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Interfacial boundary conditions determined from empirical or ad hoc models remain
the standard approach to model fluid flows over porous media, even in situations
where the topology of the porous medium is known. We propose a non-empirical
and accurate method to compute the effective boundary conditions at the interface
between a porous surface and an overlying flow. Using a multiscale expansion
(homogenization) approach, we derive a tensorial generalized version of the empirical
condition suggested by Beavers & Joseph (J. Fluid Mech., vol. 30 (01), 1967,
pp. 197–207). The components of the tensors determining the effective slip velocity
at the interface are obtained by solving a set of Stokes equations in a small
computational domain near the interface containing both free flow and porous medium.
Using the lid-driven cavity flow with a porous bed, we demonstrate that the derived
boundary condition is accurate and robust by comparing an effective model to direct
numerical simulations. Finally, we provide an open source code that solves the
microscale problems and computes the velocity boundary condition without free
parameters over any porous bed.
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1. Introduction

Surfaces found in nature are generally non-smooth with complex hierarchical
structural features (Liu & Jiang 2011). The purposes of these surfaces vary
greatly, ranging from camouflage and insulation to less obvious functions, such as
passively interacting with surrounding fluid to reduce drag or noise (Abdulbari et al.
2013). These functions manifest as effective macroscale properties – for example,
permeability, elasticity, slip and optical transparency – while their origin is the
small-scale features of the surface. Therefore, to understand the hydrodynamic
function of such complex surfaces, a systematic multiscale approach is required.
In a bottom-up strategy, the microscale fluid–structure physics of the coating material
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Boundary conditions at interface between free fluid and a porous medium 867

is analysed first; the effective porosity, elasticity or slip are then induced naturally by
upscaling the microscale features.

Volume-averaging and homogenization techniques (Davit et al. 2013) enable a
bottom-up strategy by deriving the effective equations governing the macroscale
coating dynamics, which contains parameters arising from microscale features.
Whereas these techniques are routinely applied for homogeneous materials (e.g.
the interior of a material), their application to inhomogeneous regions (e.g. near
interfaces) has not reached the same level of maturity. One example, which is also
the focus of the present work, is the interface between an overlying flow and a
rigid porous surface. Recent works (Ochoa-Tapia & Whitaker 1995; Mikelić &
Jäger 2000; Auriault 2010a; Minale 2014) have treated the inhomogeneous interface
problem theoretically with upscaling techniques. Ochoa-Tapia & Whitaker (1995)
used a volume-averaging technique to derive a shear-stress jump condition. Later
on, Valdés-Parada et al. (2013) used the same technique to analyse both stress and
velocity jump across the interface. Interestingly, they identified a fixed location of
the interface that yields best results when imposing a velocity jump. This is in
contrast to both the theoretical findings by Marciniak-Czochra & Mikelić (2012)
and the numerical results presented in this paper, which show that the accuracy
of the velocity jump condition is independent of the interface location. Recently,
Minale (2014) rederived the boundary conditions of Ochoa-Tapia & Whitaker (1995),
elucidating how the stress from the free fluid is partitioned between the porous
skeleton and the porous flow.

Volume-averaging techniques induce closure problems that need to be resolved
using scale estimates. Homogenization techniques, on the other hand, begin with
scale estimates and an expansion in small parameter ε = l/H, defining the scale
separation between microscale l and macroscale H. With a homogenization approach,
one obtains equations at different orders of ε and a decoupling of different quantities
and thus also simpler closure problems. Mikelić & Jäger (2000) used homogenization
and the method of matched asymptotic expansions to show that the Saffman (1971)
version of the empirical boundary condition by Beavers & Joseph (1967) (called
the BJ condition hereafter) is mathematically justified and its slip parameter can be
computed by solving microscale problems in an interface unit cell. Auriault (2010a)
also used a homogenization technique to derive a BJ type of boundary condition
valid for pressure-driven flows; he obtained however the condition at a different
order compared to Mikelić & Jäger (2000), as seen in the discussions by Jäger &
Mikelić (2010) and Auriault (2010b). More recently, Carraro et al. (2015) repeated
the procedure of Mikelić & Jäger (2000) to determine the boundary condition of the
penetration (wall-normal) velocity component.

The boundary conditions derived using upscaling techniques have remained at a
proof-of-concept level and only demonstrated on canonical one-dimensional flows. The
theoretical progress has not yet resulted in a method that can, in a straightforward
manner, be applied by practitioners and engineers. The reason is to some extent
the non-trivial mathematical aspects – such as closure problems. Another reason is
that the focus has been on mathematically justifying empirical boundary conditions,
rather than presenting a step-by-step method for computing interfacial conditions.
Therefore, investigations of practical interest of flows over porous media continue
using empirical conditions or conditions with free unknown parameters (Han, Ganatos
& Weinbaum 2005; Le Bars & Worster 2006; Rosti, Cortelezzi & Quadrio 2015;
Zampogna & Bottaro 2016). Although these conditions provide physical models of
the flow over porous media, they are based on lumping all unknown effects into few
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scalar parameters. This approach requires the support of empirical data (Zampogna
& Bottaro 2016) or extensive computations to cover a large interval of parameters
(Rosti et al. 2015).

In this work, we provide practitioners the framework to compute accurate interfacial
velocity boundary conditions, instead of empirically determining them. We derive the
interface boundary condition for slip velocity using homogenization and present
the relevant Stokes equations to be solved in a microscale interface unit cell. Our
main contribution is to provide a set of simple and numerically feasible microscale
problems, which once solved, allows for a robust non-empirical effective interface
condition. Our interface condition can be considered as a generalized version of the
BJ condition, since it depends on interface permeability tensor and on the interface
velocity strain rate tensor.

This paper is organised as follows. In § 2, using the lid-driven cavity with a porous
bed as an example, we compare the velocity field computed from a direct numerical
simulation to the field obtained by solving the homogenized (averaged) equations with
the interface condition that is proposed in this paper. After that, in §§ 3–5, we derive
the interface boundary condition. More specifically, in § 3 we decompose the physical
domain into a porous part and free-fluid part and define an interface between the two
domains. We then introduce the equations governing the microscale fluid flow in each
part as well as their coupling through continuity of velocity and stress at the interface.
In § 4, we use multiscale expansion to derive the relevant Stokes equations to be
solved in a microscale interface unit cell in order determine the effective boundary
condition. In § 5 we derive the interface conditions by employing a homogenization
(averaging) technique and relate the obtained results back to the example presented in
§ 2. Finally, in § 6, we conclude the paper.

2. Direct numerical simulations versus continuum model

The purpose of this section is to compare two approaches to describe the flow in
a lid-driven cavity with a homogenous bed of solid cylinders. In the first approach,
represented in figure 1(a), we solve the Stokes equations over all spatial scales.
This is possible for simplified geometries such as this one, but clearly for more
complex (possibly three-dimensional) and much denser porous beds it is not feasible
to solve Stokes equations with complete microscale resolution. In the second approach
represented in figure 1(c), we reduce the degrees of freedom of the flow in the porous
bed by homogenization.

The cavity has a length H and a depth of (H+ d), where the porous bed is confined
to −d< y< 0 and −H/2< x<H/2. Coordinate y= 0 corresponds to the tangent plane
of the top row of cylinders and the depth of the porous bed is d≈H/2. The top wall
of the cavity is driven by a constant streamwise velocity Uw, which is sufficiently slow
to render fluid inertia negligible inside the cavity. Figure 1(b) shows the geometry of
the porous bed, which consists of a lattice of cylinders with diameter D = 2r and
with the spacing l. For the particular example discussed in this section, the microscale
length is l/H = 0.1 and the cylinder volume fraction is φ =πr2/l2 = 0.02.

2.1. Direct numerical simulations
The two-dimensional Stokes equations are solved with a no-slip condition imposed at
the cylinder surfaces as well as on the vertical and bottom walls of the cavity. The
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FIGURE 1. Left frame (a) shows the lid-driven cavity domain with a porous bed. The
top wall is driven with velocity Uw. Centre frame (b) shows a magnified view of the
porous bed. Cylinders are spaced apart by distance l and Γc defines the boundary of the
cylinders. Right frame (c) shows a two-domain description of the same cavity problem
in a homogenized setting. The parameters defining the problem are the volume fraction
φ =πr2/l2 = 0.02, scale separation l/H = 0.1 and porous-bed depth of d≈ 0.5H.

equations are given by,

−∇p+µ1u = 0, (2.1)
∇ · u = 0, (2.2)

u = (0, 0) on Γn, Γc, (2.3)
u = (Uw, 0) at y=H, (2.4)

where µ is fluid viscosity, Γn denotes the bottom and side boundaries of the cavity
and Γc denotes the boundary of the cylinders in the porous bed. The computations are
performed with FreeFEM++ (Hecht 2012), using a triangular mesh and a Taylor–Hood
finite element space (P2+P1) for velocity and pressure. We set mesh spacing to 1s1=
0.125l at the outer boundaries (cavity walls) of the domain, and 1s2 = 0.050l at the
surface of the cylinders. We have carried out a simulation of the same configuration
with half the mesh spacing (1s1 = 0.063l and 1s2 = 0.025l), and observed that the
slip velocity changes by 0.6 %.

In figures 2 and 3, we present the velocity profiles obtained from DNS (direct
numerical simulations) with solid black lines. Figure 2 shows the streamwise and wall-
normal velocity profiles for the fixed streamwise position x/H=−0.1. The insets show
the detailed microscale fluctuations of the velocities near the interface and the rapid
transition to the macroscale velocity in the free-fluid region. This transition occurs in
a thin layer near the top row of cylinders.

Figure 3 shows the velocity along x at a virtual free-fluid–porous interface placed
at ys/l= 0.1. If ys would have been an interface with a rigid wall, these graphs would
show the no-slip condition, i.e. zero velocity for both wall-normal and streamwise
velocity components. However, at the interface with a porous medium, there is a slip
velocity us and a penetration velocity vp. The underlying structure of porous medium
manifests as microscale oscillations in slip and penetration velocities. Apart from
the microscale oscillations, we can observe that both velocity components exhibit
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FIGURE 2. (Colour online) Left frame (a) shows the streamwise velocity component,
whereas the right frame (b) shows wall-normal velocity component at x/H =−0.1. Solid
black lines depict direct numerical simulations of the porous cavity problem. Blue lines
with circular markers correspond to the continuum model of the porous bed coupled to
Stokes solver above the bed via interface conditions at ys/H = 0.01 (red dashed line),
which is equivalent to ys/l = 0.1 in pore scale. Insets show velocity profiles near the
interface.
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FIGURE 3. (Colour online) In the top frame (a), we compare slip velocity us prediction
from the continuum model with DNS. The bottom frame (b) compares the penetration
velocity vp between the two approaches. Velocities are sampled at the interface y= ys.

macroscale variations. The negative slip velocity, which is induced by the spanwise
vortex above the interface, has a maximum value us/Uw = −0.0121 at the centre
of the cavity. Although the slip velocity is small compared to the bulk flow, it
may have a significant physical effect on the characteristics of the overlying fluid.
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Boundary conditions at interface between free fluid and a porous medium 871

For example Rosti et al. (2015) recently showed that slip velocities below 3 % had a
significant effect on the flow statistics in a turbulent channel. Additionally, Carotenuto
& Minale (2013) showed that precise predictions of slip velocity can be essential
to get accurate viscosity measurements from rheology tests. The penetration velocity
shows a sinusoidal behaviour; for x< 0, there is a net mass transport from the pore
region to the free-fluid region, whereas for x> 0 the net mass flow is in the opposite
direction. Similarly, the net momentum transport into the porous region is in opposite
directions whether x> 0 or x< 0.

The values of us and vp, which are essential to capture the momentum and
mass transport across the interface, depend both on the flow in the pores and
on the microscale geometry of the pores. In the next section, we introduce a fully
non-empirical method to compute us and vp with an error of O(l/H) without resorting
to DNS of the full domain.

2.2. Simulation of homogenized equations
We start by replacing the full DNS domain with two rectangular domains, where the
free-fluid region Ωf and porous region Ωp are separated by the interface Γ , as shown
in figure 1(c). In the free-fluid part, we do not employ homogenization and therefore
the flow is governed by the Stokes equations

−∇p̂+µ1û = 0, (2.5)
∇ · û = 0, (2.6)

where û and p̂ are flow and pressure fields in Ωf , respectively. Dirichlet conditions
are imposed for û on the vertical side walls and the top wall of the cavity (as for
the full DNS). The boundary condition at the interface Γ in contact with the porous
region is

û= (ûs, v̂p), (2.7)

where the slip velocity and the penetration velocity depend on the flow in the porous
region. In the porous part Ωp, the flow is governed by the well-known Darcy’s law

û=−K
itr

µ
· ∇p̂, (2.8)

and mass conservation
∇ · û= 0, (2.9)

where K
itr

is the interior permeability tensor. It is convenient to combine mass
conservation with Darcy’s law to arrive at a single equation for the pore pressure,

which – assuming that permeability tensor K
itr

is constant over space and isotropic –
reads

1p̂= 0. (2.10)

We complement this equation with homogenous Neumann conditions on the side
walls and the bottom wall, which corresponds to zero transpiration. At the interface
Γ , we impose a Dirichlet condition with the pressure obtained from (2.5)–(2.6). This
continuous pressure condition is valid up to O(l/H) under the theoretical assumptions
employed in this paper, which will be discussed in following sections. Since the
particular porous bed we are investigating is isotropic (see figure 1a,b), the continuity
of pressure at the interface is also implied by works of Marciniak-Czochra & Mikelić
(2012) and Carraro et al. (2013).
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Returning to the velocity boundary conditions (2.7), that are required for solving
Stokes system (2.5)–(2.6), we simply state the conditions of order O(l/H) that will be
derived in the next sections (with the final result in (5.11)). The penetration velocity
component v̂p is given by

v̂p =−Kcyl

µ
∂yp̂−, (2.11)

where Kcyl is the isotropic permeability of the porous medium consisting of a regular
array of circular cylinders. Note that, although pressure is continuous at Γ in our case,
the pressure gradient is not necessarily continuous; ∂yp̂− in (2.11) denotes the pressure
gradient when approaching the interface from the porous bed. The condition for vp
can also be obtained from mass conservation for a thin rectangular control volume
around Γ with periodic streamwise velocity on the vertical sides. The condition for
slip velocity ûs is

ûs =−Ks

µ
∂xp̂− + Ls(∂yû+ ∂xv̂). (2.12)

This expression is similar to the condition obtained empirically by Beavers and
Joseph, except that Ks is the interface permeability (e.g. Ks 6= Kcyl), related to a
semi-permeable transition layer between the porous medium and the free fluid.
Another difference with the BJ condition is that the strain term ∂xv̂ is included in
addition to ∂yû. It has been argued that the term ∂xv̂ should be present for curved
boundaries (Jones 1973), but to the authors’ knowledge, it has not been derived
earlier for flat interfaces, although it has be conjectured to exist by Nield (2009).
The constant Ls is related to the slip length in the Navier boundary condition. The
constants appearing in boundary conditions (2.11)–(2.12) are provided by microscale
simulations in interface cells, described in following sections. In order to provide an
overview of the applicability of the derived boundary conditions, we summarize here
briefly the practical limits that will be determined both theoretically and numerically
in the remaining part of this paper. These limits are; (i) moderate scale separation
l/H 6 0.1; (ii) restriction on the Reynolds number based on the seepage velocity
(Red 6 1); and (iii) restriction on the Reynolds number based on the lid velocity Uw
(Ref 6 ε−1). The corresponding Reynolds numbers are defined later.

We solve the set of equations (2.5)–(2.12) using FreeFEM++ with mesh spacing
1s = 0.125l. Figure 2 (blue curve with circular symbols) compares the obtained
velocity profiles over a vertical slice to the DNS results, where one can observe an
excellent agreement between the two. We note that the effective macroscale behaviour
is captured, while underlying oscillations arising from the small-scale characteristics
of porous bed are not modelled. The consequence of using an O(l/H) accurate model
in the interior (Darcy’s law) is that the diffusion process from the free flow to the
pore flow (which defines the transition layer of height ∼ l) is not captured. However,
from the perspective of the free fluid, the macroscopic effect of the porous bed is
essentially the same using fully resolved DNS and the continuum model. In figure 3(a)
(blue curve with circular symbols), we also observe a good agreement between DNS
and the continuum model for slip velocity over a horizontal slice, despite that the
latter approach does not resolve the microscale dynamics between and around the
cylinders. The model is able to predict the maximum slip velocity at the centre of the
cavity ûs/Uw =−0.0119. Figure 3(b) compares the predicted penetration velocity and
DNS results. There one can observe that, although microscale oscillations dominate
the DNS results, the macroscale sinusoidal behaviour is correctly captured by the
model.
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FIGURE 4. (Colour online) Left frame (a) shows a schematic of a flow over porous
bed with regular cylinders, where an interface Γ between free fluid and porous bed has
been introduced. The dashed rectangular domain corresponds to the interface cell used to
compute the effective macroscale boundary condition. The coordinates and the boundary
conditions imposed for solving cell problems are shown in frames (b) and (c), respectively.

To close this section, we want to point out that the effective problem is
computationally much cheaper than DNS. The number of degrees of freedom used
for the DNS in § 2.1 for the region below the interface is approximately 2.0 × 105,
whereas for the two-domain approach in § 2.2 it is 1.4 × 104. This difference arises
from coarser mesh in the porous region, as well as the reduced number of variables
(the model equation defines pressure only). In more complex and three-dimensional
cases the difference can be significantly larger, and only averaged models might be
computationally feasible to solve numerically.

3. Governing equations and flow decomposition
While the derived effective boundary condition in this paper has been applied to

the steady cavity flow over regular array of cylinders, the boundary condition is more
general and can be applied to more complex three-dimensional flows, as schematically
shown in figure 4(a). We relax the assumptions of a steady and non-inertial flow
in the cavity, and start from incompressible Navier–Stokes equations. The length H
now corresponds to an appropriate macroscopic length scale of the flow, satisfying
ε = l/H� 1.

3.1. Dimensionless Navier–Stokes equations
The free-fluid region and the porous region are characterized by different spatial and
temporal scales. We choose to non-dimensionalize the Navier–Stokes equations using
the characteristic scales of the porous medium. In appendix A, the reader can find
detailed analysis of these scales. The characteristic velocity of the flow in the porous
region Ud is

Ud ∼ l21P
µH

, (3.1)

where 1P is the characteristic macroscopic global pressure, µ is the fluid viscosity
and H and l are the macroscopic and microscopic length scales, respectively.
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Consequently, we use the following relationships between dimensional (denoted
with ‘tilde’) and dimensionless variables

ũi =Udui, p̃=1Pp, x̃i = lxi, and t̃= l
Ud

t. (3.2)

Here, time is non-dimensionalized with the convection time scale at the microscale.
In order to simplify the notation, we use x1 and x, and x2 and y interchangeably. We
may now write the Navier–Stokes equations in the following dimensionless form

ε2Red(∂tui + ujui,j) = −p,i + εui,jj, (3.3)
ui,i = 0, (3.4)

where Red = ρf UdH/µ is the Darcy Reynolds number. The different order of the
scale separation parameter ε in front of the terms provides an estimate of the relative
magnitude of the terms within the porous region; pressure force plays a dominant role
and the inertial force is a higher-order effect. This conclusion holds if Red 6 1, which
is an assumption for the presented approach. Technically, equations (3.3)–(3.4) hold
also in the free-fluid region, although the relative magnitude between the terms is not
anymore characterized by the scale separation parameter; the scaling (3.2), except for
pressure, is not suited for the free flow.

3.2. Decomposition of the flow field
We continue by choosing an interface Γ at a vertical coordinate x2= ys, which divides
the fluid domain into a free-fluid region and a porous region. The accuracy of the
final interface condition does not depend on ys (up to certain limits) as proven by
Marciniak-Czochra & Mikelić (2012). We confirm this statement numerically in the
§ 5.3.

We separate the flow above the interface (domain Ωf ) into a fast flow (Ui, P) and
a perturbation (u+i , p+),

ui =Ui + u+i , p= P+ p+. (3.5)

The terms (u+i , p+) are generated by the porous medium and will – as shown below
– be responsible for the induced slip and penetration velocities. The pressure and the
velocity below the interface (domain Ωp), denoted by

ui = u−i , p= p−, (3.6)

represent the slow flow and the pressure field in the pores. Table 1 summarizes
the introduced quantities in Ωf and Ωp. By inserting the decomposition (3.5) and
the quantities (3.6) into (3.3)–(3.4) and grouping the different terms, the equations
governing the dynamics of the different quantities are obtained.

3.2.1. Fast flow
The global pressure P and the fast flow Ui are governed by the Navier–Stokes

equations with no-slip condition at ys, i.e.

A(Ui, P, ε)= ε2Red(∂tUi +UjUi,j), y > ys, (3.7)
Ui = 0, y= ys. (3.8)
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Boundary conditions at interface between free fluid and a porous medium 875

Quantity Scale Domain Microscale Macroscale Order
dependence dependence

Fast flow Ui Uf Ωf No Yes O(ε−1)

Global pressure P 1P Ωf No Yes O(1)
Velocity perturbation u+i Ud Ωf Yes Yes O(1)
Pressure perturbation p+ 1p Ωf Yes Yes O(ε)
Slow flow u−i Ud Ωp Yes Yes O(1)
Pore pressure p− 1P Ωp Yes Yes O(1)

TABLE 1. List of the defined quantities and their properties. For each dimensionless
quantity we provide the corresponding dimensional scale, domain, illustrate if microscale
and macroscale variations are present and also state the dimensionless order. Appendix A
provides more details and discussion on the scaling.

Here, A is a linear Stokes operator defined by (B 1) in appendix B, where we have
summarized definitions of various operators and tensors. The macroscale pressure
associated with fast flow is assumed to have a magnitude of P̃ ∼ 1P. The fast
velocity Ui has a characteristic free-flow velocity, Ũi ∼ Uf , that is ‘faster’ than the
Darcy velocity scale Ud; we assume

Uf ∼ ε−1Ud. (3.9)

Using the introduced non-dimensionalization (3.2) on the variable estimates, we arrive
at a priori orders of the fast flow velocity and the global pressure

Ui =O(ε−1), P=O(1). (3.10)

The dimensionless fast flow field Ui becomes very large for small ε, whereas the
global pressure in Ωf – either externally imposed as in pressure-driven channel flow
or induced by the fast flow as in lid-driven cavity – is of order one.

Note that the assumption (3.9) is not a universal one, and depends on the bulk
Reynolds number; for example, for Stokes flow Uf ∼ ε−2Ud. Appendix A shows
that (3.9) is obtained, when Ref = ρf HUf /µ ∼ ε−1. This a priori scale estimate
simplifies the multiscale expansion outlined in § 4 and its consequence is of a
theoretical nature; in practice, our derived boundary condition predicts very accurately
the slip and penetration velocity for a wide range of parameters, as we demonstrate
in § 5.3.

3.2.2. Perturbations and slow flow
The perturbations above the interface are governed by

A(u+i , p+, ε)= ε2Red(∂tu+i + u+j u+i,j +Uju+i,j + u+j Ui,j), y > ys, (3.11)

u+i = u−i , y= ys. (3.12)

In order to solve these equations, one has to know the flow below the interface (u−i ).
The pressure and the slow velocity below the interface are governed by

A(u−i , p−, ε)= ε2Red(∂tu−i + u−j u−i,j), y 6 ys, (3.13)

Σu−
ij nj = Σu+

ij nj +ΣU
ij nj, y= ys, (3.14)
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876 U. Lācis and S. Bagheri

where the stress tensors containing u+i , u−i and Ui in (3.14) are defined by (B 7)–
(B 9) in appendix B. Note that the decomposition of the flow introduced in § 3.2 is
exact, since continuity of both velocity (3.12) and total stress (3.14) is imposed at the
interior interface Γ . In other words, if one would sum up (3.7), (3.11), (3.13) and the
boundary conditions (3.8), (3.12), (3.14), the Navier–Stokes equations (3.4) defined in
the full domain would be recovered.

The perturbation terms (u+i ,p+) in Ωf are an effect of the porous medium. Therefore
the perturbation velocity is estimated by the seepage velocity, in dimensional setting
ũ+i ∼ Ud, and the pressure perturbation by the microscale pressure p̃+ ∼ 1p, where
1p is the pressure induced by the seepage velocity, see appendix A. In the current
non-dimensional setting, we have

u+i =O(1), p+ =O(ε). (3.15)

Comparing to (3.10), we observe ‖p+‖� ‖P‖ and ‖u+i ‖� ‖Ui‖ when ε� 1.
The slow velocity below the interface can be estimated as ũ−i ∼ Ud, since it is

reasonable to assume that the flow inside the porous medium has the magnitude of the
Darcy velocity. The pore pressure, on the other hand, can be estimated as p̃− ∼1P,
because the global macroscale pressure is present also in the porous medium. For
dimensionless variables we then have

u−i =O(1), p− =O(1). (3.16)

The dimensional estimates and dimensionless orders of the decomposed quantities are
summarized in table 1.

4. Multiscale expansion
We now turn our attention to the multiscale analysis of the flow near the interface

and construct an approximate description of it within an interface cell (defined below).
To carry out the multiscale expansion, we introduce the macroscale and microscale
coordinates

Xi = x̃i

H
and xi = x̃i

l
, (4.1)

respectively. These coordinates are appropriate to describe the macroscopic and
microscopic variations and are related to each other by Xi = εxi. In the new
coordinates, there are two derivatives appearing due to the chain rule

(),i = (),i1 + ε(),i0, (4.2)

where (),i0 denotes the derivative with respect to Xi and (),i1 with respect to xi.
The fast flow Ui and the global pressure P do not depend on microscale coordinate,

i.e. Ui,j1 = 0 and P,i1 = 0. This is a direct consequence of the definition of fast flow
problem (3.7)–(3.8) and is valid for ε � 1. For u±i and p±, which depend on both
coordinates, we carry out the multiscale expansion as explained by Mei & Vernescu
(2010). The perturbation velocity and the pressure above the interface (y > ys) are
expanded as

u+(Xi, xi) = u+(0)i (Xi, xi)+ εu+(1)i (Xi, xi)+O(ε2), (4.3)
p+(Xi, xi) = εp+(1)(Xi, xi)+ ε2p+(2)(Xi, xi)+O(ε3). (4.4)
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Boundary conditions at interface between free fluid and a porous medium 877

The pressure expansion starts with the O(ε) term, since p+=O(ε). Below the interface
(y 6 ys) the slow flow and the pore pressure are expanded as,

u−(Xi, xi) = u−(0)i (Xi, xi)+ εu−(1)i (Xi, xi)+O(ε2), (4.5)
p−(Xi, xi) = p−(0)(Xi, xi)+ εp−(1)(Xi, xi)+O(ε2). (4.6)

We insert expansions (4.3)–(4.6) into the corresponding equations (3.11)–(3.14), and
collect the terms at different orders. In the following subsections, we introduce and
solve equation systems appearing at first two orders (O(1) and O(ε)).

4.1. O(1) equation and its analytical solution in an interface cell
Collecting the terms with prefactor 1, we get the following system

p−(0)ni = Pni, y= ys, (4.7)
p−(0),i1 = 0, y 6 ys. (4.8)

We observe that the zeroth-order pressure in the porous region p−(0) is independent
of the microscale coordinate xi. For our purpose, which is to derive the macroscale
effective boundary condition, it is sufficient to solve this equation in an elongated cell
near the vicinity of the interface (figure 4b). The size of this cell

Ωcell = {y1 6 y 6 y2,− 1
2 6 x 6 1

2 } (4.9)

is chosen in such a way to capture only the microscale behaviour near the interface.
Recall that we use x to describe the streamwise coordinate x1 and y to describe the
interface-normal coordinate x2. The solution to (4.7)–(4.8) below the interface in Ωcell
is constant and equal to global pressure P at the interface,

p−(0) = P|ys, y1 6 y 6 ys. (4.10)

We will use this result in § 5.1 to derive a macroscale pressure condition at the
interface.

4.2. O(ε) equation and its computational solution in an interface cell
Next, we collect the first-order terms with prefactor ε, which results in the Stokes
equations for (u±(0)i , p±(1)). Specifically, above the interface, we have

A1(u
+(0)
i , p+(1), 1)= 0, y > ys, (4.11)

where A1 denotes the Stokes operator, which contains derivatives with respect to
microscale xi, as defined in (B 4). Below the interface, we have

A1(u
−(0)
i , p−(1), 1)= p−(0),i0 (Xi), y 6 ys. (4.12)

We observe that the slow flow u−(0)i is forced by the macroscale gradient of the pore
pressure term (p−(0),i0 ). In contrast, above the interface the equation for perturbation
u+(0)i is not driven by a lower-order pressure term; the O(1) pressure above the surface
is P, which is contained in equations for Ui (3.7)–(3.8). The same global macroscale
pressure is driving the fast flow and the slow flow, but whereas this pressure is defined
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as P above the interface, it is obtained as the leading-order expansion term below the
interface. This is a consequence of the fact that the fast flow is not expanded, since
it varies only with macroscale coordinate by definition.

The boundary conditions of O(ε) equations at the interface ys are continuity of
velocity

u−(0)i = u+(0)i , (4.13)

and jump in stress
Σ

u−(1)
ij nj =Σu+(1)

ij nj + Sijnj. (4.14)

Here, Σu±(1)
ij =−p±(1)δij+ (u±(0)i,j1 + u±(0)j,i1 ) is the stress tensor of the perturbation velocity

and the slow velocity, whereas Sij =Ui,j +Uj,i is the strain tensor of the fast flow.
The system of equations (4.11)–(4.14) is solved in the interface cell Ωcell shown

in figure 4(b). To complete the problem formulation, boundary conditions are needed
at the sides of the cell. Due to regularity of the porous structure, we impose periodic
conditions on the sides, as shown in figure 4(c). At the bottom of the cell, we impose
the interior solution, which is

u−(0)i =−K itr
ij p−(0),j0 , y= y1, (4.15)

where K itr
ij is the classical interior permeability field. For the derivation of this

expression and the corresponding microscale problem, the reader is referred to the
book by Mei & Vernescu (2010). From the literature (Mikelić & Jäger 2000; Jäger
& Mikelić 2009; Marciniak-Czochra & Mikelić 2012; Carraro et al. 2013) it is well
known that the interface cell is exposed to a zero-stress condition at the infinity
within the method of matched asymptotic expansion, therefore we impose zero-stress
condition, i.e. Σu+(1)

ij nj = 0, at y= y2.
We may consider the Stokes equations (4.11)–(4.12) and the boundary conditions

(4.13)–(4.15) as one linear problem with four unknowns (u±(0)i , p±(1)). Due to linearity,
we can construct the solutions for the velocity and pressure fields as the superposition
of p−(0),i0 (Xi) and Sij(Xi), i.e.

u±(0)i =−K±ij p−(0),j0 + L±ijkSjk|ys, (4.16)

and
p±(1) =−A±j p−(0),j0 + B±ij Sij|ys . (4.17)

The average of K ij is a tensorial effective Darcy permeability and the average of Lijk
is related to the tensorial version of the Navier-slip coefficient. Similarly, the tensors
Aj and Bij are transfer coefficients from the driving pressure gradient and fluid strain,
respectively, to the perturbation pressure.

4.2.1. Microscale Stokes problems for Darcy term
By inserting the ansatzes (4.16)–(4.17) into (4.11)–(4.15), it follows that the tensors

K±ij and A±i satisfy,

A1(K
+
ik, A+k , 1)= 0, y > ys, (4.18)

A1(K
−
ik, A−k , 1)= −δik, y 6 ys, (4.19)

with boundary conditions at the interface ys given by

K−ik = K+ik, ΣK+
ij nj =ΣK−

ij nj. (4.20)
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FIGURE 5. (Colour online) Solutions of interface problems for the coefficients of the
Darcy term (φ= 0.15 and ys= 0.1). The frames (a–d) from left to right correspond to the
flow fields K 11, K 21, K 12 and K 22. The arrows indicate the direction of the constant unit
volume forcing below the interface (horizontal dashed line). Rightmost frame (e) shows
plane-averaged profiles; the streamwise component provides the interface permeability
(〈K 11〉 = 0.014 above ys), whereas the wall-normal component is constant and corresponds
to the interior permeability (〈K 22〉 = 0.0266).

At the bottom boundary y= y1, we have K−ik =K itr
ik (note that fields K−ik and K itr

ik are not
coinciding, but have the same values at y= y1). The field K±jk represents the jth velocity
component of the kth Stokes problem. Thus to determine every component of K±ij and
A±i , 3 pairs of Stokes problems have to be solved coupled at the interface through
continuity of velocity field and stress. Note that below the interface, the flow is driven
by a unit forcing in one direction at a time. Therefore the physical interpretation of
K i1 for example, is the flow response to forcing in the horizontal direction below the
interface, as shown in figure 5(a,b).

To obtain reliable results, the interface cell needs to extend sufficiently into the free
fluid such that variations of K+ij are small and sufficiently into the porous medium
such that variations of K−ij are periodic. We have investigated different heights of the
interface cell, and have determined that height of 10l (containing 5 cylinders below
the interface) is sufficient. We have computed the K ij and Lijk fields for finer meshes
and found no numerical artefacts nor noticeable modification of the results. Figure 5
shows K±ij fields and corresponding plane-averaged profiles near the tip of the solid
structure for interface location ys = 0.1.

4.2.2. Microscale Stokes problems for Navier-slip term
By inserting the ansatzes (4.16)–(4.17) into (4.11)–(4.15), the following equations

for the tensors L±ijk and B±ij are obtained,

A1(L
+
ikl, B+kl, 1)= 0, y > ys, (4.21)

A1(L
−
ikl, B−kl, 1)= 0, y 6 ys, (4.22)

with boundary conditions at ys given by,

L−ikl = L+ikl, ΣL+
ij nj =ΣL−

ij nj − δiknl. (4.23)

At the bottom boundary y = y1, we have L−ikl = 0. The tensors transferring the stress
of the free fluid to the perturbation velocity require the solution of 9 pairs of coupled
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880 U. Lācis and S. Bagheri

0 0.5–0.5

(a) (b) (c)

0.5

0

 –0.5

 –1.0

 –1.5

1.0

0 0.5–0.5

0.5

0

 –0.5

 –1.0

 –1.5

1.0

0.5

0

 –0.5

 –1.0

 –1.5

1.0

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

–0.005

–0.010

–0.015

–0.020

–0.025

0.010

0.005

0

0.015

0.020

0.025

0 0.10
x x

y

FIGURE 6. (Colour online) Solutions of interface problem for the non-zero component
(Li12) of the Navier-slip term (φ=0.15 and ys=0.1). The left and centre frames correspond
to L112 and L212, respectively. The arrows indicate the direction of the constant unit
boundary forcing at the interface location. Rightmost frame (c) shows plane-averaged
profiles; the streamwise component provides the interface slip length (〈L112〉 = 0.15 above
ys), whereas the average of wall-normal component is zero (i.e. 〈L212〉 = 0), since the
two-dimensional field is antisymmetric with respect to the centre axis.

Stokes problems. The forcing for these equations is at the interface in the form of
a stress condition. For example, the Li12 component is the flow response to a unit
tangential stress at the interface, whereas Li22 is the response to unit normal stress at
the interface. In general, for problems with flat interfaces described in a coordinate
system aligned with the interface, only three pairs of problems are forced.

Returning to our two-dimensional configuration with a flat interface and aligned
coordinate system, Lij1 are unforced problems, leading to trivial solutions for all
components. Out of the forced problems Lij2, the components L122 and L222 are zero
since the forcing is in a constrained direction, i.e. due to mass conservation, the
motion in the vertical direction is zero when the no-slip condition is enforced at
the bottom boundary. We are thus left with only one non-trivial problem (Li12), for
which the flow fields are shown in figure 6, along with corresponding plane-averaged
profiles.

5. Effective interface conditions
This section provides the final forms of the effective boundary conditions by

averaging the microscale solutions provided in the previous section. Since the
interface cell is located at the boundary between the free-fluid and porous regions, the
conditions for the free fluid should be evaluated using the solution above the interface,
while conditions for the porous region should be evaluated using the solution below
the interface. In particular, to solve for the pore pressure Laplace equation (2.10)
below the interface, one needs a boundary condition for the pressure at the interface;
this can be obtained by averaging the O(1)-problem (see § 4.1). To solve the velocity
of the free flow above the interface, one needs a condition for the velocity at the
interface. We recall however that the O(1)-problem given by (4.7)–(4.8) does not
contain velocity. Therefore, one has to investigate solution of the O(ε)-problem (4.16)
to determine a boundary condition for the velocity. This is a consequence of the pore
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velocity viscous term being higher order compared to the pressure gradient term, see
ε prefactors in (3.3).

5.1. Condition for pore pressure
Using decomposition (3.5) and the scaling for pressure perturbation (3.15), we can
write the pressure field above the interface as

p= P+O(ε). (5.1)

Taking the average of the expression above in a microscale volume of size l3 – see
definition (B 17) – above the interface gives,

〈p〉 = P+O(ε). (5.2)

Here, we have no angle brackets around P, since it is independent of the microscale
coordinate. The multiscale expanded pressure field (4.6) below the interface, on the
other hand, is

p− = p−(0) +O(ε), (5.3)

where its volume-averaged form is

〈p−〉 = p−(0) +O(ε). (5.4)

According to solution of the O(1)-problem (4.10), one can state that the pressure
field in the whole interface cell is constant and equal to the macroscale pressure P.
Inserting the solution of the O(1)-problem (4.10) in (5.4) and then equating it to
expression (5.2), we obtain the following at the interface,

〈p−〉 = 〈p〉 +O(ε). (5.5)

For brevity, we denote averaged dimensional quantities with a ‘hat’ (e.g. p̂− =
1P〈p−〉), which gives the pressure interface condition in its final dimensional form,

p̂− = p̂. (5.6)

Working with the chosen estimates (see table 1), one obtains pressure continuity
up to O(ε) for any anisotropic porous bed. We point out that from (4.17), one may
formulate a pressure condition valid to O(ε2). This is however out of the scope for this
work. We note that this result is different compared to works by Marciniak-Czochra
& Mikelić (2012) and Carraro et al. (2013). This is a direct consequence of the
theoretical assumption Ref ∼ ε−1, which leads to the O(1)-problem for pressure being
trivial.

5.2. Velocity boundary condition for free fluid
The solution to the O(ε)-problem (see § 4.2) is obtained numerically by computing K ij
and Lijk. One may then proceed to construct the fully resolved flow field with error
O(ε) near the interface. First, we write the velocity above the interface as

u+i = u+(0)i +O(ε). (5.7)

The macroscale term Ui does not appear in the expression above, because it is constant
in the interface cell and this constant has be zero due to the boundary condition (3.8).
Inserting the above expression into (4.16) gives

u+i =−K+ij p−(0),j0 + L+ijk(Uj,k|ys +Uk,j|ys)+O(ε). (5.8)
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We average out the microscale oscillations by forming the volume average above the
interface,

〈u+i 〉 =−〈K+ij 〉 p−(0),j0 + 〈L+ijk〉 (Uj,k|ys +Uk,j|ys)+O(ε). (5.9)

Here, we have no angle brackets around pressure and velocity gradients since these
quantities are independent of the microscale coordinate.

Now, by inserting the approximations of the velocity strain (C 3) and the pressure
gradient (C 4) – see appendix C – into (5.9), we obtain

〈ui〉 =−Kij
1
ε
〈p−〉,j +Lijk(〈uj〉,k + 〈uk〉,j)+O(ε), (5.10)

where for convenience, we have denoted Kij = 〈K+ij 〉 and Lijk = 〈L+ijk〉. The coefficients
Kij and Lijk are evaluated over l3 cube (l2 in 2D setting) at the top of the finite
interface cell. Finally, we have used that ui =Ui + u+i = u+i at the interface.

In order to return to the boundary conditions (2.11)–(2.12) used for the lid-driven
cavity problem in § 2, we revert the boundary condition to dimensional quantities,

ûi =−
(
Kij

l2

µ

)
p̂−,j + (Lijkl)(ûj,k + ûk,j). (5.11)

The coefficients, based on solutions of the interface cell problems, for the cavity flow
are

Kcyl = l2 K22, Ks = l2 K11 and Ls = lL112. (5.12)

All other components of tensors K ij and Lijk are zero for the porous bed with regular
circular cylinders, and therefore there is no velocity shear term for the penetration
velocity (2.11). Actual values used in § 2 are K11 = 0.0312, K22 = 0.0986 and
L112 = 0.1783.

Equation (5.11) is the final expression of the velocity boundary condition for a
rigid porous bed. It can be used together with Navier–Stokes equations in any domain
of interest, in order to take into account the effects of the porous medium, without
resolving the microscale flow within the porous bed. We emphasize that the ‘minus’
notation for pressure means that the pressure gradient in the boundary condition is
the gradient of the pore pressure. In the final subsection, we test the robustness of
the derived boundary condition by varying solid volume fraction, scale separation
parameter and interface location.

5.3. Accuracy of slip prediction and robustness to interface location
We now return to the example of the lid-driven cavity with a porous bed in order
to illustrate more quantitatively that the proposed boundary condition yields accurate
and robust slip velocity predictions. More specifically, we carry out a parametric study
and report predictions of maximum slip velocity ûs at the centre of the cavity. In
order to do a fair comparison, we surface average the DNS results ūs = 〈us〉S at the
interface. We also assess the contributions from two different terms in the derived
boundary condition (5.11). Table 2 shows that for the range of parameters considered,
the contribution at the interface from the Navier-slip term is always at least an order
of magnitude larger than the contribution from the Darcy term. This is a consequence
of (5.11), where Ks∼ l2 and Ls∼ l, and therefore Ks�Ls for fine microstructures. This
result is in agreement with previous work. It was first suggested by Saffman (1971)
that the Darcy term is of higher order and can be neglected, the same result was
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ys ε φ ûsK/ūs ûsL/ūs (×10−1) ûs/ūs ūs/ūs

0.10

0.02
0.02 1.61× 10−2 9.70 9.87× 10−1 1.0
0.15 8.32× 10−3 9.85 9.94× 10−1 1.0
0.45 7.67× 10−3 9.87 9.95× 10−1 1.0

0.10
0.02 7.02× 10−2 9.36 1.02× 100 1.0
0.15 3.81× 10−2 9.57 1.00× 100 1.0
0.45 3.56× 10−2 9.59 1.00× 100 1.0

0.50

0.02
0.02 2.89× 10−2 9.69 9.99× 10−1 1.0
0.15 2.60× 10−2 9.73 1.00× 100 1.0
0.45 2.55× 10−2 9.74 1.00× 100 1.0

0.10
0.02 1.38× 10−1 9.19 1.06× 100 1.0
0.15 1.29× 10−1 9.19 1.05× 100 1.0
0.45 1.28× 10−1 9.16 1.04× 100 1.0

TABLE 2. Cavity-slip velocity values at maximum predicted by model ûs normalized with
DNS result ūs. The DNS results are plane averaged over a microscale length. Darcy
contribution ûsK = −Ks/µ ∂xp̂− and Navier-slip contribution ûsL = Ls(∂yû + ∂xv̂) are listed
separately.

later rigorously proved by Mikelić & Jäger (2000). One may therefore obtain a good
approximation with only the Navier-slip term, as first suggested by Saffman (1971)
and later rigorously shown by Mikelić & Jäger (2000). Including the Darcy term
however yields – consistently – a smaller error, and therefore also a robust velocity
boundary condition with respect to the interface location and different pore geometries.
Additionally, the Darcy term is the only contribution appearing in the interface-normal
direction, which is essential to capture the momentum transfer from and to the porous
region.

Note that although the Darcy term is much smaller than the Navier-slip term, both
terms appear in the O(ε) equation (see § 4.2). This is a consequence of the estimate
that perturbation velocity is of the same order as the Darcy velocity, i.e. u±i ∼Ud and
that the fast flow velocity scales as (3.9). An alternative approach would be to assume
Uf ∼ ε−2Ud, which would essentially result in three velocity scales to allow for the
slip velocity to be faster than the Darcy flow but slower than the free flow. In such
an approach – which would more sophisticated than the current one – the Darcy term
can appear in higher-order equation than the equation for which the Navier-slip term
appears. Nevertheless, one can observe that our direct numerical simulations are in
good agreement with simulations of the homogenized model despite that we strictly
speaking do not satisfy (3.9) for Stokes flow. Thus our method can be considered
as practical parameter-free framework for computing the coefficients of a generalized
condition proposed by Beavers and Joseph; a condition which has been employed
under a variety of different flow conditions by experimentalists. To sum up, we
have theoretically assumed that (i) ε� 1; (ii) Red 6 1 and (iii) Ref ∼ ε−1. Based on
numerical tests in this section for Ref = 0 and up to ε = 0.1, we have determined the
practical limits of the derived interface condition by relaxing conditions (i) and (iii),
as summarized in § 2.2.

6. Conclusions
We have presented a framework to construct a reduced homogenized model of the

flow above and through a porous medium consisting of regular solid structures of
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general shape. The main contribution of the present paper is to provide the foundation
and the tools to compute effective boundary conditions completely free from data
fitting. The approach that we adopted can be summarized by the following four
steps. First, the governing equations are made non-dimensional using scale estimates
arising from flow in the porous domain. Second, the governing equations describing
the fully resolved flow are separated at a virtual interface, and decomposed above
the interface into equations for the fast flow and for perturbations. Third, multiscale
expansion according to Mei & Vernescu (2010) is employed on perturbation and
pore equations. Finally and after solving O(1)- and O(ε)-problems, we construct the
interface conditions for pore pressure and fluid velocity using volume averages.

This procedure results in macroscopic description of the flow over a porous domain
with an error O(ε). Specifically, using our a priori scaling estimates, the leading-order
conditions are a pressure continuity condition and a generalized tensorial BJ boundary
condition. The proposed velocity condition depends on the interface permeability
and on the velocity strain, while the BJ condition contains interior permeability and
velocity derivative of one component in one direction only. To the authors’ knowledge,
such a general formulation has not been derived and validated before. Moreover, in
order to obtain the constants of the effective boundary conditions, we derive a
number of Stokes problems that need be solved numerically in small interface unit
cells. Solvers for microscale problems have been released as an open source software
(Lācis & Bagheri 2016), along with the solver used for the lid-driven cavity flow.

This work is also among the first to validate non-empirical boundary conditions
on two-dimensional flows with DNS, where penetration velocity, slip velocity and
pressure conditions have to be predicted to solve the coupled two-domain problem.
The present boundary condition has been tested in the lid-driven cavity flow for
a range of volume fractions from φ = 0.02 to 0.45, scale separation parameters
from ε = 0.02 to 0.1 and interface locations from ys = 0.1 to ys = 0.5. When the
homogenized model results are compared to DNS, the slip velocity predictions
have been found to be robust and to give accurate predictions for all investigated
parameters. We hope that, with this work and the release of the associated software,
we can provide the numerical fluid dynamics community the tools to model flows
over existing non-smooth surfaces as well as to design surfaces to modify fluid flow
characteristics.
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Appendix A. Momentum balance and order estimates
This appendix provides a description of the physical scales in the porous medium

and in the free-fluid region, which are used in § 3 and summarized in table 1. For a
dense coating, where inertial effects can be neglected, the momentum balance in the
porous region at the pore scale is

µ∇2
p u−∇P−∇pp= 0, (A 1)

where the viscous force is balanced by the sum of the macroscopic pressure driving
the flow and the microscopic pressure at the pore scale. Here, ∇p = (),j1 denotes the
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gradient at the pore scale and ∇ = (),j0 denotes the gradient at the macroscale. This
is a classical result at first order in the interior, as derived by Mei & Vernescu (2010)
and also used by Gopinath & Mahadevan (2011). The force balance is thus

µUd

l2
∼ 1P

H
∼ 1p

l
, (A 2)

where Ud is the characteristic velocity in the porous region and 1p is characteristic
microscopic pressure.

Comparing the first and second terms, we immediately arrive at the first estimate
used in the main paper (3.1). We argue in the main paper that the perturbation
velocities are caused by the porous medium and therefore could be estimated based
on the characteristic velocity in the porous region

ũ±i ∼Ud. (A 3)

The pore pressure is associated with the global pressure difference and estimated as

p̃− ∼1P, (A 4)

whereas the pressure perturbation above the interface we associate with the micro-
scopic pressure difference 1p. We argue that the pressure perturbation above is caused
directly by the flow in the pores, which results in pressure difference in the pore scale.
The estimate we use is

p̃+ ∼1p. (A 5)

For the fast flow, we use an estimate

Ũi ∼Uf , (A 6)

where Uf is the characteristic fast flow velocity. The associated pressure we estimate
using the same macroscopic pressure difference as everywhere else

P̃∼1P. (A 7)

The magnitude of the fast flow velocity Uf (3.9) can be estimated from momentum
balance in the free fluid. The momentum of the fast flow is governed by

ρf (∂tU+ (U ·∇)U)=µ∇2U−∇P. (A 8)

This provides a balance between pressure gradient, viscous force and inertial effects,

1P
H
∼ ρf (Uf )2

H
∼ µUf

H2
. (A 9)

As mentioned in the main text, there is no unique way perform a priori estimates.
One approach is to use similarity between global pressure gradient and inertial term.
Combining that with balance between global pressure gradient and seepage flow (A 2)
gives

ρf (Uf )2

H
∼ 1P

H
∼ µUd

l2
, (A 10)

which after rearranging can be written as

Uf ∼ 1
Ref

1
ε2

Ud, (A 11)
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where Ref = ρf HUf /µ is free-fluid Reynolds number. Now one has to say something
about Ref in order to finalize estimate of Uf . One possible choice is to assume Ref =
O(ε−1), and then we recover assumption (3.9). The estimate of Uf is later implicitly
used in order to determine the order of shear stress from the free fluid at the interface

Ũi,j ∼ Uf

H
, (A 12)

where we have assumed that the fast free-flow velocity is obtained over the
macroscopic length scale.

Finally, estimates (A 3)–(A 7) can be made non-dimensional following section (3.2).
After using the momentum balance presented here (A 2) and assumption (3.9),
one arrives at the dimensionless orders presented in rightmost column of table 1.
Additionally, making the shear-stress estimate (A 12) non-dimensional, one obtains
Ui,j =O(1), which together with ε prefactor in the non-dimensional stress (B 9) leads
to free-fluid shear appearance in O(ε)-problem (4.14).

Appendix B. Definitions
Here we provide definitions of various tensors and operators used in the main paper.

We start with linear Stokes operator

A(ui, p, ε)= Ri: − p,i + εui,jj = Ri, (B 1)
ui,i = 0, (B 2)

ui|Γc = 0, (B 3)

where Ri is a right-hand term, usually containing the inertial terms. A similar operator
is used for microscale problems within the multiscale expansion

A1(ui, p, 1)= Ri: − p,i1 + ui,j1j1 = Ri, (B 4)
ui,i1 = 0, (B 5)

ui|Γc = 0, (B 6)

where derivative with respect to microscale (),i1 is defined in (4.2). Fluid stress tensors
used in this paper are

Σu+
ij = −p+δij + ε(u+i,j + u+j,i), (B 7)

Σu−
ij = −p−δij + ε(u−i,j + u−j,i), (B 8)

ΣU
ij = −Pδij + ε(Ui,j +Uj,i), (B 9)

for the flow field, and

Σ
u+(1)
ij = −p+(1)δij + (u+(0)i,j1 + u+(0)j,i1 ), (B 10)

Σ
u−(1)
ij = −p−(1)δij + (u−(0)i,j1 + u−(0)j,i1 ), (B 11)

for the O(ε)-problem on the microscale. Stress tensors for the permeability interface
problem are

ΣK+
ij = −A+k δij + (K+ik,j1 + K+jk,i1), (B 12)

ΣK−
ij = −A−k δij + (K−ik,j1 + K−jk,i1), (B 13)
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and stress tensors for the Navier-slip interface problem are

ΣL+
ij = −B+klδij + (L+ikl,j1 + L+jkl,i1), (B 14)

ΣL−
ij = −B−klδij + (L−ikl,j1 + L−jkl,i1). (B 15)

The velocity strain tensor is
Sij =Ui,j +Uj,i. (B 16)

In order to homogenize the results, we use a volume-average operator

〈 f 〉(X)= 1
l3

∫ l/2

−l/2

∫ l/2

−l/2

∫ l/2

−l/2
f (x−X) dx dy dz, (B 17)

where f is some variable and X is the location of the centre of the averaging
volume. In the two-dimensional case, this integral reduces to a surface integral. For
investigations of interface cell results, we use a surface-average operator

〈 f 〉S(X)= 1
l2

∫ l/2

−l/2

∫ l/2

−l/2
f (x−X) dx dy, (B 18)

where the plane is oriented parallel to the interface. Here, X is the location of the
centre of the averaging surface. In the two-dimensional case, as in the lid-driven cavity
example reported in the paper, this integral reduces to a line integral. For convenience,
the X argument is omitted in the main paper.

Appendix C. Homogenized velocity strain and pressure gradient
In this appendix we derive two expressions for the volume-averaged pressure

gradient in the porous region and the volume-averaged velocity gradient in the
free-flow region. These expressions are used in § 5.2.

We start by forming the average of the velocity (3.5) in a microscale volume of
size l3, as defined in (B 17),

〈uj〉 =Uj + 〈u+(0)j 〉 +O(ε). (C 1)

The averaging volume can be centred at any y−coordinate as long as it is within
the free-fluid part of the interface unit cell. There are no brackets around velocity
Uj because it does not depend on the microscale coordinate, i.e. it is constant over
length l. Here we have also used that u+j = u+(0)j +O(ε). Next, we take the derivative
of the expression above and use the chain rule (4.2),

〈uj〉,k =Uj,k + 〈u+(0)j 〉,k1 +O(ε), (C 2)

where all the derivatives with respect to Xi appear in O(ε) term due to the ε prefactor
in the chain rule (4.2). Additionally, the microscale dependence of the term u+(0)j

is averaged out, therefore we conclude that 〈u+(0)j 〉,k1 = 0. Finally we arrive at the
relationship between fast flow velocity gradient and the averaged free-flow velocity
gradient,

〈uj〉,k =Uj,k +O(ε). (C 3)

This expression is defined anywhere in the free-fluid domain, including at the interface
with the porous region.
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Next, we average the pressure expansion (4.6) in a l3 volume centred at an arbitrary
point in the porous domain, which after taking the gradient, results in

〈p−〉,j = p−(0),j + ε〈p−(1)〉,j +O(ε2)= εp−(0),j0 +O(ε2), (C 4)

where we have used that 〈p−(1)〉,j1 = 0. The macroscale derivative of 〈p−(1)〉 is again
absorbed in the O(ε2) terms due to the additional ε prefactor. For the leading-order
pressure we have used the chain rule (4.2) and the fact that it is independent of the
microscale (4.8). This expression is defined anywhere in the porous domain, including
at the interface with the free fluid.
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