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Abstract

We present a multidimensional data analysis framework for the analysis of ordinal response variables.
Underlying the ordinal variables, we assume a continuous latent variable, leading to cumulative logit
models. The framework includes unsupervised methods, when no predictor variables are available, and
supervised methods, when predictor variables are available. We distinguish between dominance variables
and proximity variables, where dominance variables are analyzed using inner product models, whereas
the proximity variables are analyzed using distance models. An expectation–majorization–minimization
algorithm is derived for estimation of the parameters of the models. We illustrate our methodology with
three empirical data sets highlighting the advantages of the proposed framework. A simulation study is
conducted to evaluate the performance of the algorithm.
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1. Introduction

In many fields of study, ordered categorical variables, also called ordinal variables, are collected. In
medicine, for example, patients can be classified as, say, severely, moderately, or mildly ill (Anderson
& Philips, 1981). In the social and behavioral sciences, commonly Likert scales are used that have
response categories such as “strongly disagree” (SD), “disagree” (D), “neutral” (N), “agree” (A), and
“strongly agree” (SA). There is an ordering between these categories, but differences between these
categories are unknown. It is standard practice to give numerical codes to the categories, such as
1, 2, 3, 4, 5, and subsequently perform a standard numerical analysis. In the context of regression
modeling, Liddell & Kruschke (2018) argue that the analysis of ordinal response variables through linear
models can lead to distorted effect sizes, inflated Type-I errors, and inversions of differences between
groups.

Underlying many ordinal variables, a continuous variable can be assumed. This is a latent variable,
as we only observe the ordinal scores not the numerical ones. In Figure 1, we show the density of such
a latent numerical variable. Instead of the numerical values, we observe categories such as SD, D, N, A,
and SA. The continuous underlying variable is partitioned through a set of cut-points or thresholds into
a set of categories. In Figure 1, the thresholds are shown as vertical dashed lines. All responses falling
between two thresholds invoke the same response category. More formally, let z be the continuous latent
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Figure 1. Probability density function for a continuous latent variable z with thresholds (indicated by the vertical lines) giving rise to an

observed ordered categorical variable with categories, strongly disagree (SD), disagree (D), neutral (N), agree (A), and strongly agree

(SA).

variable. Define a set of thresholds−∞=m0 <m1 <⋯<mC =∞ such that an observed ordinal response
y satisfies

y = c if mc−1 ≤ z <mc

for c = 1, . . . ,C.
In regression modeling of an ordinal response variable, the following model for the latent variable is

assumed (Anderson & Philips, 1981)

z = x′β+ ε,

where ε is an independent and identically distributed error term with cumulative density function F.
This regression model for the latent response variable implies

P(y = c) = P(mc−1 < z ≤mc) = F(mc−x′β)−F(mc−1−x′β) .

It follows that

F−1 (P(y ≤ c∣x)) =mc−x′β,

where x′β is the structural part of the model.
In regression modeling, the de facto default choice for the analysis of categorical response variables

are logistic models (Agresti, 2002). For binary response variables, standard binary logistic regression
models have been developed and these have been extended for ordinal variables and nominal variables
(see Agresti, 2002, Chapter 7). Logistic models have the advantage that detailed interpretation in terms
of changes in log-odds is possible. Such an interpretation is not available for, for example, probit models
that use the cumulative density of the normal distribution. Otherwise, the fit of logit and probit models
is usually very similar (Agresti, 2002, p.125). In logistic regression models for ordinal variables, we use
the cumulative function of the logistic distribution, such that F equals

F(η) = 1
1+exp(−η)
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and the corresponding regression model is known as the proportional odds model, or, more generally,
the cumulative logistic regression model (Agresti, 2002; Anderson & Philips, 1981; McCullagh, 1980;
Walker & Duncan, 1967).

In many investigations, multiple response variables are collected. Researchers often analyze the
response variables separately, but because the response variables are correlated this might not be an
optimal strategy. Multidimensional data analysis refers to a set of data analysis techniques representing
the multivariate data in a low dimensional, often Euclidean, space. The R response variables are analyzed
together and the results are represented in an S-dimensional space, where S < R. In the low dimensional
representation, the associations (i.e., correlations) between response variables are modeled.

It is important to distinguish between two types of response processes (Coombs, 1964, Chapter 1
and 26; Polak, 2011). In a unipolar or cumulative scale or map, responses are monotonically related
to the position of the person on the map. The response variables are so-called dominance variables.
Mathematical test items constitute a typical example of dominance items where subjects with a higher
mathematical ability have a higher probability of solving the problem correctly. On the other hand,
in a bipolar scale or map, the responses are characterized by the proximity between the variable
and the respondent: The responses are single-peaked functions of the position of a variable and the
position of a person. The variables are so-called proximity variables. For dominance variables the
subjects are partitioned into homogeneous groups, that is, all subjects with a fixed response constitute
a homogeneous group. For proximity items, reasons to answer totally disagree might differ between the
respondents. Respondents who disagree therefore do not necessarily constitute a homogeneous group.

In classical multivariate analysis, principal component analysis (PCA, Hotelling, 1936; Jolliffe, 2002;
Pearson, 1901) is the standard multidimensional data analysis tool for the analysis of dominance
variables whereas multidimensional unfolding (MDU, Busing, 2010; Heiser, 1981) is the standard tool
for the analysis of proximity variables.

In PCA, a data set is summarized by reducing the dimensionality using a set of principal components,
that are linear combinations of the original variables. The principal components explain as much of
the original variability as possible. PCA solutions can be graphically represented through so-called
biplots (Gabriel, 1971; Gower & Hand, 1996; Gower et al., 2011), where the row objects (observations,
participants, individuals) are represented as points in a Euclidean space and the columns (variables,
items) as vectors or variable axes. The projection of the points onto the axes is informative.

Another multidimensional data analysis approach is MDU. MDU is targeted toward proximity
variables and uses a distance representation. MDU solutions can also be graphically represented by
biplots, where both the row objects and the variables are represented by points in a Euclidean space.
The distances between the two sets of points are informative.

When besides the response variables also predictor variables are available with information about the
row objects, we can constrain the PCA or MDU to incorporate this information. The principal scores or
the ideal points are restricted to be (linear) functions of the predictor variables. When we constrain PCA
in such a manner, the resulting model is known as reduced rank regression (RRR; Izenman, 1975; Tso,
1981) or redundancy analysis (Van den Wollenberg, 1977). RRR models can be represented graphically,
by so-called triplots (Ter Braak & Looman, 1994). When we constrain MDU in such manner, we obtain
restricted MDU (RMDU; Busing et al., 2010). These RMDU models can be graphically represented by
triplots.

PCA, MDU and its constrained versions, RRR and RMDU, are usually estimated by least squares
methods. For categorical response variables, however, linear models estimated with least squares
methods are not optimal and might lead to distorted effect sizes, type-I errors, and inversion of effects
(Liddell & Kruschke, 2018). Logistic models estimated using maximum likelihood offer an alternative.

For binary data, several authors (De Leeuw, 2006; Landgraf & Lee, 2020; Schein et al., 2003) proposed
PCA using the binomial negative log-likelihood as loss function. Collins et al. (2001) proposed a
generalization of PCA to the exponential family to deal with, for example, binary data or integer-
valued data such as count data. As far as we know, only Vicente-Villardón & Sánchez (2014) investigated
exponential family generalizations of PCA for ordinal response variables including a biplot visualization.
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For constrained PCA of binary variables, that is, RRR or redundancy analysis, a logistic model was
proposed by De Rooij (2024). Yee & Hastie (2003) generalized RRR to response variables from the
exponential family, similar to generalized linear models (McCullagh & Nelder, 1989). As far as we
know, there are no exponential family generalizations of these reduced rank models for ordinal response
variables.

For MDU, several attempts can be found in the literature to exponential family MDU models.
Andrich (1988), Takane (1998), and DeSarbo & Hoffman (1986) defined MDU models for binary
variables using squared distances. Andrich (1988) proposed a unidimensional model that does not
allow for predictor variables. Takane (1998) and DeSarbo & Hoffman (1986) describe generalizations
to multiple dimensions that can include predictors. De Rooij et al. (2025) defined a model on the basis
of (unsquared) distances for binary data, both with and without predictor variables. As far as we know,
there are no exponential family generalizations of MDU for ordinal response variables.

In conclusion, there have been several attempts to define exponential family models for PCA and
MDU and their constrained versions that include predictor variables. These attempts mainly focus on
binary response variables, but some include also other types of variables (Collins et al., 2001; Yee &
Hastie, 2003) like count variables. However, no exponential family generalizations exist of PCA or MDU
for ordinal response variables, neither with or without predictor variables.

The goal of this article is to fill this gap and propose multidimensional models for ordinal response
variables in the exponential family. We will develop models for multivariate ordinal dominance variables
(i.e., PCA and RRR) and proximity variables (i.e., MDU and RMDU). The user has to choose between
these two approaches. Models without predictor variables, i.e., PCA and MDU, and with predictor
variables, i.e., RRR and RMDU, will be presented. Along the algebraic formulation, we will also develop
biplot methodology for visualization of the models. One unified algorithm for maximum likelihood
estimation of model parameters will be developed and tested, where at the lowest level updates differ
between the four approaches. To illustrate the multidimensional models and the difference between
the dominance and proximity perspective, we will apply the models on several data sets. In the first
application, we have cognitive data and use the dominance approach. The second application highlights
the difference between the dominance and proximity approaches using behavioral response variables.
The third application shows in detail the proximity approach where the response variables concern
attitudes concerning the environment. The second and third application use data from the International
Social Survey Programme (ISSP Research Group, 2022). Biplots for all three applications will be
discussed in detail.

The outline of this manuscript is as follows. In Section 2, we propose a family of geometric, multi-
dimensional, models for multivariate ordinal data. We distinguish between dominance and proximity
response variables and between models with and without predictor variables. Properties of the model
are derived. We briefly discuss model selection and discuss in detail the visualization of the models
using biplots. In Section 3, we present a unified algorithm for maximum likelihood estimation of model
parameters. In Section 4, we show the three applications. We test our algorithm using simulated data in
Section 5. We end this article with some discussion and conclusions.

2. Cumulative logistic multidimensional models

We consider a set of ordinal variables with observed values yir (i = 1, . . . ,N, r = 1, . . . ,R) where variable
r has Cr categories, coded as c = 1, . . . ,Cr . Underlying each ordered categorical response variable yr we
assume a continuous latent variable zr . We model these latent variables as

zir = θir + εir,

where θir , the structural part of the model, is geometrically defined in S dimensions. When using PCA
we define
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θir = ⟨ui,vr⟩ =
S
∑
s=1

uisvrs,

with ui the principal scores and vr the loadings, whereas

θir = −d(ui,vr) = −

�
�� S
∑
s=1
(u2

is+v2
rs−2uisvrs),

with ui the point for participant i and vr the location for variable r when MDU is used. Note that the
θir are negative by definition when distances are used but can be positive or negative with the inner
products. We denote the two models by cumulative logistic PCA (CLPCA) and cumulative logistic MDU
(CLMDU). The ui and vr can be collected in matrices, that is, U = [u1, . . . ,uN]′ and V = [v1, . . . ,vR]′.

When predictor variables are available for the participants, the coordinates of the principal scores
or ideal points can be restricted to be a linear, additive function of these predictor variables, that is,
ui =B′xi with B a P×S matrix. Within the PCA context, we obtain the RRR model (CLRRR). For MDU,
we obtain a RMDU (CLRMDU).

We assume the εir to be independent and identically distributed error terms following a cumulative
logistic distribution. The probability density function of the logistic distribution equals

f (η) = exp(−η)
[1+exp(−η)]2 for η ∈ (−∞,∞),

such that its logarithm is

log f (η) = −η−2log[1+exp(−η)].

The cumulative function of this distribution equals

F(η) = 1
1+exp(−η) for η ∈ (−∞,∞).

It follows that

F−1 (P(yir ≤ c)) = log(P(yir ≤ c)
P(yir > c)) =mrc −θir,

where, similar to the proportional odds regression model, the thresholds (mrc ) are category specific, but
the structural part (θir) of the model is variable specific.

2.1. Properties of cumulative logistic models
Let us consider two subjects with locations u1 and u2. The cumulative log-odds ratio for response
variable r is defined as

τ = log(P(y1r ≤ c)
P(y1r > c))− log(P(y2r ≤ c)

P(y2r > c)) .

With a PCA (or RRR) parameterization, τ can be written as

τ =mrc −⟨u1,vr⟩−(mrc −⟨u2,vr⟩) = ⟨(u2−u1),vr⟩,

which does not depend on c. This shows that CLPCA (and CLRRR) make a proportional odds
assumption, for a given change in the positions for the subjects all the cumulative log-odds for variable
r change with the same amount. Furthermore, if we define u2 as u2 = u1+δ(u), such that δ(u) is a shift
from one position to another, then we may write

τ = ⟨δ(u),vr⟩,
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which shows that it does not matter where in the Euclidean space this shift happens, the cumulative
log-odds ratio remains constant for constant δ(u). Consider participants 1 and 2, with coordinates
u1 = (0,0) and u2 = (1,0.5). The estimated cumulative log-odds ratio for these two participants is the
same as for participants 3 and 4 with coordinates u3 = (−5,3) and u4 = (−4,3.5), as the difference
between these pairs of coordinates is the same.

When predictor variables are used in the analysis, we constrain the coordinates to be linear
combinations of those variables, that is, ui = B′xi. In this case, the comparison between two persons
that differ one unit in one of the predictor variables but have equal values otherwise is of interest. Say,
the pth predictor variable increases by a unit, such that, δ(u) = B′(x2 − x1) = bp, then the cumulative
log-odds increase by ⟨bp,vr⟩.

Below in Section 2.3, we will describe biplots for the interpretation of our multidimensional models.
Cumulative logistic RRR (CLRRR) models can also be interpreted numerically, similar to the regression
weights in a proportional odds model. With reduced rank coefficient matrix A = BV ′, each column of
this matrix represents a change in cumulative log odds for the corresponding response for unit increase
in the predictor.

For cumulative logistic MDU and restricted MDU, there is a nonlinear distance relationship. The
cumulative log-odds ratio becomes

τ = d(u1,vr)−d(u2,vr),

again not depending on c, only on the distances. This is again the proportional odds assumption, but in
contrast with the PCA parameterization, however, the changes in cumulative log odds are not constant
for changes in u. That is, using the example with participants 1, 2, 3, and 4, described above again, the
cumulative log-odds ratio for participants 1 and 2 is not equal to that of participants 3 and 4. Similarly,
unit changes in one of the predictors do not lead to a constant change in cumulative log-odds (i.e., the
estimated τ is different for two participants with predictor values 0 and 1 compared to two participants
with predictor values 2 and 3, say). Furthermore, unit changes in one of the predictors (say, x1) lead
to different changes in τ for participants with varying values on the other predictors. Although the
relationship of the predictors is additive in defining the positions of the participants in the biplot, the
relationship between predictors is not additive when looking at the effect on the response variables.
Results can therefore not be represented numerically and we have to rely on the biplot visualizations
described in detail below.

2.2. Model selection
Assuming conditional independence between the response variables given the representation in low-
dimensional space, we will estimate the model parameters by maximizing the likelihood (see Section
3, where we derive an algorithm). Model selection entails (1) selecting a good dimensionality and (2)
in case there are predictor variables, selecting the set of predictor variables that have an effect on the
response variables.

For maximum likelihood methods there are several type of statistics that can be used for inference.
The best known statistics are Wald tests, likelihood ratio tests, and information criteria like Akaike’s
Information Criterion (AIC; Akaike, 1974). However, for our cumulative logistic multidimensional
models, we need to make the following observations. For Wald statistics, we need standard errors of
the parameters. Such standard errors are not a by-product of our MM-algorithm (next section). For
obtaining standard errors and/or confidence intervals the non-parametric bootstrap can be used (Efron,
1979; Efron & Tibshirani, 1986). The likelihood ratio statistic compares two nested models. If the model
under the null hypothesis is true and certain regularity conditions are satisfied, the likelihood ratio
statistic is known to be asymptotically distributed as a chi-square variable with degrees of freedom equal
to the difference in the number of parameters under the two hypotheses. For our models, there are two
complications: (1) The regularity conditions are not satisfied for selecting the optimal dimensionality,
see Takane et al. (2003) and Takane & Van der Heijden (2023) for a detailed discussion; (2) we generally
do not belief a certain model to be true as this involves many assumptions.
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Therefore, in this article we will use information criteria for model selection, that is, the AIC and
BIC. For the AIC and BIC we need the number of parameters. In all our models, we have the threshold
parameters, the number of which is ∑r(Cr − 1). For PCA and RRR, the number of parameters in the
structural part is (N +R− S)S and (P +R− S)S, respectively. For MDU and RMDU, the number of
parameters in the structural part is (N +R)S−S(S−1)/2 and (P+R)S−S(S−1)/2, respectively.

For the models with predictor variables, we follow the suggestion of Yu & De Rooij (2013) to use a
step-wise approach to reduce the computational load. In the step-wise approach, we start with defining
the matrix X to include all predictors of interest and determine the dimensionality S. Second, using the
just selected S, we search for an optimal set of predictors by iteratively leaving out columns of X.

2.3. Biplots
In this section, we will discuss biplots for the visualization of the model results. These biplots are most
valuable for two-dimensional solutions, but can also be used for visualization of pairs of dimensions
in case of higher dimensional solutions. We first discuss biplots for CLPCA and CLMDU. Afterwards,
we discuss the case when predictor variables are available for the analysis. In that case, the biplots are
extended with extra information about the predictor variables and become triplots.

2.3.1. CLPCA biplots
Biplots (Gabriel, 1971; Gower & Hand, 1996; Gower et al., 2011) are useful displays for the results
of a PCA, especially for two-dimensional solutions. We will now discuss the geometry of the two-
dimensional biplot for CLPCA. Like a usual PCA biplot, observations are shown as points, and variables
are shown by axes. The coordinates of the points are given by the estimated ui. The variable axes are
straight lines though the origin with direction vr2

vr1
. In Figure 2a, we present a simplified biplot where

the observations are shown by grey dots and there is a single variable axis (solid line). For this variable,
vr = [1,0.5]′ and suppose mrc = (−2.0, − 1.5, − 0.5) for c = 1,2 and 3, respectively, i.e., thresholds for
a four-point response scale. Estimated values for the response of an individual can be obtained by
projecting the point representing this individual onto the variable axis. Subjects positioned in the lower
left corner have lower expected values for the response, while subjects in the upper right corner have
higher expected values, projecting higher onto the variable axis. To further increase interpretation and
provide numerical values for the expected value, Gower & Hand (1996) suggest to add labeled markers
to the variable axis. For CLPCA there are several possibilities.

Vicente-Villardón & Sánchez (2014) suggest to add markers based on the largest estimated a
posteriori probabilities. That is, for every point on the variable axis the probability for each response
class is computed. At specific locations on the variable axis there are points where two categories, say
c and c′, jointly have the highest probability. These points are marked as with c∣c′. They note that in
some cases the probability of one or several categories are never higher than the probability of the other
categories. When, for example, category 2 is such a “hidden” category, the marker will be “1∣3”.

In the context of the proportional odds model, Anderson & Philips (1981) suggest to make predic-
tions based on the underlying latent variable. Following this suggestion, we propose to add markers
based on the underlying latent variable and the estimated thresholds. The predicted value of the latent
variable is

zir = ⟨ui,vr⟩.
As in standard PCA, this inner product is constant (μ, say) for all points on a line projecting at the
same location of the variable axis, that is, a line orthogonal to the variable axis. Therefore, the point of
projection may be calibrated by labeling this point with the value μ. This value also applies to the point
of projection itself, which is λvr for some λ. For the point λvr to be calibrated with the value μ, it must
satisfy

λv′rvr = μ,
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Figure 2. Biplot representations for CLPCA (left) and CLMDU (right) for a single response variable.

Note: Variable markers for cumulative probabilities are added. Grey points represent observations. On the left, the green solid line

represents the variable axis with markers indicating the estimated thresholds. The dotted lines indicate decision regions for the categories

of the response variable. On the right, the green point represents the response variable. The circles represent decision boundaries, where

outside the circle the first category of the label is preferred and inside the circle the second category of the label.

so that λ = μ/v′rvr . The coordinates of the point on the variable axis that is calibrated with a value of μ are
μvr/(v′rvr). As such, we would have the markers expressing values of the underlying latent continuous
variable, but the interest lies in the observed ordinal response variable. The estimated response is y = c
if mrc−1 ≤ z <mrc . Therefore, markers can be based on the estimated thresholds. These markers indicate
the transition points between adjacent categories. The coordinates of the marker point are given by
mrc vr/(v′rvr) and these can be labeled by 1∣2, 2∣3, and so forth. The application of these markers is
illustrated in Figure 2a. An advantage of these markers over the ones based on posterior probabilities is
that each threshold is represented.

Based on these markers, the two-dimensional space can be partitioned into Cr areas by drawing Cr−1
decision lines orthogonal on the variable axis and through the marker points, these are represented by
the dotted lines in Figure 2a.

In our explanation above, we focused on a single response variable. The proposed cumulative logistic
models, however, are methods for multiple response variables. Therefore, in the biplots a variable axis
is presented for each response variable. Each variable axes is accompanied with a variable label which
we position at the positive end, that is, the side with highest scores of the variable axis. These variable
axes for the set of variables jointly partitioning the multidimensional space in open and closed regions
that each represent a particular predicted response profile.

2.3.2. CLMDU biplots
In MDU biplots, both the observations and the variables are shown by points in the two-dimensional
space. The closer an observation to the variable point the higher the probability of a high response. To
represent the ordinal nature of the response variable into the biplot, remember that we have

log(P(yir ≤ c)
P(yir > c)) =mrc +d(ui,vr),
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so that

log(P(yir > c)
P(yir ≤ c)) = −mrc −d(ui,vr) = arc −d(ui,vr).

It follows that we can add circles to the biplot with center vr and radius arc , such that for points inside
this circle the probability for responding higher than c is larger than 0.5 while outside the circle this
probability is smaller or equal to 0.5. Every variable point is therefore accompanied with Cr −1 circles
representing the different probabilities. We illustrate the threshold circles in Figure 2b, where again vr =
[1,0.5]′ and arc = −mrc = (2.0,1.5,0.5). We see again that the two-dimensional space is partitioned in
several areas. These areas are now defined by the circles. Within the smallest circle around the response
variable, the participants are predicted to score highest. Around the inner circle, we have regions in the
form of tyres. Within such a band, participants are predicted to have the same score on the response
variable. The final region is the region outside the circles. For participants whose points are located in
this region we predict the lowest scores.

In some cases a radius can be negative (when mrc is positive), indicating that nowhere in the low-
dimensional space the corresponding cumulative probability is larger than a half, and consequently the
circle is not drawn.

These CLMDU models are also defined for multiple response variables. In the corresponding biplots
each response variable is represented by a point and a set of circles. Circles of different response variables
cross each other, creating regions that correspond to predicted response profiles.

2.4. Restricted models
When predictor variables are available for the observations, the principal scores or participant points
(ui) are defined to be linear combinations of the predictor variables, that is, ui = B′xi. To include the
predictor variables in the biplot, we distinguish between numerical and categorical predictor variables.
Numerical predictor variables are included in the two-dimensional biplot as variable axes, that are,
straight lines through the origin with direction bp2/bp1. Markers and labels indicating typical values
for the predictor variables are added to these variable axes. Furthermore, also variable labels are added
to the biplot and placed at the end of the variable axes corresponding to the highest scores. The positions
of the participants can be obtained from the predictor variable axes by the process of interpolation, as
outlined by Gower & Hand (1996). The interpolation process is similar to vector addition, that is, we
create vectors starting in the origin and along the variable axes to the observed predictor value for each
predictor variables. To obtain the position of the participant, we have to add these vectors.

Categorical predictor variables, are recoded into dummy variables, where one of the categories is
chosen as a reference category. In the biplot representation, we use points instead of variable axes for
such predictor variables. The position of the reference category is in the origin of the low-dimensional
space, whereas the other categories are positioned at their corresponding estimates in B. We may
consider categorical predictor variables as “jumps.” When the categorical predictor is equal to the
reference category, no jump is made. When the categorical predictor variable is equal to another
category, a jump from one position to another is made. These jumps are on top of the interpolation
process for numerical predictor variables. When multiple categorical predictor variables are included
in the analysis, multiple jumps need to be made to find the corresponding position of a participant.

Variable axes for the numerical predictor variables and points for the categorical predictor variables
are added to the biplots for CLPCA or CLMDU. For interpretation, the relationship between a predictor
variable and a response variable is of interest. In the CLRRR biplots, for numerical predictor variables
such a relationship is given by the angle between a predictor variable axis and that of a response
variable (see Section 2.1). A sharp angle indicates a strong relationship, while an obtuse angle indicates
a weak relationship. Furthermore, for every point along the predictor variable axis, a projection onto
the response variable axis can be made to obtain a predicted value. For a categorical predictor, the point
representing a category can be projected onto the response variable axis to obtain a predicted value.
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For CLRMDU biplots, the interpretation of predictor-response relationships is more involved,
because these are single-peaked where with increasing values of a predictor first the response goes
up and afterwards down again. Furthermore, although the effect of predictor variables is additive for
obtaining the position of an observation (i.e., the point ui), this additivity does not translate to the
relationship toward the response variable.

3. Maximum likelihood estimation

Assuming a multinomial distribution of the response variables, the observed data negative log-
likelihood is

Lo(θ,m) = −∑
i
∑

r
1(yir = c) logπirc,

where πirc = F(mrc −θir)−F(mrc−1 −θir), and 1() is an indicator function of its argument, θ collects all
the structural parameters and m collects all the threshold parameters.

In this section, we will develop an expectation–majorization–minimization (EMM) algorithm to
minimize the negative log-likelihood. This algorithm is a combination of the EM-algorithm often used
for latent variable models (McLachlan & Krishnan, 2007) and the MM-algorithm (Heiser, 1995; Hunter
& Lange, 2004).

We start by formulating the complete data negative log-likelihood, take the conditional expectation
of this function in the E-step, and find a majorization function that can easily be minimized. The
majorization function turns out to be a least squares function, so that in the inner loop of the algorithm,
well known updating steps from least squares theory can be used.

3.1. Estimation of structural part
The complete data negative log-likelihood is defined for the latent responses, that is,

Lc(θ) = −∑
i
∑

r
log f (zir −θir),

where f (⋅) is the probability density function of the logistic distribution (see Section 2). A second-order
Taylor expansion of the complete data negative log-likelihood around current values θ̃ is

Lc(θ) = Lc(θ̃)+(θ− θ̃)′ ∂Lc(θ̃)
∂θ

+ 1
2
(θ− θ̃)′ ∂

2Lc(θ̃)
∂θ∂θ′

(θ− θ̃).

In the E-step, the expectation of the complete data negative log-likelihood is obtained, that is,

E(Lc(θ)) = E(Lc(θ̃))+(θ− θ̃)′E(∂Lc(θ̃)
∂θ

)+ 1
2
(θ− θ̃)′E(∂

2Lc(θ̃)
∂θ∂θ′

)(θ− θ̃).

As the expectation of a sum is the sum of expectations, we can write

E(Lc(θ)) =∑
i
∑

r
E(Lc(θir)),

with

E(Lc(θir)) = E(Lc(θ̃ir))+(θir − θ̃ir)E(
∂Lc(θ̃ir)
∂θir

)+ 1
2
(θir − θ̃ir)E(

∂2Lc(θ̃ir)
∂2θir

)(θir − θ̃ir).

Let pir = (1+exp(−zir +θir))−1 such that log f (zir −θir) = logpir(1−pir). The partial derivative is

∂Lc(θ̃ir)
∂θir

= −∂ log f (zir −θir)
∂θir

= 1−2pir,
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and the second order derivative is
∂2Lc(θ̃ir)
∂2θir

= 2pir(1−pir)

which is bounded from above because pir(1−pir) ≤ 1
4 . Therefore,

E(Lc(θir)) ≤ E(Lc(θ̃ir))+(θir − θ̃ir)E(
∂Lc(θ̃ir)
∂θir

)+ 1
8
(θir − θ̃ir)(θir − θ̃ir) =M(θir ∣θ̃ir),

whereM(θir ∣θ̃ir) is the majorization function.
We need the expectation of pir to find the expectation of this partial derivative. Following Jiao (2016),

we derived the following closed form expressions (we use p, y and θ instead of pir , yir and θir for
readability):

E(p∣y,θ,m) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[ exp(2my−2θ)
2[exp(my−θ)+1]2 ]/F(my−θ) if y = 1

[ 2 exp(m(y−1)−θ)+1
2[exp(m(y−1)−θ)+1]2 − 2 exp(my−θ)

2[exp(my−θ)+1]2 ]/(F(my−θ)−F(m(y−1)−θ)) if 2 ≤ y < C

[ 2 exp(m(y−1)−θ)+1
2[exp(m(y−1)−θ)+1]2 ]/(1−F(m(y−1)−θ)) . if y = C

The expectation has to be evaluated at the current estimates of θ and m. Let us denote by ξir the expected
value of the first derivative, that is,

ξir = 1−2E(pir ∣yir,θir,mr),

so that the majorization function to be minimized is

M(θ∣θ̃) =∑
i
∑

r
M(θir ∣θ̃ir) =∑

i
∑

r
E(Lc(θ̃ir))+(θir − θ̃ir)ξir +

1
8
(θir − θ̃ir)(θir − θ̃ir).

Let us simplify this majorization function. Focusing on the individual elements, the first term is a
constant (c1 = E(Lc(θ̃ir))) and therefore

M(θir ∣θ̃ir) = c1+ ξir(θir − θ̃ir)+
1
8
(θir − θ̃ir)(θir − θ̃ir)

= c1+ ξirθir − ξirθ̃ir +
1
8
(θ2

ir + θ̃2
ir −2θirθ̃ir)

= c1+
1
8

θ2
ir + ξirθir −2 1

8
θirθ̃ir − ξirθ̃ir +

1
8

θ̃2
ir.

Now, let us define what we will call working responses

λir = θ̃ir −4ξir (1)

to obtain

M(θir ∣θ̃ir) = c1+
1
8

θ2
ir −2 1

8
θirλir +

1
8

λ2
ir −

1
8

λ2
ir − ξirθ̃ir +

1
8

θ̃2
ir

= c1+
1
8
(θir −λir)2− 1

8
λ2

ir − ξirθ̃ir +
1
8

θ̃2
ir.

Define c2 = c1− 1
8 λ2

ir − ξirθ̃ir + 1
8 θ̃2

ir , a constant with respect to θir , so that we can write

E(Lir(θir)) ≤M(θir ∣θ̃ir) =
1
8
(θir −λir)2+ c2.

Now collecting all terms into a single function, we obtain

E(Lc(θ)) ≤M(θ∣θ̃) =
1
8∑i
∑

r
(θir −λir)2+ c2,
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a least squares function with the working responses λir . In the following four subsections, we work out
this least squares loss function for the four different definitions of the structural part (θir).

3.1.1. PCA parametrization of the structural part
Remember that θir = ⟨ui,vr⟩, so that the loss function equals

∑
i
∑

r
(λir −u′i vr)2,

which can be written in matrix algebra terms as

∥Λ−UV ′∥2.

We have to find a reduced rank approximation of the matrix Λ with elements λir . Eckart & Young (1936)
showed that this can be done using a singular value decomposition

Λ = PΦQ′

and defining the updates

U+ =
√

NPS (2)

V+ = 1√
N

QSΦS, (3)

where PS and QS are the first S singular vectors, and ΦS is the S× S diagonal matrix with the largest
singular values.

3.1.2. RRR parametrization of the structural part
Compared to the PCA parametrization, we impose the constraint that ui = B′xi. Therefore, in each
iteration, we have to minimize

∥Λ−XBV ′∥2

over the parameters B and V . Updates of B and V can be obtained from a generalized singular value
decomposition of the matrix

(X′X)−1X′Λ

in the metrics (X′X) and I (Takane, 2013, Section 2.3.6). Let

(X′X)−
1
2 X′Λ = PΦQ′

be the usual SVD. The updates are defined as

B+ =
√

N(X′X)−
1
2 PS (4)

V+ = 1√
N

QSΦS, (5)

where PS and QS are the first S singular vectors, and ΦS is the S× S diagonal matrix with the largest
singular values.

3.1.3. MDU parametrization of the structural part
The loss function in every iteration is

1
8∑i
∑

r
(θir −λir)2+ c2,
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where θir = −d(ui,vr) with ui and vr the parameters. This loss function can be rewritten as

∑
i
∑

r
wir(δir −d(ui,vr))2,

where δir = −λir and wir = 1, which is the usual raw STRESS function often used in multidimensional
scaling and unfolding. De Leeuw (1977) and De Leeuw & Heiser (1977) proposed the SMACOF algo-
rithm for minimization of this STRESS function for multidimensional scaling. The SMACOF algorithm
is itself an MM algorithm. Convergence properties of this algorithm are described by De Leeuw (1988).
Heiser (1981, 1987) showed that MDU can be considered a special case of multidimensional scaling.
Subsequently, he developed the SMACOF algorithm to deal with rectangular proximity matrices.
Advances in the algorithm are described in Busing et al. (2010, Chapter 8). An elementary treatment
of the algorithm for multidimensional scaling can be found in Borg & Groenen (2005) and for MDU
in Chapter 14. The critical difference with the usual loss function is that the dissimilarities δir might be
negative. Heiser (1991) showed a way to deal with negative dissimilarities in multidimensional scaling.
The line of thought of Heisers contribution is that two majorizing functions are defined: one for the case
that the dissimilarity is positive and one for the case that the dissimilarity is negative. It turns out that the
new algorithm is a simple adaptation of the standard SMACOF algorithm, where only some elements of
two matrices (A and W, see below) are defined differently, depending on the sign of the dissimilarity. De
Rooij & Busing (2024) and De Rooij et al. (2025) adapted Heiser’s algorithm for the MDU case. Here,
we will follow that approach. We will only show the updating equations, for the derivation of these
equations, we refer to the above papers.

Define matrix A with elements {air} as follows

air = {
wirδir/d(ui,vr) if δir ≥ 0 and d(ui,vr) > 0
0 else. .

Furthermore, redefine the weight matrix W with elements {wir} as

wir =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

wir if δir ≥ 0
[wir(d(ui,vr)+ ∣δir ∣)]/d(ui,vr) if δir < 0 and d(ui,vr) > 0
[wir(ε+δ2

ir)]/ε, if δir < 0 and d(ui,vr) = 0
,

where ε is a small constant. Note that the matrices W and A change from iteration to iteration.
Let us now define R = diag(wi+), C = diag(w+r), P = diag(ai+), and Q = diag(a+r), where the + in

the subscript means taking the sum over the replaced index, that is, wi+ =∑R
r=1 wir . With these matrices

the update for U is

U+ = R−1 (PU −AV +WV) (6)

and for V the update is

V+ = C−1 (QV −A′U++W′U+) . (7)

These updates are the same as in the standard least squares unfolding algorithm (see Busing, 2010, pp.
176, 183–187), where only the definitions of A and W are changed.

3.1.4. RMDU parametrization of the structural part
When predictor variables are available, we constrain U = XB and we need to estimate B instead of U .
We can use the algorithm of MDU described in the previous section and replace the updating equation
for U (i.e., Equation (6)) with an updating equation for B, that is,

B+ = (X′RX)−1 [X′ (PU −AV)+X′WV] (8)

and before updating V using Equation (7), we compute U+ = XB+.
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3.2. Estimation of thresholds
To update the threshold parameters for each response variable we cannot use the complete data negative
log-likelihood. However, we can use the default maximum likelihood estimator as in the proportional
odds regression model. For this estimator yr is the response variable and we use θr as an offset, that is,
a predictor variable with regression weight fixed to 1 and without any other predictor variables. This
gives maximum likelihood estimates of the intercepts or thresholds for response variable r. We repeat
the procedure for each response variable.

3.3. Remarks on algorithms
The algorithms as outlined above monotonically converge to a local minimum of the negative log-
likelihood function. For the models based on the inner product (PCA and RRR) this local minimum
is also the global minimum. For models based on the distance representation, however, local optima
occur. To deal with these local optima, starting values near the global minimum might help, such as
given by, for example, correspondence analysis. As such a start does not guarantee to find the global
minimum, supplementary multiple random starts are advised.

3.4. Algorithm schemes
To summarize, we give algorithm schemes in four algorithm boxes. Algorithm 1 shows the procedure
for CLPCA, algorithm 2 for CLRRR, algorithm 3 for CLMDU, and algorithm 4 for CLRMDU.

Algorithm 1 CLPCA algorithm.
1: procedure clpca(Y,m,U,V)
2: Predefine: maxouter, ε
3: Compute structural part θ
4: AssessL0

o(θ,m)
5: for t1 ← 1,maxouter do
6: Compute working responses Λ = {λir} using

equation (1)
7: SVD of Λ
8: Update U using equation (2)
9: Update V using equation (3)

10: Update m by directly maximizing the likelihood
11: ifLt1

o (θ,m)−Lt1−1
o (θ,m) < ε: break

12: end for
13: return(m,U,V)
14: end procedure

Algorithm 2 CLRRR algorithm.
1: procedure clrrr(Y,X,m,B,V)
2: Predefine: maxouter, ε
3: Compute structural part θ
4: AssessL0

o(θ,m)
5: for t1 ← 1,maxouter do
6: Compute working responses Λ = {λir} using

equation (1)
7: GSVD of Λ
8: Update B using equation (4)
9: Update V using equation (5)

10: Update m by directly maximizing the likelihood
11: ifLt1

o (θ,m)−Lt1−1
o (θ,m) < ε: break

12: end for
13: return(m,B,V)
14: end procedure

Algorithm 3 CLMDU algorithm.
1: procedure clmru(Y,m,U,V)
2: Predefine: maxouter, maxinner, ε1, ε2
3: Compute structural part θ
4: AssessL0

o(θ,m)
5: for t1 ← 1,maxouter do
6: Compute working responses Λ = {λir} using

equation (1)
7: AssessM0(U,V)
8: for t2 ← 1,maxinner do
9: Update U using equation (6)

10: Update V using equation (7)
11: AssessMt2(U,V)
12: ifMt2(U,V)−Mt2−1(U,V) < ε2: break
13: end for
14: Update m by directly maximizing the likelihood
15: ifLt1

o (θ,m)−Lt1−1
o (θ,m) < ε1: break

16: end for
17: return(m,U,V)
18: end procedure

Algorithm 4 CLRMDU algorithm.
1: procedure clrmdu(Y,X,m,B,V)
2: predefine: maxouter, maxinner, ε1, ε2
3: Compute structural part θ
4: AssessL0

o(θ,m)
5: for t1 ← 1,maxouter do
6: Compute working responses Λ = {λir} using

equation (1)
7: AssessM0(U,V)
8: for t2 ← 1,maxinner do
9: Update B using equation (8)

10: Update V using equation (7)
11: AssessMt2(U,V)
12: ifMt2(U,V)−Mt2−1(U,V) < ε2: break
13: end for
14: Update m by directly maximizing the likelihood
15: ifLt1

o (θ,m)−Lt1−1
o (θ,m) < ε1: break

16: end for
17: return(m,B,V)
18: end procedure
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4. Applications

In this section, we will show three applications of our modeling framework. In the first application,
we analyze part of the data described by Fabbricatore et al. (2024) about students responses to exam
questions about statistics. We focus on the effects of several psychological variables like attitude and
anxiety on these responses. As the response variables are cognitive items, we will analyze these data
using the cumulative logistic reduced rank model. In the second application, we use data from the
ISSP to investigate the relationship between environmental attitudes and pro-environmental behavior.
In this analysis, we use both the dominance and proximity models to highlight the differences between
the two approaches. Finally, we show a third application again using data from the ISSP. We use data
from seven Likert scales to investigate differences between countries in environmental efficacy. As
the response variables are attitude items, we use the cumulative logistic restricted multidimensional
unfolding (CLRMDU) model for this analysis.

4.1. Students’ performance for statistical tests
The subset of data we use for this analysis involves 138 university students and their responses to ten
questions in an exam about the application of statistics to certain topics. The ten items are described in
detail in Appendix A. Each response is coded as wrong (0), partially correct (1), or correct (2), that is,
as a three categories ordinal response.

Prior to the start of the courses on statistics, several psychological tests were conducted. Besides
their answers on the ten items, for each student information is available on their gender (1 = female,
0=male), age in years, and several measurements of mathematical knowledge and psychological factors,
each assessed through validated psychometric instruments. The variables that we use are:

• Mathematical knowledge measured using the Mathematical Prerequisites for Psychometrics scale
(PMP);

• Statistical anxiety with three scale scores referring to examination anxiety (SASa), interpretation
anxiety (SASi), and fear of asking for help (SASf);

• Attitudes toward Statistics with four scales: affect (SATSa), cognitive competence (SATSc), value
(SATSv), and difficulty (SATSd);

• Motivated strategy for learning with four scales referring to self-efficacy (MSLe), test anxiety
(MSLt), cognitive strategies (MSLc), and self-regulation (MSLsr);

• Academic procrastination measured using a single scale (APS);
• Academic motivation also measured using a single scale (AMS);
• Student engagement in statistics measured through three scales: affective engagement (ENGa),

behavioral engagement (ENGb), and cognitive engagement (ENGc).

Psychometric properties of these scales are all satisfactory to good, see Fabbricatore et al. (2024) for
details, where also more detailed descriptions of the scales can be found. The scores on these scales serve,
together with gender and age, as predictor variables. The responses to the ten statistical items serve as
response variables. The research questions that are central to these data is whether the psychological
factors influence the responses on the exam items and whether these effects are homogeneous for
different exam items or heterogeneous.

As there is no prior information whether the 10 items comprise a unidimensional or multidi-
mensional construct, we will start fitting models in one till three dimensions and select an optimal
dimensionality. Subsequently, we will verify which of the predictor variables influence the responses.
Fit statistics for the one-, two-, and three-dimensional models are shown in Appendix A, where it
can be seen that the two-dimensional model has the lowest AIC, while the lowest BIC is obtained for
the unidimensional model. We proceed with the two-dimensional model. Leaving out each (set of)
predictor variables, we obtain the fit statistics in the lower part of Table A1, showing that Age, Statistical
Anxiety, the Motivated Strategies for Learning Questionnaire, and the Academic Motivation Scale can
be left out without significant loss of fit (AIC based conclusion).
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The final biplot is shown in Figure 3. The implied coefficients are shown in Table A2 (Appendix A).
The figure and table can be used together to come to a interpretation of the final model. Let us first
inspect the configuration of the response variables (items A1a, . . ., A2g) represented by the green solid
lines with markers 0∣1 and 1∣2. By inspecting the direction of the variable axes, we see most responses
are strongly correlated, that is, the variable axes have small angles and all point to the right hand side of
the figure. A notable exception is item A2g, and to a smaller extent item A1d. The general pattern is that
students on the right hand side of the figure correctly answer the items, while students on the left hand
side often make mistakes. For items A2g and A1d, students positioned in the top of the configuration
make the items correct, while at the bottom of the figure they tend to fail. Each variable axis also has
two markers (0∣1 and 1∣2) indicating the difficulty of the item. For response variable A2a, for example,
we see that these two markers are positioned strongly to the left. Projecting the students on the axes we
see that most fall in the region of a correct answer. This item is relatively easy. For item A2i, however, the
marker 1∣2 is far to the right and the projection of student points on this axis is rarely in the region of
a correct answer. Note that item A2i is also the item with the least correct answers in the data, whereas
A2a has many correct responses.

Now let us further inspect the predictor variables (indicated by the light blue variable axes) and the
positions of the students in the configuration. The predictor variables are represented with a variable
axis that has a solid part and a dotted part: the solid part indicates the observed range in the data, from
the minimum to the maximum observed value, and as such functions as a measure of effect size. The
dotted part only extends the variable axis to the edge of the biplot where the variable label is placed.
It can be seen that mathematical knowledge (PMP) has a long solid variable axis, that is, mathematical
knowledge prior to the courses makes large differences. Students who score high on mathematics (PMP)
are positioned on the right hand side. It follows that a high PMP score is predictive for answering
most items correctly. Similarly, high behavioral engagement (ENGb) and a strong positive feeling about
statistics (i.e., a high score on the affect scale SATSa) result in positions more to the right hand side of
the biplot, where the model indicates correct responses to the items.

The predictor variable affective engagement (ENGa) points to the upper right corner, so is a good
predictor for a correct response on A1d and A2g. Students who consider statistics to be a difficult topic
(SATSd), in contrast, will be on the lower left corner, that is, the variable axis points in the opposite
direction. Therefore, lower scores on this variable predict a correct response on A1d and A2g.

Higher scores on academic procrastination (APS) and the value and cognitive competence scales
of attitudes toward statistics (SATSv and SATSc, respectively) result in positions more to the top left.
Academic procrastination has a large effect (i.e., a long solid variable axis), whereas SATSv and SATSc
have small effects (short variable axes). Points in the top left corner project low on most of the response
variables, indicating wrong answers, but high (i.e., correct answers) on A2g and A1d. As such, academic
procrastination and the two attitude variables have negative effects on most response items but positive
effects on A2g and A1d. Finally, let us look at the gender variable. Boys represent the reference category
while for girls there is a point on the left of the origin (G). When a boy and a girl have equal values
for the other predictor variables, for girls we should make the jump to the left, indicating less favorable
answers to the ten statistics items.

As a reviewer noted, the negative effect of the two attitude variables, SATSv and SATSc, needs more
inspection as at first glance the negative effect seems a bit odd. In Fabbricatore et al. (2024), where a
latent class approach was used for the statistical analysis these variables had no significant effect. We
also compared our results to separately fitted proportional odds models on the ten response variables.
The estimated coefficients are shown in Table A3 (Appendix A). The proportional odds model for the
third response variable did not converge, therefore no coefficients are displayed. For the two attitude
predictors only four coefficients have a different sign compared to the coefficients of the proportional
odds model. We did not test the significance of these two predictors. Further model selection could
be employed by leaving out every single variable, instead of sets of predictor variables. Alternatively, a
bootstrap analysis could give further insight in the statistical significance of the retained predictors. The
last rows of Tables A2 and A3 show the obtained deviances per response variable, where we see that
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Figure 3. Estimated configuration for students data.

Note: The dark green lines represent the response variables, the blue lines represent the predictor variables. Variable labels are placed on

the positive side of the variables, that are the sides with the largest values. In the upper right corner the labels of ENGa and A1d overlap.
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Table 1. Fit statistics for the dominance (CLRRR) and proximity (CLRMDU) analysis of pro-environmental

behavior in one, two, and three dimensions

CLRRR CLRMDU

Dimensionality Deviance AIC BIC Deviance AIC BIC

1 11,826.94 11,876.94 12,001.16 11,839.25 11,891.25 12,020.44

2 11,777.22 11,839.22 11,993.25 11,756.83 11,824.83 11,993.77

3 11,754.77 11,824.77 11,998.68 11,733.53 11,815.53 12,019.25

the loss for CLRRR is negligible. We like to point out that the number of parameters estimated in the
proportional odds model is 12 per response variable. For the 10 variables together, this would amount
to 120 parameters, whereas our CLRRR analysis has 56 parameters, a substantial reduction.

4.2. ISSP data: Pro-environmental behavior
In this application and the next, we use data from the ISSP 2020, the Module on Environment (ISSP
Research Group, 2022). In this first analysis, we focus on the data from Thailand (N = 1,063) and the
responses to four pro-environmental behavior variables, measured on ordinal scales:

OUT In the last twelve months how often, if at all, have you engaged in any leisure activities outside
in nature, such as hiking, bird watching, swimming, skiing, other outdoor activities or just
relaxing? Answers on a 5-point scale: daily (coded 5), several times a week (4), several times
a month (3), several times a year (2), and never (1);

MEAT In a typical week, on how many days do you eat beef, lamb, or products that contain them?
Answers on a 8-point scale, 0 (coded 8), 1 (7), 2 (6), 3 (5), 4 (4), 5 (3), 6 (2), 7 (1),
where numbers between brackets indicate our coding with higher numbers for more pro-
environmental behavior;

RECYCLE How often do you make a special effort to sort glass or tins or plastic or newspapers and so on
for recycling? Answers on a 4-point scale, always (4), often (3), sometimes (2), never (1);

AVOID How often do you avoid buying certain products for environmental reasons? Answers on a
4-point scale: always (coded 4), often (3), sometimes (2), and never (1).

In psychological research, the relationship between attitudes and behavior is often of interest. For
these data the question is whether environmental concern (EC) and efficacy (attitudes) have an effect
on behavior as measured by the four items, controlling for gender, age, and education. Furthermore,
whether these effect are homogeneous for the different behaviors or heterogeneous, e.g., environmental
concern may have a different effect on each of the four behavior variables. EC was measured by the
following statement: Generally speaking, how concerned are you about environmental issues, where
participants could respond on a 5-point scale ranging from “Not at all concerned” (1) till “Very
concerned” (5). Environmental efficacy (EE) was measured by averaging responses to seven statements
that each had a five-point answer scale ranging from Agree Strongly (5) to Disagree Strongly (1). We
also use gender, age, and number of years of education as predictor variables in the analysis. We will
analyze the data using both the dominance and proximity perspective and contrast the two analyses.

In Table 1, we show the fit statistics of both analyses in dimensionalities 1, 2, and 3. The AIC and BIC
disagree on the optimal dimensionality, that is, AIC points to the three-dimensional solutions, while BIC
points toward the two-dimensional models. We will focus on the more parsimonious two-dimensional
solutions. Comparing the dominance (CLRRR) and proximity (CLRMDU) perspective, it can be seen
that the fit statistics for the proximity model are a little better with lower deviance and AIC.
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Figure 4. Biplot for the cumulative logistic restricted multidimensional unfolding solution relating environmental attitudes with pro-

environmental behavior.

We will inspect and interpret the visualization for the proximity model, the solution of the dominance
model can be found in Appendix B (we will comment on it at the end of this section). The biplot is
shown in Figure 4, where it can be seen that the position of three of the four response variables is at
the periphery of the configuration, while one is more centrally located (i.e., OUT). This means that,
while the predictors have a dominance relationship with the response variables MEAT, RECYCLE, and
AVOID, they have a proximity relationship with OUT.

Let us look at the biplot in more detail. The two predictor variables of interest, EC and EE, are
represented by variable axes that run from the right hand side to the left hand side, meaning that
persons that score high on these variables are located at the left hand side of the biplot, while persons
that score low on these variables are positioned at the right hand side in the biplot. The control variables,
education and age also run from right (lower scores) to left (higher scores). Females are located more
to the top left compared to males. The higher a participant scores on EE or EC the closer they get to
the response variables RECYCLE and AVOID, meaning that the higher a participant scores on the two
attitude variables the more pro-environmental behavior is reported. For these two variables only the
radii for never ∣ sometimes (1∣2) and sometimes ∣ often (2∣3) are positive, meaning that participants are
never classified in the response category always. The biplots including the decision regions per response
variable are shown in Figure B1 in Appendix B. These two response variables follow a dominance
response process because all participant are located on one side of the point representing the response
variable.
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The response variable OUT lies close to the origin of the two-dimensional solution. The radii for
boundaries never ∣ several times per year (1∣2) and several times per year ∣ several times per month (2∣3)
are positive. No participant will be classified in the class of daily (5) or several times per week (4) outside
activities, as the estimated radius for these boundaries are negative. Note that younger participants are
closer to the point for this response variable, indicating younger people more often engage in outside
activities. With increasing scores on environmental efficacy (and average values for the other variables)
the behavior changes from several times per year, to several times per month, back to several times per
year, and extrapolating to never, a single peaked response pattern. A similar response function can be
obtained for the predictor EC.

Finally, we inspect the response variable MEAT. All radii are positive and therefore participants can
be classified in each of the categories. The classification regions are shown in Figure B1, where for this
data set the participants fall in 0, 1, 2, and 3 days per week eating meet (notice the reverse where not
eating meat (0 days) is coded as 8 indicating the category with most pro-environmental behavior). No
participant is classified as eating meat more days per week, these regions fall on the lower bottom of
the figure, where no participants are located. We see that some participants will be classified as typically
eating no meat (within the smallest circle around MEAT). There is not a single predictor pointing in
this direction, but a combination of female, higher age, relatively low EC, and a low number of years of
education will result in this classification.

As pointed out before, the answers to three out of the four response variables follow a dominance
pattern, whereas only the responses to OUT follow a proximity pattern. This response variable (OUT) is
probably the reason that the proximity model fits these data better than the dominance model. The biplot
for the two-dimensional dominance model is shown as Figure B2, where the interpretation for MEAT,
AVOID and RECYCLE closely follows the interpretation given here. The direction of the response
variables is very similar to the positions in Figure 4. The pattern for response variable OUT is different,
now being monotonic and negatively related with environmental efficacy, age, and being female.

4.3. ISSP data: EE
In this second analysis using the ISSP data, we focus on environmental efficacy. The seven items related
to environmental efficacy are:

1 It is just too difficult for someone like me to do much about the environment;
2 I do what is right for the environment, even when it costs more money or takes more time;
3 There are more important things to do in life than protect the environment;
4 There is no point in doing what I can for the environment unless others do the same;
5 Many of the claims about environmental threats are exaggerated;
6 I find it hard to know whether the way I live is helpful or harmful to the environment;
7 Environmental problems have a direct effect on my everyday life.

Participants had to indicate on a five-point Likert scale for each of these statements whether they agreed
strongly (coded as 5), agreed (4), are neutral (3), disagreed (2), or disagreed strongly (coded as 1).

For these data, we like to know whether there are differences between participants from different
countries concerning environmental efficacy, controlling for gender, education, and age. Therefore, as
predictor variables we use the 12 zero-one coded dummy variables for the countries, using Thailand as
the reference category (i.e., coded with 12 zeros), a dummy variable for gender where female is coded 1
and therefore male serves as a reference, and both the standardized scores of age and number of years
of education as numeric predictors.

For the analysis of these data, we use the CLRMDU model, a proximity model that is usually
considered a better choice for attitude data. With the above coding of the predictor variables, the
origin of the Euclidean space corresponds to male participants from Thailand having average age and
education.
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We fitted models in 1, 2, and 3 dimensions. The fit statistics are

Dimensionality Deviance npar AIC BIC

1 316,958.57 50 317,058.57 317,444.02

2 313,685.65 71 313,827.65 314,374.99

3 312,597.80 91 312,779.80 313,481.32

showing that the three-dimensional model fits best. For illustrative purposes, the two-dimensional
biplot is shown in Figure 5. The response variables are located from the bottom left (item 1, too difficult)
to top middle (item 2, do right). They lie almost on a curve, where items 5 and 6 (exaggerated and
hard to know) lie close together, indicating similar response tendencies for those two items.

Looking at the predictor side we first note that the origin, where the variable axes for Education and
Age cross represents male participants from Thailand with average age and education. We can see that
Education has a large influence on the positioning of the participants, where participants with a few
years of education are in the top of the biplot and those with many years of education in the bottom.
The variable axis for Age is much shorter, and therefore Age has a smaller effect on the outcomes. The last
control variable is Gender, where we see that the category Female (Fem) is below the origin. Therefore,
comparing female and male participants with the same values for the other predictor variables, the
females are located below male participants and therefore closer to the items at the bottom of the
configuration. The countries partition in two clusters, with on the right hand side of the biplot the
Asian countries Japan, the Philippines, Taiwan, and Thailand and on the left hand side a cluster of
Hungary, Russia, New Zealand, Island, Slovenia, Switzerland, Austria, Germany, and Finland. Austria
and Germany are very close to each other, meaning that responses in these two countries follow a similar
pattern. Russia and Hungary are close together and positioned more in the top of the biplot, further away
from the response variables more important, exaggerated, hard to know, and too difficult, indicating
lower probabilities of agreement with these items compared to participants from other countries.

Now, let us look in more detail at two biplots where we included the circles representing the
classification regions for items 4 (“There is no point in doing what I can for the environment unless
others do the same”) and 7 (“Environmental problems have a direct effect on my everyday life”).
The biplots are shown in Figure 6. For item 4, we see that the cluster of Asian countries on the left
disagrees (all participants from Taiwan and most participants from the Philippines) or is neutral (most
participants from Thailand and the higher educated and elderly in Japan).

Participants from the other countries mainly agree with this statement, because their position is
within the neutral ∣ agree (i.e., 3∣4) circle. An exception are participants from Russia and Hungary with
low scores on education, who tend to be neutral.

Inspecting the biplot with classification regions for item 7, we can conclude that only participants
from Finland with average age and education tend to agree with this item. Most participants from the
Asian countries tend to disagree (except participants from Thailand), while most participants from the
other countries tend to be neutral toward this item. It seems that especially Age has an influence on this
response variable as elderly people from the Asian countries have larger probabilities to agree, while
the younger people from the other cluster have higher probabilities to agree (i.e., they are closer to the
position of the item).
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Figure 5. Estimated configuration for environmental efficacy data.
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Figure 6. Estimated configuration for environmental efficacy data with decision regions for Item 4 (a) and Item 7 (b).

5. Simulation studies

5.1. Parameter recovery
We conducted a simulation study to verify whether the algorithms work properly. Therefore, we use the
estimated parameters from the second example, described in Section 4.2, as the basis for the population
values. In that example, the number of response variables R equals 4, the number of predictor variables
P equals 5. The population model has two dimensions (S = 2).

In the data generation process, we start drawing predictor variables from the multivariate normal
distribution with mean zero and covariance matrix equal to the correlation matrix of the predictors in
Section 4.2 (see Appendix C for values). The predictor variables and the population matrix B define U .
With these coordinates and the matrix V , values on the latent variables (i.e., the θir ’s) can be computed.
For the dominance models we use the inner product (θir = ⟨B′xi,vr⟩), while for the proximity models we
use the distances (θir = −d(B′xi,vr)). With these values and the threshold parameters, probabilities of
the response categories for each of the response variables can be obtained. We draw observed outcome
variables for each response variable independently from the multinomial distribution.

We vary sample size with values 250, 500, and 1,000. We also vary whether the response variables
have three or five categories (threshold values can be found in Appendix C) and we manipulate the
number of response variables, to be equal to 4 or 8. Note that in the empirical example there are four
response variables. For the condition with eight response variables, we created four others by simply
rotating V by 45o and adding the obtained coordinates to the matrix (see Appendix C for population
values).

Finally, to verify whether the recovery is sensitive to the distribution of the predictor variables, we
changed the distribution of the predictor variables into a uniform distribution and we categorized the
predictor variables into five-point Likert scales. We used a full factorial 3× 3× 2× 2 design, with 200
replications per condition. The simulation is done separately for CLRRR and CLRMDU.
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Figure 7. Simulation results for cumulative logistic reduced rank regression.

Note: R denotes the number of response variables, C the number of response categories per response variable. The three columns show

different distributions for the predictor variables (normal, uniform, Likert). On the horizontal axis we show the different sample sizes, while

on the vertical axes, the value of recovery is found where lower values represent better recovery.

As outcome variable we take the following measure of recovery:

δ =
�
��∑i∑r(θir − θ̂ir)2

∑i∑r θ̂2
ir

,

where θ̂ir = ⟨B̂′xi,v̂r⟩ for the dominance model and θ̂ir = −d(B̂′xi,v̂r) for the proximity model. This
measure resembles the Stress-1 value that is often used in multidimensional scaling and unfolding. The
benefit of this measure over, for example, looking at the recovery of B or V is that we do not need to
take into account any reflection, rotation, or other transformations to overcome indeterminacies. We
like to point out that the measure δ is not necessarily comparable between the dominance and proximity
perspective as for the proximity models the values of θir are all negative, while for the dominance models
they can be both positive and negative.

The results of our simulation studies are presented in Figure 7 for CLRRR and Figure 8 for CLRMDU.
In both cases, we see that recovery is good and that it improves with increasing sample size, number of
response variables (R), and number of response categories (C). The changes for the number of response
variables and the number of response categories are small, but the values of δ become smaller and less
variable. Sample size has a larger influence as is clear from the boxplots. The distribution of the predictor
variables has hardly any influence on the recovery.

Comparing the recovery of the dominance (Figure 7) with the proximity model (Figure 8), we see that
the recovery for the dominance model is slightly better, that is, the values are lower and the variability
is smaller. One reason might be that the proximity model sometimes ended in a local optimum as we
did not use multiple starting values but simply used the population values as starting point.
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Figure 8. Simulation results for cumulative logistic restricted multidimensional unfolding.

Note: R denotes the number of response variables, C the number of response categories per response variable. The three columns show

different distributions for the predictor variables (normal, uniform, Likert). On the horizontal axis we show the different sample sizes, while

on the vertical axes, the value of recovery is found where lower values represent better recovery.

5.2. Dimension selection
Another aspect of our modeling framework is the choice of dimensionality. In this article, we use
information criteria for this choice. We conducted a small simulation study to illustrate the behavior
of the AIC and BIC for CLRRR and CLRMDU.

We use the same settings as in the previous simulation study, where we only use the normally
distributed predictor variables. So, we vary the number of response variables (4 or 8), the number of
response classes per response variable (3 or 5), and the sample size (250, 500, or 1,000). We generated
data sets with two dimensions and subsequently fitted models with one, two, and three dimensions. In
each condition, we repeated this procedure 200 times and counted the number of times the information
criteria select a certain dimensionality. The simulations were done separately for the two types of models.
The results are shown in Table 2.

Inspecting the results for CLRRR, we see that the AIC only selects two and three-dimensional models,
while the BIC only selects one or two-dimensional models. The AIC is insensitive to the sample size, that
is, the number of times the three-dimensional solution is chosen does not vary much. The number of
response variables or response categories does not seem to influence the selection. For BIC, the sample
size matters. In small samples it tends to more often select the one-dimensional solution, especially with
four response variables. In larger samples the correct dimensionality is chosen.

For CLRMDU the information criteria show different patterns. The AIC often selects the correct
dimensionality. When the number of response variables and response categories are small and also
the sample size is small it might select the one-dimensional solution. The BIC tends to select the one-
dimensional model especially for the smaller data sets.
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Table 2. Results of simulation studies for dimension selection

CLRRR CLRMDU

AIC BIC AIC BIC

C R N 1 2 3 1 2 3 1 2 3 1 2 3

3 4 250 0 178 22 90 110 0 83 104 13 200 0 0

3 4 500 0 170 30 5 195 0 27 150 23 198 2 0

3 4 1,000 0 173 27 0 200 0 3 179 18 172 28 0

3 8 250 0 180 20 45 155 0 32 141 27 199 1 0

3 8 500 0 168 32 0 200 0 2 183 15 175 25 0

3 8 1,000 0 174 26 0 200 0 0 188 12 22 178 0

5 4 250 0 179 21 79 121 0 47 139 14 200 0 0

5 4 500 0 175 25 3 197 0 12 167 21 188 12 0

5 4 1,000 0 168 32 0 200 0 0 182 18 91 109 0

5 8 250 0 170 30 35 165 0 6 178 16 188 12 0

5 8 500 0 175 25 0 200 0 0 185 15 111 89 0

5 8 1,000 0 173 27 0 200 0 0 189 11 3 197 0

Note: Numbers indicate how often a certain dimensionality is chosen by either the AIC or BIC out of 200 replications. C represents the number
of response categories; R represents the number of response variables; N the sample size. The numbers 1, 2, and 3 beneath either AIC or BIC
represent the selected dimensionalities. There are six columns for cumulative logistic reduced rank regression (CLRRR) and six for cumulative
logistic restricted multidimensional unfolding (CLRMDU).

6. Conclusion and discussion

6.1. Summary of obtained results
In this manuscript, we proposed a novel framework for multidimensional analysis of ordinal data in a
cumulative logistic framework. Logistic regression models are the usual models of choice when the
response variable is categorical. For an ordinal response variable, the cumulative logistic regression
model, also known as the proportional odds regression model, is a typical analysis model often used
in practice. We developed cumulative logistic models for multiple ordinal response variables. Biplot
and triplot representations of the results of these models were proposed and in the empirical examples
the biplots were interpreted in detail.

We distinguished between models for proximity and dominance items. For proximity items, distance
representations based on MDU are used, whereas for dominance items inner product representations
based on principal components are used. The dominance models are most useful for cognitive response
variables, whereas the proximity models are most useful for behavioural and attitude response variables.
It is important to note that coding of the ordinal response variables matters for the proximity models.
Say, we have an ordinal variable with four categories: always, often, sometimes, and never. Coding the
four categories as 4, 3, 2, and 1, respectively, leads to different results than with the reverse coding 1, 2, 3,
and 4. In contrast, for the dominance model reverse coding leads to the same solution, where only the
sign of the coefficients change, but the fit remains the same.

When predictor variables are available for the participants, restricted versions of both types of models
are obtained, leading to RRR and RMDU.

For maximum likelihood estimation, an EMM algorithm was developed and tested. In a simulation
study, we tested the performance of the algorithm and we showed that overall the recovery is good. In
more detail, the recovery increases with sample size, more response variables, and increasing number
of response categories.
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Generally, the framework gives the opportunity to analyze complex data sets having ordinal response
variables with dimension reduction techniques. The response variables do not need to be indicators of
underlying constructs as in psychological scales but simply may be a number of related questions on a
given topic.

6.2. Discussion
6.2.1. Model selection
When applying the proposed models to empirical data, a researcher needs to select an optimal model.
Model selection in the framework consists of finding an optimal dimensionality and finding an optimal
set of predictor variables. Although we estimate the models by maximum likelihood this does not
ensure typical likelihood based statistics can be used as we discussed in Section 2.2. Overall, our
multidimensional models can best be considered in the bias-variance trade off framework, where
reducing the dimensionality increases the bias but reduces the variance and vice versa. The optimal
model finds the sweet spot where the sum of squared bias and variance is minimized. We suggested
to use information criteria for this purpose, but of course other statistics can be used, such a cross-
validation or R2-type of statistics.

For the information criteria the number of parameters is needed for which we simply use the total
number of parameters minus the number of indeterminacies (see Section 2.2). Mukherjee et al. (2015)
showed, in the context of linear reduced rank models, that these numbers are naive estimates and better
estimates are available. This theory, however, is not yet extended to other type of multidimensional
models, such as models for ordinal response variables or distance models.

Furthermore, we suggested to first select the dimensionality and thereafter the set of predictor
variables that effect the responses. Such a step-wise procedure does not guarantee that the optimal model
is found. Ideally, all models with subsets of predictor variables are fitted in all dimensionalities and the
best model is selected. Such an approach might become computationally very expensive. The step-wise
procedure keeps the procedure simple but does not guarantee an optimal final model. More research is
needed on model selection for the proposed methods.

From the visualization perspective, it is also possible to use an alternative narrative for model
selection. Obviously, visualization of the results of our models is easiest when the dimensionality equals
two. In that regard, one may always tend to favor the two-dimensional. The two-dimensional model
is therefore the default. In our cumulative logistic multidimensional data analysis methods we simply
use two dimensions unless that leads to a too large information loss. The only purpose of computing
statistics like the AIC and BIC for various dimensionalities is then to verify that the information loss is
not too large. What “too large” exactly means is, of course, debatable.

6.2.2. Proportional odds assumption
In our multidimensional models a proportional odds assumption is made, as discussed in Section 2.1.
It is not easy to test the validity of this assumption within our modeling approach. One approach would
be to fit different models that do not make this assumption and compare the fit of the two models. For
the CLPCA model, we could compare against multinomial multiple correspondence analysis (MMCA;
Groenen & Josse, 2016). For CLRRR we could compare to a constraint version of MMCA (which
first needs to be developed). Such comparisons are related to the score test for the proportional odds
assumption (Agresti, 2002, Section 7.2) that tests whether the effects are the same for each cumulative
logit against the alternative of separate effects. If the fit of the MMCA models is much better this is
an indication of a violation of the proportional odds assumption for one or more response variables.
For which response variable the assumption is violated then needs further investigation. An alternative
applicable for CLRRR is to apply the score test for each response variable separately when fitting R
different models. When none of these tests suggest a rejection of the null hypothesis, we can safely
conclude that the assumption is also valid for the multivariate model. When one of the tests rejects
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the null hypothesis, we directly know for which response variable the proportional odds assumption is
false. For the distance models (CLMDU and CLRMDU) validating the proportional odds assumption
is more difficult. We could, for instance, develop new models that combine the cumulative logit
models developed here with multinomial restricted unfolding (De Rooij & Busing, 2024), a distance
model for nominal variables, and investigate whether such a new model signals violations of the
assumption. Further work is needed to find ways to verify this assumption within the framework
presented.

On the other hand, Harrell (2001) points out that we should not worry too much about the
proportional odds assumption. Rank order based statistics such as the Wilcoxon test and the Kruskal–
Wallis tests are special cases of the proportional odds regression model. Furthermore, rank order
correlations are closely related to the proportional odds model. It seems best to place our models in
a bias-variance trade-off perspective. The proportional odds assumption might not be valid for some
response variables leading to biased results. However, adding parameters to avoid the assumption
might lead to more variance and, when the extra variance exceeds the bias, lead to worse model
performance.

6.2.3. Further constraints
Sometimes, a priori information is available about which response variables group together on specific
dimensions. This would entail that elements of the matrix V are set to zero. Similar constraints could, in
theory, be imposed on the matrix B, specifying that some predictor variables are connected to specific
dimensions. At the moment it is not possible to use such information in the analysis. Further research
is needed to incorporate such knowledge.

In our framework, we focused on predictor variables describing the participants. In some situations,
external information about the items might be available. In our analysis, we could add constraints on the
matrices V to include such information. Further research and programming is needed to incorporate
such constraints.

6.3. Relationship to item response theory / item factor analysis
Before we conclude this article, we like to point out some relationships between our framework
and item response models. Item response models have been primarily developed in the context of
construction and evaluation of educational tests. To make some connections, let us start with the origins
of latent variable models. For continuous response variables, there are two methods for extracting
latent components from a data set: PCA and exploratory factor analysis. PCA is a general information
reduction technique used in many scientific disciplines. In applied psychometrics, it is often used to
extract underlying dimensions or components. PCA extracts components that explain as much variance
as possible from the observed variables. In PCA, no assumption is made on the error terms, the only
goal is to minimize the sum of squared errors. Factor analysis also extract components that explain
as much variance of the observed variables, but the assumption is made that, given the component or
latent variable, the errors are uncorrelated. This assumption is usually called the local independence
assumption. As a consequence, the error terms are often called unique factors.

Both factor analysis and PCA have been generalized to the case of binary variables. Factor analysis
for binary variables is often called item factor analysis. Takane & De Leeuw (1987) show that item factor
analysis and item response models are equivalent. As discussed in the introduction, PCA has also been
generalized for binary variables (De Leeuw, 2006; Landgraf & Lee, 2020; Schein et al., 2003). In these
generalizations of PCA, implicitly the assumption of local independence is made, because in the log-
likelihood function the contributions of the different response variables is summed. Therefore, it is not
difficult to show that PCA for binary variables and item factor analysis or item response models for
binary variables are equivalent as well.

Different estimation methods have been proposed for item response models (for an overview see
Tuerlinckx et al., 2006), such as marginal maximum likelihood and joint maximum likelihood. In
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marginal maximum likelihood estimation a distribution is assumed for the person parameters (i.e.,
the parameters that we call ui in this manuscript) and the item parameters (in our terms the vr) are
estimated together with the parameters of the distribution, for example, the mean and variance of the
normal distribution. In joint maximum likelihood, the person parameters are treated as fixed effects and
are estimated directly together with the item parameters. In logistic PCA, the person scores are treated
as fixed effects like in joint maximum likelihood. Therefore, despite the different origins, the models are
very similar or equivalent.

Both item factor analysis and item response models have been developed for ordinal data. Samejima’s
Graded Response Model (Samejima, 1969) is an example of a unidimensional item response model for
ordinal variables. This GRM is equivalent to our CLPCA in one dimension. Multidimensional item
factor or item response models (Reckase, 2009, Section 4.1.2) have been proposed in the literature that
resemble our unsupervised principal component models, such as the multidimensional GRM.

In this article, we also developed supervised methods, in which predictor variables are used to explain
the response variables. The cumulative logistic reduced rank model is such a model. Also in the item
response model framework models have been proposed to include such person predictors (De Boeck
& Wilson, 2004). In that book, Tuerlinckx & Wang (2004) proposed an explanatory variant of the
unidimensional GRM for ordinal responses. Although De Boeck & Wilson (2004) lay out a general
framework of explanatory item response models, advances for multidimensional ordinal data have been
limited. Our supervised model for dominance items provides a multidimensional explanatory model for
ordinal response variables.

Proximity item response models with a single-peaked response function have also been proposed
and investigated. The best known model for ordinal data is the generalized graded unfolding model
(GGUM; Roberts et al., 2000). The model definition of GGUM is quite involved, defined by two GRMs,
one “from below” and one “from above.” The GGUM is a unidimensional model, no multidimensional
generalizations have been proposed so far, although recently an R-package for estimation of such
multidimensional models has been proposed (Tu et al., 2021). Also, recently some explanatory versions,
including predictors for the observations have been proposed by Usami (2011) and Joo et al. (2022). Our
(restricted) MDU models are similar to these single peaked item response models. Our model definition
is, however, much simpler. More research is needed on the comparison of the two models.

For PCA, reduced rank models, and multidimensional scaling and unfolding models biplot visu-
alizations are quite common. In contrast, biplot visualizations are quite uncommon in item response
modeling. Sporadically, one sees multidimensional maps, for example, in the latent space item response
model to detect item-respondents interactions (Jeon et al., 2021). The type of maps we propose in
this article, might be valuable tools for (explanatory) item response modeling as well, especially for
multidimensional item response modeling.

In conclusion, the framework of item response models is in some respects similar to what we
proposed in this article. Although the origins of PCA and (item) factor analysis/item response theory are
quite different, for categorical response variables the two approaches become similar. The focus of the
two approaches, however, still differ. Item response models are usually targeted toward optimal latent
trait estimation in educational or psychological measurement. Often, a priori knowledge is available on
the traits under investigation, such as the dimensionality. External information (i.e., predictor variables)
is used to address sub-population heterogeneity or to increase estimation accuracy. The goals of our
analysis framework is more toward dimension reduction to obtain insight into the structure of the
response variables or, when predictor variables are available, to develop simultaneous regression models
for the response variables in a reduced dimensional space.

6.4. Software
In conclusion, in this article we proposed a family of models for multidimensional analysis of multiple
ordinal response variables. The framework contains four different models. We distinguished between
models for dominance variables and proximity variables. Within each we distinguished models with
and without predictor variables. Algorithms for all methods proposed in this article are implemented in
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the R software. The logistic mapping package (De Rooij et al., 2024) contains the functions clpca and
clmdu and corresponding plotting function that can be used for the analyses described in this article.

Data availability statement. The data used in this study is available from GESIS (ISSP Research Group, 2022), see
https://www.gesis.org/en/issp/modules/issp-modules-by-topic/environment/2020
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Appendix A: Statistics for student data

We use different labels for the response variables than the authors in Fabbricatore et al. (2024) use. Here is a table relating our
labels (left column) to the names shown in their paper (center column) and the actual question for the students:

A1a T1_ClassVa_A Select the type of variable that best describes the gross annual income

A1b T1_GraphForQuant_A Find the error in a graph representing the distribution of a continuous variable

(i.e., waiting time in minutes)

A1c T1_Median_A Calculate the median of individual series data

A1d T1_ArithmeticMean_A Calculate the overall weighted arithmetic mean given the mean of three groups

of individuals with different class sizes

A1g T1_SkewnessNKurtosis_A Calculate the Hotelling–Solomon skewness coefficient

A2a T2_SamplingSpace_A Calculate the size of the sample space if one coin and two six-sided dice are

tossed together at the same time

A2c T2_ConditionalProb_A Calculate the conditional probability, given the marginal probabilities and the

joint probability

A2d T2_Bernoulli_A Calculate the variance of a Bernoulli trial given the probability of success

A2g T2_Gaussian_A Calculate probability for normally distributed data

A2i T2_SamplingVariance_A Determine the sample size using the formula derived from the corrected sample

variance

The model selection procedure is summarized using Table A1.
The implied coefficients (BV′) are shown in Table A2, and can simply be understood similarly as coefficients in a cumulative

logistic model (proportional odds model).
For comparison the coefficients of 10 separate proportional odds models are shown in Table A3. The model for response

variable A1c did not converge.

Table A1. Fit statistics for the student data

npar Deviance AIC BIC

1 48 2,310.47 2,406.47 2,546.98

2 74 2,250.50 2,398.50 2,615.12

3 98 2,206.37 2,402.37 2,689.24

Age 72 2,251.38 2,395.38 2,606.14

Gender 72 2,255.71 2,399.71 2,610.48

Math 72 2,277.05 2,421.05 2,631.82

Statistical.Anxiety 68 2,253.18 2,389.18 2,588.23

SATS 66 2,271.74 2,403.74 2,596.94

MSLQ 66 2,257.26 2,389.26 2,582.46

APS 72 2,258.28 2,402.28 2,613.04

AMS 72 2,250.55 2,394.55 2,605.31

ENG 68 2,265.35 2,401.35 2,600.40

Note: First three rows show fit statistics of models in one to three dimensions including
the complete set of predictors. The remaining rows show fit statistics of two-dimensional
models leaving out one variable or (set of) scales from the complete set of predictors.npar
denotes the number of parameters.
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Table A2. Implied coefficient from the CLRRR analysis for the student data

A1a A1b A1c A1d A1g A2a A2c A2d A2g A2i

0∣1 −0.85 −2.98 −4.03 −1.38 −2.53 −2.57 −0.88 −2.03 −1.26 −0.92

1∣2 1.22 0.30 −0.45 −0.34 −1.78 −2.07 0.42 −1.79 0.06 1.18

G −0.03 −0.61 −0.19 −0.00 −0.17 −0.68 −0.30 −0.61 0.27 −0.96

PMP 0.05 0.37 0.29 0.38 0.23 0.55 0.27 0.54 0.45 0.47

SATSa 0.02 0.11 0.14 0.23 0.10 0.20 0.11 0.21 0.31 0.11

SATSc 0.01 −0.26 0.05 0.28 0.02 −0.20 −0.06 −0.14 0.56 −0.49

SATSv 0.01 −0.20 0.02 0.17 −0.00 −0.17 −0.06 −0.13 0.36 −0.37

SATSd −0.02 −0.06 −0.13 −0.23 −0.09 −0.14 −0.08 −0.16 −0.34 −0.02

APS 0.00 −0.25 0.00 0.17 −0.02 −0.23 −0.09 −0.18 0.38 −0.45

ENGa 0.01 0.02 0.07 0.13 0.05 0.07 0.04 0.08 0.20 −0.00

ENGb 0.00 0.14 0.03 −0.02 0.03 0.15 0.06 0.13 −0.09 0.23

ENGc −0.01 0.21 −0.06 −0.26 −0.02 0.15 0.05 0.10 −0.51 0.41

deviance 290.18 234.32 206.52 253.97 154.25 162.42 297.50 165.03 245.51 251.71

Note: The last row shows the resulting deviance per response variable.

Table A3. Estimated coefficient from proportional odds models for the student data

A1a A1b A1c A1d A1g A2a A2c A2d A2g A2i

0∣1 −2.79 −4.09 −0.72 −1.59 2.45 1.84 −3.47 4.40 0.36

1∣2 −0.64 −0.74 0.37 −0.82 2.98 3.16 −3.23 5.73 2.48

G 0.00 −1.09 −0.12 −1.11 −0.99 0.01 −0.22 0.16 −0.86

PMP −0.03 0.06 0.09 −0.03 0.12 0.05 0.12 0.08 0.09

SATSa 0.03 0.01 −0.01 0.05 −0.00 0.02 0.06 0.05 0.01

SATSc 0.04 −0.04 0.10 0.03 −0.10 −0.01 0.03 0.06 −0.07

SATSv −0.02 −0.06 0.03 −0.02 0.03 0.03 −0.07 0.05 −0.04

SATSd −0.09 0.01 −0.10 −0.04 0.03 −0.03 −0.09 −0.03 −0.01

APS −0.07 −0.36 0.10 0.40 −0.05 −0.21 −0.49 0.53 −0.56

ENGa 0.34 0.53 0.19 −0.10 −0.01 −0.28 0.05 0.31 −0.10

ENGb −0.12 −0.03 −0.73 0.70 0.86 0.09 0.09 −0.00 0.19

ENGc −0.26 0.19 −0.31 −0.20 0.13 0.46 −0.23 −0.84 1.07

deviance 283.48 229.77 244.87 147.89 156.40 293.64 158.82 243.60 250.75

Note: The last row shows the resulting deviance per response variable.
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Appendix B: Pro-environment behavior

The biplots for the cumulative logistic restricted multidimensional unfolding analysis including the circles for each of the
response variables is shown in Figure B1.

The biplot for the cumulative logistic reduced rank model is shown in Figure B2.
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Figure B1. Biplot for the cumulative logistic restricted multidimensinal unfolding solution relating environmental attitudes with pro-

environmental behavior.
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Figure B2. Biplot for the cumulative logistic reduced rank model relating environmental attitudes with pro-environmental behavior.
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Appendix C: Population parameters for simulation studies

The predictor variables are sampled from a multivariate normal distribution with zero means and covariance matrix

X1 X2 X3 X4 X5

X1 1.00 0.01 −0.02 0.01 0.04

X2 0.01 1.00 −0.59 0.19 0.16

X3 −0.02 −0.59 1.00 −0.00 −0.00

X4 0.01 0.19 −0.00 1.00 0.25

X5 0.04 0.16 −0.00 0.25 1.00

The matrix with population coefficients B equals the estimated coefficients from the example in Section 4.2, that is,

1 2

X1 −0.16 0.19

X2 −0.37 0.04

X3 −0.17 0.19

X4 −0.40 −0.17

X5 −0.28 0.12

The population matrix V equals

1 2

Y1 0.44 −0.45

Y2 0.34 2.35

Y3 −1.68 0.05

Y4 −1.55 0.08

Y5 −0.16 −0.61

Y6 2.18 0.94

Y7 −0.84 1.45

Y8 −0.74 1.36

where we use only the first four rows when R = 4 and the complete matrix when R = 8
The parameters m are equal for the different response variables. The threshold values in case of three categories are −1.0

and −0.5, while the values with five response categories are −2.0, −1.5, −1.0, and −0.5.
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