ON SIMPLE, PRIMITIVE AND PRIME RINGS RELATIVE TO A TORSION THEORY

JOHN DAUNS AND YIQIANG ZHOU

For a hereditary torsion theory τ , we show by examples that the concepts of τ -Artinian τ -simple, τ -Artinian τ -primitive, τ -Artinian τ -prime, τ -Artinian τ -semiprimitive, and τ -Artinian τ -semiprime rings are different from each other and thus answer a question raised by Bland in his book [Topics in Torsion Theory, (Mathematical Research, 103, Wiley-VCH, 1998)]. The example of a τ -Artinian τ -primitive ring which is not τ -simple here appears to be a counter-example to a result of Bland in the same publication.

INTRODUCTION

Throughout, R is an associative ring with identity, modules will be unitary right *R*-modules, and $\tau = (\mathcal{T}_{\tau}, \mathcal{F}_{\tau})$ is a hereditary torsion theory on Mod-*R*, the category of all right *R*-modules. The following concepts can be found in [1]: A nonzero module *M* is called τ -simple if $M \in \mathcal{F}_{\tau}$ and $M/N \in \mathcal{T}_{\tau}$ for any nonzero submodule N of M; $J_{\tau}(R)$ is defined to be the intersection of all those right ideals I of R such that R/I is τ -simple; the ring R is called τ -Artinian if any descending chain $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$ of right ideals of R with all $R/I_n \in \mathcal{F}_{\tau}$ terminates; R is called τ -primitive if the right annihilator of a cyclic τ -simple R-module is 0; R is said to be τ -semiprimitive if $J_{\tau}(R) = 0$; a two-sided ideal A of R is said to be completely τ -pure if $M/(MA) \in \mathcal{F}_{\tau}$ for any $M \in \mathcal{F}_{\tau}$; R is defined to be τ -prime if whenever AB = 0 for completely τ -pure ideals A and B we have A = 0or B = 0; R is called τ -semiprime if $A^2 = 0$ always implies A = 0 for any completely τ -pure ideal A; finally R is called a τ -simple ring if $R \in \mathcal{F}_{\tau}$ and whenever $R/I \in \mathcal{F}_{\tau}$ for an ideal I of R we have I = 0 or I = R. The following ring implications were proved by Bland in [1]: τ -simple $\Rightarrow \tau$ -primitive $\Rightarrow \tau$ -prime $\Rightarrow \tau$ -semiprime and τ -primitive $\Rightarrow \tau$ -semiprimitive $\Rightarrow \tau$ -semiprime. It was claimed in [1, Proposition 6.1.17] that any τ -Artinian τ -primitive ring is τ -simple and it was then asked what other implications given above reverse under the assumption that R is τ -Artinian (see [1, p.142]).

297

Received 31st January, 2000

The research of the second author was supported by the NSERC grant OGP0194196. The first author thanks the hospitality of Memorial University during a research visit paid by the above grant.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

J. Dauns and Y. Zhou

[2]

In this short paper, we first give a counter-example to the result of Bland that any τ -Artinian τ -primitive ring is τ -simple, and then answer Bland's question by giving examples of the following: A τ -Artinian τ -semiprimitive ring which is not τ -prime; a τ -Artinian τ -prime ring which is not τ -primitive; a τ -Artinian τ -semiprime ring which is neither τ -semiprimitive nor τ -prime.

1. A τ -Artinian τ -primitive ring need not be τ -simple

There exists a ring R and a hereditary torsion theory τ such that R is a τ -Artinian τ -primitive ring, but R is not a τ -simple ring. For a module M_R , M^{\perp} is the annihilator of M in R.

EXAMPLE 1.1. Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ where F is a field, $I = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$ and $J = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$. Then $R \supset I \supset J \supset 0$ is a composition series of right ideals of R, so R is right Artinian. Let $M_R = I$ and $N_R = J$. Then M_R is cyclic faithful and N_R is simple. Let $\mathcal{K} = \{X \in Mod - R : \forall 0 \neq Y \subseteq X, N \hookrightarrow Y\}$. Then \mathcal{K} is a natural class, that is, \mathcal{K} is closed under submodules, direct sums, injective hulls and isomorphic copies. Since R is right Artinian, R has DCC on $\{L \subseteq R_R : R/L \in \mathcal{K}\}$. By [2, Proposition 21], \mathcal{K} is a hereditary torsionfree class. Let τ be the hereditary torsion theory such that $\mathcal{F}_{\tau} = \mathcal{K}$. Then R is τ -Artinian. Clearly, $M \in \mathcal{K}$. Note that N is the only non-trivial submodule of M and $M/N \not\cong N$. So, $M/N \notin \mathcal{K}$. This shows that M is a τ -simple module. So, R is a τ -primitive ring.

Note that I is a two-sided ideal of R and $(R/I)_R \cong N \in \mathcal{K}$. If R is a τ -simple ring, then it must be that I = 0 or I = R, a contradiction.

In the above example, M is a faithful cyclic τ -simple R-module and N is a cyclic τ -simple R-module with $N^{\perp} = I \neq 0$. So, for a τ -Artinian τ -primitive ring R, the annihilator of some cyclic τ -simple R-module may be non-zero. It seems that the incorrect statement that "the annihilator of each cyclic τ -simple R-module over the τ -Artinian τ -primitive ring R is zero" has been used in the proof of [1, Proposition 6.1.17] (see [1, line -6, p.142]).

2. RESPONSE TO BLAND'S QUESTION

As a response to Bland's question above, we give the following examples.

EXAMPLE 2.1. A τ -Artinian τ -semiprimitive ring which is not τ -prime: Let R be an Artinian semisimple ring, but one that is not simple. Let $\tau = (\mathcal{T}_{\tau}, \mathcal{F}_{\tau})$ be the hereditary torsion theory in which every R-module is τ -torsionfree, that is, $\mathcal{T}_{\tau} = \{(0)\}$ and $\mathcal{F}_{\tau} = Mod-R$. Then every ideal of R is completely τ -pure. Since R is semisimple but not simple, there exist nonzero ideals A and B such that AB = 0. Thus, R is not τ -prime. But, clearly, R is τ -Artinian τ -semiprime. We can further prove R is τ -semiprimitive. By the definition of τ , an R-module is τ -simple if and only if it is simple. Thus, for a right

ideal I of R, R/I is τ -simple if and only if R/I is simple if and only if I is a maximal right ideal. It follows that $J_{\tau}(R)$ is equal to the Jacobson radical J(R) of R. But, clearly, J(R) = 0.

The next two examples give τ -Artinian τ -semiprime rings which are neither τ -prime nor τ -semiprimitive.

EXAMPLE 2.2. Let R be an Artinian semisimple ring with two simple R-modules, say Mand N, up to isomorphism. Let $\tau = (\mathcal{T}_{\tau}, \mathcal{F}_{\tau})$ be the hereditary torsion theory cogenerated by M, that is, $X \in \mathcal{F}_{\tau}$ if and only if $X \hookrightarrow E(M)^{I}$ for some index set I, where E(M)is the injective hull of M. Note that R is Artinian semisimple and every R-module is injective. So, $X \in \mathcal{F}_{\tau}$ if and only if $X \cong M^{(J)}$ for some index set J. Then an R-module X is τ -simple if and only if $X \cong M$, and thus $X^{\perp} = M^{\perp}$. By [1, Proposition 2.2.8], $J_{\tau}(R)$ is the intersection of the annihilators of all cyclic τ -simple R-modules. It follows that $J_{\tau}(R) = M^{\perp}$. By the assumption on R, M^{\perp} is a nonzero proper ideal of R. So, R is not τ -semiprimitive. But, it is easy to see that R is τ -Artinian τ -semiprime. To see that R is not τ -prime, note that $X \in \mathcal{F}_{\tau}$ if and only if $X \cong M^{(I)}$ for some index set I, and in this case, for any ideal A of R, $X/(XA) \cong M^{(J)} \in \mathcal{F}_{\tau}$ for some index set J. This means that every ideal of R is completely τ -pure. By the assumptions of R, R is not prime and so R is not τ -prime.

EXAMPLE 2.3. Let $Q = \prod_{i=1}^{\infty} F_i$, where $F_i = \mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$, be the direct product of rings F_i , R the subring of Q generated by $\bigoplus_{i=1}^{\infty} F_i$ and $\mathbb{1}_Q$. Let $M = R / (\bigoplus_{i=1}^{\infty} F_i)$. Note that M is an injective R-module. Let τ be the hereditary torsion theory cogenerated by M. Then $X \in \mathcal{F}_{\tau}$ if and only if $X \hookrightarrow M^K$ for some index set K. Thus, for a right ideal I of R, R/I is τ -torsionfree if and only if $I = \bigoplus_{i=1}^{\infty} F_i$ or I = R. So, R is τ -Artinian. And a cyclic module N is τ -simple if and only if $N \cong^{i=1} M$, so, in this case, $N^{\perp} = M^{\perp} = \bigoplus_{i=1}^{\infty} F_i \neq 0$. Thus, $J_{\tau}(R) =$ the intersection of the annihilators of all cyclic τ -simple R-modules $= \bigoplus_{i=1}^{\infty} F_i \neq 0$. Thus, R is not τ -semiprimitive. The above discussion shows that $\bigoplus_{i=1}^{\infty} F_i \subseteq X^{\perp}$ for every τ -torsion free R-module X. It follows that every ideal of R contained in $\bigoplus_{i=1}^{\infty} F_i$ is a completely τ -pure ideal. This implies that R is not τ -prime. Since R is semiprime, R is τ -semiprime.

EXAMPLE 2.4. A τ -Artinian τ -prime ring which is not τ -primitive: Let R be a prime ring but not a right primitive ring. Let $\tau = (\mathcal{T}_{\tau}, \mathcal{F}_{\tau})$ be the hereditary torsion theory such that every R-module is a τ -torsion module, that is, $\mathcal{T}_{\tau} = \text{Mod-}R$ and $\mathcal{F}_{\tau} = \{(0)\}$. Then for any right ideal I of R, R/I is τ -torsion free if and only if I = R. So, R is τ -Artinian and τ -prime. Since the zero module (0) is the only τ -torsion free module, there does not exist any τ -simple module. So, there does not exist a τ -simple module whose annihilator is zero. Therefore, R is not τ -primitive. J. Dauns and Y. Zhou

[4]

Note that Example 2.4 is not desirable for Bland's question because it was assumed in [1, Section 6.1,p.135] that τ is a torsion theory on Mod-R such that τ -simple Rmodules exist. So, the remaining question is the following: Does there exist a ring R and a hereditary torsion theory τ on Mod-R such that τ -simple R-modules exist, R is τ -Artinian τ -prime, but R is not τ -primitive? The answer is "Yes", as shown by the next example.

EXAMPLE 2.5. Let R be any ring with nonzero right ideals I and J, $I \cap J = 0$, satisfying the following properties:

- (1) $I^2 \neq I$ and ab = ba for all $a, b \in I$;
- (2) for any $r \in R \setminus J$, $0 \neq rs \in I$ for some $s \in R$, and dually for any $r \in R \setminus I$, $0 \neq rt \in J$ for some $t \in R$;
- (3) for any $0 \neq L \subseteq I$, $L^{\perp} = J$, and dually for any $0 \neq P \subseteq J$, $P^{\perp} = I$;
- (4) lastly, $R/(I \oplus J)$ satisfies the DCC on right submodules.

Let $M_R = I$ and $\mathcal{K} = \{X \in \text{Mod-}R : \forall 0 \neq Y \subseteq X, \exists 0 \neq Z \subseteq Y \text{ such that } Z \hookrightarrow M\}$. Then \mathcal{K} is a natural class, that is, \mathcal{K} is closed under submodules, direct sums, injective hulls and isomorphic copies. Observe that

(*) for any $0 \neq X \in \mathcal{K}$, and any $0 \neq m \in I$, $Xm \neq 0$ by (3).

Let $R/K \in \mathcal{K}$. Then JI = 0 by (3) with P = J. Hence $[(J + K)/K]I = \overline{0}$. By (*), $J \subseteq K$. Thus, K = J or $K \supset J$. Suppose that $K \supset J$. Let $r \in K \setminus J$. Then by (2), $0 \neq m = rs \in I$. But then $Im = mI \subseteq I \cap K$ by (1). Thus $[I/(I \cap K)]m = \overline{0}$ and $I/(I \cap K) \cong (I+K)/K \in \mathcal{K}$, and by (*), $I \subseteq K$. Therefore $I \oplus J \subseteq K$. So, we have proved that if $R/K \in \mathcal{K}$ then K = J or $K \supseteq I \oplus J$. In view of (4), R has DCC on $\{L \subseteq R_R : R/L \in \mathcal{K}\}$. By [2, Proposition 21], \mathcal{K} is a hereditary torsion free class. Let $\tau = (\mathcal{T}_{\tau}, \mathcal{F}_{\tau})$ be the hereditary torsion theory such that $\mathcal{F}_{\tau} = \mathcal{K}$. Then R is τ -Artinian. Clearly, $I \in \mathcal{F}_{\tau}$. If $0 \neq L \subset I$, then $(I/L)m = \overline{0}$ for $0 \neq m \in L$ (by (1)), so $I/L \notin \mathcal{K}$. So, I is a τ -simple R-module. Therefore, τ -simple R-modules exist. Note that $J_R \notin \mathcal{F}_{\tau}$ by (*) and (3), and thus $R_R \notin \mathcal{F}_{\tau}$. It follows from [1, Corollary 6.1.4, p.136] that R is not a τ -primitive ring. To show that R is τ -prime, let $A \neq 0$ and $B \neq 0$ be two completely τ pure ideals of R such that AB = 0. Suppose first that $A \not\subseteq J$. Then for $a \in A \setminus J$, by (2), $0 \neq ar \in I$. Thus, $(I/IA)(ar) = \overline{0}$ and $I/(IA) \in \mathcal{K}$, and by (*), $I = IA \subseteq A$. But then $IB \subseteq AB = 0$, and $B \subseteq J$ by (3). If A = I, then $I = IA \subseteq I^2 \subset I$ is a contradiction. So, $I \subset A$. By (2), for $b \in A \setminus I$, $0 \neq bt \in J$. Then $(btR)B \subseteq AB = 0$ implies that $B \subseteq I$ by (3). It follows that $B \subseteq I \cap J = 0$. This contradiction shows that $A \subseteq J$. Consequently AB = 0 implies that $B \subseteq I$ by (3). For $0 \neq m \in B \subseteq I$, $(I/IB)m = \overline{0}$ and $I/IB \in \mathcal{K}$. By (*), I = IB, and this implies that $I = I^2$, a contradiction. Thus, R is τ -prime.

Below are two examples where the ring R with the right ideals I and J satisfies the conditions (1)-(4) in Example 2.5.

Simple, primitive and prime rings

- 1. Let $T = \mathbb{Z} \oplus \mathbb{Z}$ be the ring direct sum, and $R = (2\mathbb{Z} \oplus 2\mathbb{Z}) + \mathbb{Z}\mathbf{1}_T$ be the subring of T generated by $2\mathbb{Z} \oplus 2\mathbb{Z}$ and $\mathbf{1}_T$. Let $I = 2\mathbb{Z} \oplus (0)$ and $J = (0) \oplus 2\mathbb{Z}$. Then I and J are ideals of R and $R/(I \oplus J) = R/(2\mathbb{Z} \oplus 2\mathbb{Z}) =$ $\{\overline{(0,0)}, \overline{(1,1)}\} \cong \mathbb{Z}_2$.
- 2. Let $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}_2[t]$ be the polynomial ring. Let $T = \mathbb{Z}_2[t] \oplus \mathbb{Z}_2[t]$ be the ring direct sum, and R the subring of T generated by $t\mathbb{Z}_2[t] \oplus t\mathbb{Z}_2[t]$ and 1_T . Let $I = t\mathbb{Z}_2[t] \oplus (0)$ and $J = (0) \oplus t\mathbb{Z}_2[t]$. Then I, J are ideals of R and $R/(I \oplus J) \cong \mathbb{Z}_2$.

References

- [1] P.E. Bland, Topics in torsion theory, Mathematical Research 103 (Wiley-VCH Verlag, Berlin, 1998).
- [2] S.S. Page and Y. Zhou, 'On direct sums of injective modules and chain conditions', Canad. J. Math. 46 (1994), 634-647.

Tulane University New Orleans LA 70118-5698 United States of America Memorial University of Newfoundland St.John's, NF A1C 5S7 Canada