first basis vectors of kn. And G/B is the variety of complete
flags

V = (V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = kn)

where each Vi is a linear subspace of dimension i.
For 1 ≤ i ≤ n − 1, let Xi ⊂ G/B be the subset of flags V such that restriction of q to

Vi is degenerate (where q denotes the standard quadratic form on kn). Then the pull-back
of Xi in G is the subset of all g such that restriction of g−1q to ki is degenerate, that is, the
discriminant of g−1q|ki is zero. This discriminant is invariant for the action of SOn by left
multiplication, and is an eigenvector of weight 2πi for the action of B by right multiplica-
tion; here πi denotes the highest weight of the simple GLn-module ∧ikn. Thus, Xi is the
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divisor of a SOn-invariant section of L2πi . Observe that each Xi is irreducible if n ≥ 3
(which we will assume from now on.)

Let λ be a weight, then we have an exact sequence of sheaves on G/B:

0→ Lλ−2πi → Lλ → Lλ ⊗OG/B
OXi → 0.

If moreover λ is dominant, then H1(G/B,Lλ) = 0 and we obtain an exact sequence

H0(G/B,Lλ)→ H0(Xi ,Lλ)→ H1(G/B,Lλ−2πi )→ 0.

Now choose
λ =
∑

j �=i

x jπ j

where the x j are integers such that x j ≥ 0 if | j − i| ≥ 2, and x j ≥ 1 if | j − i| = 1. Let
α1, . . . , αn−1 be the simple roots and s1, . . . , sn−1 the corresponding simple reflections; let
ρ be the half sum of positive roots. Then

si(λ− 2πi + ρ)− ρ = λ− 2πi + αi = λ−
∑

j,| j−i|=1

π j

is dominant, and hence H1(G/B,Lλ−2πi ) is non-zero by Bott’s theorem. In other words,
the restriction map

resXi : H0(G/B,Lλ)→ H0(Xi ,Lλ)

is not surjective.
Let P ⊂ G be the stabilizer of the line k1. Then G/P is the projective space of lines in kn; it

contains a unique closed SOn-orbit Q, the quadric (q = 0). Let π : G/B→ G/P be the pro-
jection, then X1 = π−1(Q); in particular, X1 is smooth. Thus, Theorem 3 does not extend
to all parabolic subgroups (here P is not conjugate to a θ-stable parabolic subgroup!).

Observe finally that resXi is surjective for all Xi as above, and all regular dominant
weights λ. In fact, we do not know any example of a symmetric subgroup Gθ ⊂ G, a Gθ-
orbit closure X ⊂ G/B and a regular dominant weight λ such that resX : H0(G/B,Lλ) →
H0(X,Lλ) fails to be surjective.
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