ON SIMPLE, PRIMITIVE AND PRIME RINGS RELATIVE TO A TORSION THEORY

John Dauns and Yiqiang Zhou

Abstract

For a hereditary torsion theory τ, we show by examples that the concepts of τ-Artinian τ-simple, τ-Artinian τ-primitive, τ-Artinian τ-prime, τ-Artinian τ-semiprimitive, and τ-Artinian τ-semiprime rings are different from each other and thus answer a question raised by Bland in his book [Topics in Torsion Theory, (Mathematical Research, 103, Wiley-VCH, 1998)]. The example of a τ-Artinian τ-primitive ring which is not τ-simple here appears to be a counter-example to a result of Bland in the same publication.

Introduction

Throughout, R is an associative ring with identity, modules will be unitary right R-modules, and $\tau=\left(\mathcal{T}_{\tau}, \mathcal{F}_{\tau}\right)$ is a hereditary torsion theory on Mod- R, the category of all right R-modules. The following concepts can be found in [1]: A nonzero module M is called τ-simple if $M \in \mathcal{F}_{\tau}$ and $M / N \in \mathcal{T}_{\tau}$ for any nonzero submodule N of $M ; J_{\tau}(R)$ is defined to be the intersection of all those right ideals I of R such that R / I is τ-simple; the ring R is called τ-Artinian if any descending chain $I_{1} \supseteq I_{2} \supseteq \cdots \supseteq I_{n} \supseteq \cdots$ of right ideals of R with all $R / I_{n} \in \mathcal{F}_{\tau}$ terminates; R is called τ-primitive if the right annihilator of a cyclic τ-simple R-module is $0 ; R$ is said to be τ-semiprimitive if $J_{\tau}(R)=0$; a two-sided ideal A of R is said to be completely τ-pure if $M /(M A) \in \mathcal{F}_{\tau}$ for any $M \in \mathcal{F}_{\tau} ; R$ is defined to be τ-prime if whenever $A B=0$ for completely τ-pure ideals A and B we have $A=0$ or $B=0 ; R$ is called τ-semiprime if $A^{2}=0$ always implies $A=0$ for any completely τ-pure ideal A; finally R is called a τ-simple ring if $R \in \mathcal{F}_{\tau}$ and whenever $R / I \in \mathcal{F}_{\tau}$ for an ideal I of R we have $I=0$ or $I=R$. The following ring implications were proved by Bland in [1]: τ-simple $\Rightarrow \tau$-primitive $\Rightarrow \tau$-prime $\Rightarrow \tau$-semiprime and τ-primitive $\Rightarrow \tau$-semiprimitive $\Rightarrow \tau$-semiprime. It was claimed in [1, Proposition 6.1.17] that any τ-Artinian τ-primitive ring is τ-simple and it was then asked what other implications given above reverse under the assumption that R is τ-Artinian (see [1, p.142]).

Received 31st January, 2000

The research of the second author was supported by the NSERC grant OGP0194196. The first author thanks the hospitality of Memorial University during a research visit paid by the above grant.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

In this short paper, we first give a counter-example to the result of Bland that any τ-Artinian τ-primitive ring is τ-simple, and then answer Bland's question by giving examples of the following: A τ-Artinian τ-semiprimitive ring which is not τ-prime; a τ-Artinian τ-prime ring which is not τ-primitive; a τ-Artinian τ-semiprime ring which is neither τ-semiprimitive nor τ-prime.

1. A τ-Artinian τ-primitive ring need not be τ-Simple

There exists a ring R and a hereditary torsion theory τ such that R is a τ-Artinian τ-primitive ring, but R is not a τ-simple ring. For a module M_{R}, M^{\perp} is the annihilator of M in R.
Example 1.1. Let $R=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$ where F is a field, $I=\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right)$ and $J=\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right)$. Then $R \supset I \supset J \supset 0$ is a composition series of right ideals of R, so R is right Artinian. Let $M_{R}=I$ and $N_{R}=J$. Then M_{R} is cyclic faithful and N_{R} is simple. Let $\mathcal{K}=\{X \in$ Mod- $R: \forall 0 \neq Y \subseteq X, N \hookrightarrow Y\}$. Then \mathcal{K} is a natural class, that is, \mathcal{K} is closed under submodules, direct sums, injective hulls and isomorphic copies. Since R is right Artinian, R has DCC on $\left\{L \subseteq R_{R}: R / L \in \mathcal{K}\right\}$. By [2, Proposition 21$], \mathcal{K}$ is a hereditary torsionfree class. Let τ be the hereditary torsion theory such that $\mathcal{F}_{\tau}=\mathcal{K}$. Then R is τ-Artinian. Clearly, $M \in \mathcal{K}$. Note that N is the only non-trivial submodule of M and $M / N \not \approx N$. So, $M / N \notin \mathcal{K}$. This shows that M is a τ-simple module. So, R is a τ-primitive ring.

Note that I is a two-sided ideal of R and $(R / I)_{R} \cong N \in \mathcal{K}$. If R is a τ-simple ring, then it must be that $I=0$ or $I=R$, a contradiction.

In the above example, M is a faithful cyclic τ-simple R-module and N is a cyclic τ-simple R-module with $N^{\perp}=I \neq 0$. So, for a τ-Artinian τ-primitive ring R, the annihilator of some cyclic τ-simple R-module may be non-zero. It seems that the incorrect statement that "the annihilator of each cyclic τ-simple R-module over the τ-Artinian τ primitive ring R is zero" has been used in the proof of [1, Proposition 6.1.17] (see [1, line -6, p.142]).

2. Response to Bland's question

As a response to Bland's question above, we give the following examples.
Example 2.1. A τ-Artinian τ-semiprimitive ring which is not τ-prime: Let R be an Artinian semisimple ring, but one that is not simple. Let $\tau=\left(\mathcal{T}_{\tau}, \mathcal{F}_{\tau}\right)$ be the hereditary torsion theory in which every R-module is τ-torsionfree, that is, $\mathcal{T}_{\tau}=\{(0)\}$ and $\mathcal{F}_{\tau}=$ Mod- R. Then every ideal of R is completely τ-pure. Since R is semisimple but not simple, there exist nonzero ideals A and B such that $A B=0$. Thus, R is not τ-prime. But, clearly, R is τ-Artinian τ-semiprime. We can further prove R is τ-semiprimitive. By the definition of r, an R-module is τ-simple if and only if it is simple. Thus, for a right
ideal I of $R, R / I$ is τ-simple if and only if R / I is simple if and only if I is a maximal right ideal. It follows that $J_{\tau}(R)$ is equal to the Jacobson radical $J(R)$ of R. But, clearly, $J(R)=0$.

The next two examples give τ-Artinian τ-semiprime rings which are neither τ-prime nor τ-semiprimitive.

Example 2.2. Let R be an Artinian semisimple ring with two simple R-modules, say M and N, up to isomorphism. Let $\tau=\left(\mathcal{T}_{\tau}, \mathcal{F}_{\tau}\right)$ be the hereditary torsion theory cogenerated by M, that is, $X \in \mathcal{F}_{\tau}$ if and only if $X \hookrightarrow E(M)^{I}$ for some index set I, where $E(M)$ is the injective hull of M. Note that R is Artinian semisimple and every R-module is injective. So, $X \in \mathcal{F}_{\tau}$ if and only if $X \cong M^{(J)}$ for some index set J. Then an R-module X is τ-simple if and only if $X \cong M$, and thus $X^{\perp}=M^{\perp}$. By [1, Proposition 2.2.8], $J_{\tau}(R)$ is the intersection of the annihilators of all cyclic τ-simple R-modules. It follows that $J_{\tau}(R)=M^{\perp}$. By the assumption on R, M^{\perp} is a nonzero proper ideal of R. So, R is not τ-semiprimitive. But, it is easy to see that R is τ-Artinian τ-semiprime. To see that R is not τ-prime, note that $X \in \mathcal{F}_{\tau}$ if and only if $X \cong M^{(I)}$ for some index set I, and in this case, for any ideal A of $R, X /(X A) \cong M^{(J)} \in \mathcal{F}_{\tau}$ for some index set J. This means that every ideal of R is completely τ-pure. By the assumptions of R, R is not prime and so R is not τ-prime.
EXAMPLE 2.3. Let $Q=\prod_{i=1}^{\infty} F_{i}$, where $F_{i}=\mathbb{Z}_{2}=\{\overline{0}, \overline{1}\}$, be the direct product of rings F_{i}, R the subring of Q generated by $\bigoplus_{i=1}^{\infty} F_{i}$ and 1_{Q}. Let $M=R /\left(\bigoplus_{i=1}^{\infty} F_{i}\right)$. Note that M is an injective R-module. Let τ be the hereditary torsion theory cogenerated by M. Then $X \in \mathcal{F}_{\tau}$ if and only if $X \hookrightarrow M^{K}$ for some index set K. Thus, for a right ideal I of $R, R / I$ is τ-torsionfree if and only if $I=\bigoplus^{\infty} F_{i}$ or $I=R$. So, R is τ-Artinian. And a cyclic module N is τ-simple if and only if $N \stackrel{i=1}{\cong} M$, so, in this case, $N^{\perp}=M^{\perp}=\bigoplus_{i=1}^{\infty} F_{i} \neq 0$. Thus, $J_{\tau}(R)=$ the intersection of the annihilators of all cyclic τ-simple R-modules $=\bigoplus_{i=1}^{\infty} F_{i} \neq 0$. Thus, R is not τ-semiprimitive. The above discussion shows that $\bigoplus_{i=1}^{\infty} F_{i} \subseteq X^{\perp}$ for every τ-torsion free R-module X. It follows that every ideal of R contained in $\bigoplus_{i=1}^{\infty} F_{i}$ is a completely τ-pure ideal. This implies that R is not τ-prime. Since R is semiprime, R is τ-semiprime.

Example 2.4. A τ-Artinian τ-prime ring which is not τ-primitive: Let R be a prime ring but not a right primitive ring. Let $\tau=\left(\mathcal{T}_{\tau}, \mathcal{F}_{\tau}\right)$ be the hereditary torsion theory such that every R-module is a τ-torsion module, that is, $\mathcal{T}_{\tau}=\operatorname{Mod}-R$ and $\mathcal{F}_{\tau}=\{(0)\}$. Then for any right ideal I of $R, R / I$ is τ-torsion free if and only if $I=R$. So, R is τ-Artinian and τ-prime. Since the zero module (0) is the only τ-torsion free module, there does not exist any τ-simple module. So, there does not exist a τ-simple module whose annihilator is zero. Therefore, R is not τ-primitive.

Note that Example 2.4 is not desirable for Bland's question because it was assumed in [1 , Section $6.1, \mathrm{p} .135$] that τ is a torsion theory on Mod- R such that τ-simple R modules exist. So, the remaining question is the following: Does there exist a ring R and a hereditary torsion theory τ on Mod- R such that τ-simple R-modules exist, R is τ-Artinian τ-prime, but R is not τ-primitive? The answer is "Yes", as shown by the next example.

Example 2.5. Let R be any ring with nonzero right ideals I and $J, I \cap J=0$, satisfying the following properties:
(1) $I^{2} \neq I$ and $a b=b a$ for all $a, b \in I$;
(2) for any $r \in R \backslash J, 0 \neq r s \in I$ for some $s \in R$, and dually for any $r \in R \backslash I$, $0 \neq r t \in J$ for some $t \in R$;
(3) for any $0 \neq L \subseteq I, L^{\perp}=J$, and dually for any $0 \neq P \subseteq J, P^{\perp}=I$;
(4) lastly, $R /(I \oplus J)$ satisfies the DCC on right submodules.

Let $M_{R}=I$ and $\mathcal{K}=\{X \in \operatorname{Mod}-R: \forall 0 \neq Y \subseteq X, \exists 0 \neq Z \subseteq Y$ such that $Z \hookrightarrow M\}$. Then \mathcal{K} is a natural class, that is, \mathcal{K} is closed under submodules, direct sums, injective hulls and isomorphic copies. Observe that for any $0 \neq X \in \mathcal{K}$, and any $0 \neq m \in I, X m \neq 0$ by (3).

Let $R / K \in \mathcal{K}$. Then $J I=0$ by (3) with $P=J$. Hence $[(J+K) / K] I=\overline{0}$. By (*), $J \subseteq K$. Thus, $K=J$ or $K \supset J$. Suppose that $K \supset J$. Let $r \in K \backslash J$. Then by (2), $0 \neq m=r s \in I$. But then $I m=m I \subseteq I \cap K$ by (1). Thus $[I /(I \cap K)] m=\overline{0}$ and $I /(I \cap K) \cong(I+K) / K \in \mathcal{K}$, and by $(*), I \subseteq K$. Therefore $I \oplus J \subseteq K$. So, we have proved that if $R / K \in \mathcal{K}$ then $K=J$ or $K \supseteq I \oplus J$. In view of (4), R has DCC on $\left\{L \subseteq R_{R}: R / L \in \mathcal{K}\right\}$. By [2, Proposition 21$], \mathcal{K}$ is a hereditary torsionfree class. Let $\tau=\left(\mathcal{T}_{\tau}, \mathcal{F}_{\tau}\right)$ be the hereditary torsion theory such that $\mathcal{F}_{\tau}=\mathcal{K}$. Then R is τ-Artinian. Clearly, $I \in \mathcal{F}_{\tau}$. If $0 \neq L \subset I$, then $(I / L) m=\overline{0}$ for $0 \neq m \in L$ (by (1)), so $I / L \notin \mathcal{K}$. So, I is a τ-simple R-module. Therefore, τ-simple R-modules exist. Note that $J_{R} \notin \mathcal{F}_{\tau}$ by (*) and (3), and thus $R_{R} \notin \mathcal{F}_{\tau}$. It follows from [1, Corollary 6.1.4, p.136] that R is not a τ-primitive ring. To show that R is τ-prime, let $A \neq 0$ and $B \neq 0$ be two completely τ pure ideals of R such that $A B=0$. Suppose first that $A \nsubseteq J$. Then for $a \in A \backslash J$, by (2), $0 \neq a r \in I$. Thus, $(I / I A)(a r)=\overline{0}$ and $I /(I A) \in \mathcal{K}$, and by $(*), I=I A \subseteq A$. But then $I B \subseteq A B=0$, and $B \subseteq J$ by (3). If $A=I$, then $I=I A \subseteq I^{2} \subset I$ is a contradiction. So, $I \subset A$. By (2), for $b \in A \backslash I, 0 \neq b t \in J$. Then $(b t R) B \subseteq A B=0$ implies that $B \subseteq I$ by (3). It follows that $B \subseteq I \cap J=0$. This contradiction shows that $A \subseteq J$. Consequently $A B=0$ implies that $B \subseteq I$ by (3). For $0 \neq m \in B \subseteq I,(I / I B) m=\overline{0}$ and $I / I B \in \mathcal{K}$. By (*) $I=I B$, and this implies that $I=I^{2}$, a contradiction. Thus, R is τ-prime.

Below are two examples where the ring R with the right ideals I and J satisfies the conditions (1)-(4) in Example 2.5.

1. Let $T=\mathbb{Z} \oplus \mathbb{Z}$ be the ring direct sum, and $R=(2 \mathbb{Z} \oplus 2 \mathbb{Z})+\mathbb{Z} 1_{T}$ be the subring of T generated by $2 \mathbb{Z} \oplus 2 \mathbb{Z}$ and 1_{T}. Let $I=2 \mathbb{Z} \oplus(0)$ and $J=(0) \oplus 2 \mathbb{Z}$. Then I and J are ideals of R and $R /(I \oplus J)=R /(2 \mathbb{Z} \oplus 2 \mathbb{Z})=$ $\{\overline{(0,0)}, \overline{(1,1)}\} \cong \mathbb{Z}_{2}$.
2. Let $\mathbb{Z}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ and $\mathbb{Z}_{2}[t]$ be the polynomial ring. Let $T=\mathbb{Z}_{2}[t] \oplus \mathbb{Z}_{2}[t]$ be the ring direct sum, and R the subring of T generated by $t \mathbb{Z}_{2}[t] \oplus t \mathbb{Z}_{2}[t]$ and 1_{T}. Let $I=t \mathbb{Z}_{2}[t] \oplus(0)$ and $J=(0) \oplus t \mathbb{Z}_{2}[t]$. Then I, J are ideals of R and $R /(I \oplus J) \cong \mathbb{Z}_{2}$.

References

[1] P.E. Bland, Topics in torsion theory, Mathematical Research 103 (Wiley-VCH Verlag, Berlin, 1998).
[2] S.S. Page and Y. Zhou, 'On direct sums of injective modules and chain conditions', Canad. J. Math. 46 (1994), 634-647.

Tulane University
New Orleans LA 70118-5698
United States of America

Memorial University of Newfoundland
St.John's, NF A1C 5S7
Canada

