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THE VARIATIONAL THEORY OF HIGHER-ORDER
LINEAR DIFFERENTIAL EQUATIONS

YASUO TERANISHI

§1. Introduction

In his paper [2], [3], D. A. Hejhal investigated the variational theory
of linear polynomic functions. In this paper we are concerned with the
variational theory of higher-order differential equations. To be more
precise, consider a compact Riemann surface having genus g > 1. As is
well known, we can choose a projective coordinate covering % = (U,, z,).
Fix this coordinate covering of X. We shall be concerned with linear
ordinary differential operators of order n defined in each projective
coordinate open set U,

d n n n d n—¢
W =) ()R )
GE) AP12) = (1) 4+ 3 (1) P
where coefficients P, (2,), - - -, P.,«(2.) are holomorphic in U,. Differential
operators {L, .(P,|z,)} are called a semi-canonical form if P, (z,) =0 for
all «.

Let 2 ¢ H'(X, 0,) be a complex line bundle on X. Differential operators
{L, P, 2,)} are called 2-related if in each intersection U,NU,

12 Lol 2)y = (220) 0@ Lo, (Pl 2Dz

Zﬂ

We shall prove an analogous theorem of the Laguerre-Forsyth’s basic
differential invariants.

TueEOREM 1.1. Let {L, (P,|z.)} be a 2-related semi-canonical form, then
(0m,a(za)) € P(Q’L (O(Icm)) (m = 23 37 T n)
where 6, (z,) is holomorphic function in U, defined by:

1 gy m=2iml@m k=l (d Vp ().
Pode) = 5 B Y G kS Dy m — 3)!k!j( dza> Factded
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Conversely for given 0,,(z) e I'(%, O(x™)) (m =2, 8, - - -, n), we can define dif-
ferential polynomials of {0,(2)}

P2,a(za ’ Pa,a(za)? STy Pn,a(za) .
And differential operators {L, P,|z,)} are a A-related semi-canonical form.

If ¢1,0(22), * * *5 ¢n,o(2) are n linearly independent holomorphic solutions
of the A-related semi-canonical differential equation L, (P.|z,)y =0 and
o is any element of SL(n, C) then the vector valued holomorphic function
02 = (¢1,2a)s - 5 0n,(2,) satisfies in each intersection U,N U,

(1.3) Soa(za) = pap(caﬁzﬂ + d“ﬂ)l—n(pﬂ(zﬁ)

for some p,; € SL(n, C), and the composition ¢, = ¢ ¢, satisfies a relation
of the form (1.1) with p,; replaced by pl., = 6op,007". Therefore the
mapping ¢, and ¢, are considered as describing equivalent flat vector
bundles of rank n on X.

There is a natural one to one correspondence between the cohomology
set H'(X, SL(n, C)) and the quotient space Hom (z(X), SL(n, C)/SL(n, C),
where SL(n, C) acts on Hom (z(X), SL(n, C)) by inner automorphisms.
The homomorphism obtained from a A-related semi-canonical equation is
called a monodromy representation. The fundamental group =,(X) is des-
cribed canonically as a group with 2g generators oy, ---, 0, 71, -+, T,
and the commutator relation [s,, 7] - - - [0, 7] = 1.

Introducing the complex variety

(1'4) N = {(le Sy Xg: YU Tty Yg) € SL(n: C)2g| [Xh Yl] st [Xg’ Yg] = 1} ’

the mapping which associates to an element p € Hom (z,(X),SL(n, C)) the
point (p(ay), - - -, p(a,), o(zy), - -+, p(z,)) € N identifies Hom (z(X), SL(n, C))
with the complex analytic variety N and the cohomology set H'(X, SL(n, C))
with the quotient space V = N/SL(n, C) where SL(n,C) acts on N by
inner automorphisms. (See Gunning [5]). The tangent space to the variety
V at a point corresponding to the monodromy representation p of a -
related semi-canonical differential equation is identified with the coho-
mology group H'(z,(X), Ad,p) of the group =,(X) with coefficients in the
space of n X n matrices of trace zero under the group representation
Ad p.

By Theorem 1.1, we can introduce a complex analytic mapping be-
tween the vector space @7 _, I'(X, 0(x™)) and the variety IV, and the tangent
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DIFFERENTIAL EQUATIONS 139

space to the image at a monodromy representation p e N is identified with
the space of the period classes of the Prym differentials I'(X, 0"°(Ad, p)).
We shall introduce the transvectants which are known in the classical
invariant theory and using them describe the period classes of the Prym
differentials (The variational formula).

The formulas also suggest a close relationship with Eichler coho-
mology groups. Many formulas in this paper can be found in Hejhal
([2], [3]) under the restriction 2 < n < 6 and we shall eliminate this restric-
tion using invariant theoretic method.

The author wishes to express his hearty thanks to Professors H.
Morikawa and H. Popp for their kind advices and encouragements.

§2. The basic differential equations and the monodromy represen-
tation
Let X be a compact Riemann surface of genus g > 1. Since the
genus of X is greater than one, as is well known we can find a coordi-
nate covering % = {(U,, z,)} such that the coordinate transformations of
this coordinate covering are projective linear transformations

(2.1) z, = a%s Tt Das
Ce

2 T+ Qg

(“aﬂ b“ﬂ>eSL(2, C) in U.NU,.
Cap Qap
Such a coordinate covering U is called a projective coordinate covering
of X.

We denote by L.(n) the set of all the homogeneous monic linear dif-
ferential operators of degree n defined in a projective coordinate open set

U,:
d n n n d n—¢
5 (L) B (el )
@2) Palzd = () 4 5 ()P
where coefficients P, (z,), - - -, P, (2,) are holomorphic on U, and (’;) is

the binomial coeflicient.
We denote by L,(P|2) the collection of local differential operators:

(2.3) L,(P|2) = (L,,(P.]2.) ,

and denote by Z(n) the set of all L,(P|z2).

For a given complex line bundle 2 e H'(X, 0*), we associate an element
L,(P|2) e L(n) which satisfies the following transformation relation in U,
nU,

https://doi.org/10.1017/5S0027763000021048 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021048

140 YASUO TERANISHI

@4) Lo.a(Pal2)y = (925) 0, (2) L. Pyl 2002y

@

DerFiniTION 2.1. Differential operators L,(P|z) satisfying the relation
(2.4) is called a 2-related differential operator.

DeriniTiON 2.2. Differential operators L,(P|2) € L(n) is called a semi-
canonical form if P, (z,) = 0 for all «.

LEmMA 2.1. Let 2¢ H(X, 0%) be a complex line bundle on X, and
L,(P|2) be a A-related differential operator. Then

@2.5) P,.(2) = (jj'

>_1{P,,p(2,9) + 2 l(zﬁ),g% 2.4(25)
4+ = 1 ( Z;)‘l( d‘i)zza} )

ProposiTioN 2.1. Let 2e H(X, 0%) be a complex line bundle on X, and
L,(P|2) be a A-related semi-canonical form. Then

8

For the proof, see ([1], Lemma 3.5).

degree(A) =(n — 1)(g — 1).

Proof. From Lemma 2.1, 2,, satisfies the differential equation

-1 d n—l(dz,,)"( d )2
2:5(2p) —— 2, . =0.
(=) dz, (=0 + 2 dz, dz, §

The solutions of this equation are given by

Aoz = ——— b 2€C).
(2 (dz./dzg)" (€€ C)

Since the transition function of the canonical line bundle is defined by

dz,
dz;

woe) = ()" = (s + 4 in TNT,

and
deg ks = 2(g — 1),
it follows that
deg (A,p) = (n — 1) (g — 1). Q.E.D.

We shall now prove an analogous theorem of the Laguerre-Forsyth’s
basic differential invariants.
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TaEOREM 2.1. Let A = (U, 2,) be a projective coordinate covering of
X, 2e H(X, 0*) be a complex line bundle of X, and let L,(P|2) be a A-
related semi-canonical form. In each projective coordinate open set U, we
introduce holomorphic functions 6, (z,) (m = 2,3, ---, n) by:

_ 1 == _ ko (m — 2)! m! (2m ——;iﬁi '—\“722.!7 o
GO )= D e i — B am — Bk
d k
>< ( dza> Pm—k,a(ZA) .

Then
(On,o(22)) € 'Y, O(™))

where £ is the canonical line bundle of X.

Conversely if local holomorphic functions 6, (z,) represent an element
of I'X, 0(™) (m = 2,3, ---,n), then there is a complex line bundle ie
HY(X, 0*) and, if we put

&\ (¢ —-D@2m —1)! d \é-m
en P = 50 o it o (de)

the semi-canonical form L,(P|z) defined in each projective coordinate open
set U, by

0 ntei = (L) (L)

a a
is a 2-related semi-canonical form.
To prove Theorem 2.1, we need some lemmas

LEMMmA 2.2, Let (Z 3) e SL(2, C), then we have;

0 (L (e an(z1s)

2 cz+d
- (2) o))
and
(it) (d((az n b;l/(cz Y )m«cz +d)h()
= go (— 1)1’(?)((%)3:?)@(02 + d)—w+2m—p(%>m—ph(z)
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where
©.9) [w]_{w(w-{—l)-u(w—l-é—l) if £>0
' e 1 if £=0
and

ww—-1)---(w—£+1) if £>0
(210 (w)e:{ 1 if ¢ =0.

Proof. For the proof of (ii), see ([1] Lemma 1.12).
Let us prove by (i) by induction on m. It is obvious for m = 0.
Assume (i) for m and let us prove (i) for m + 1. Since ad — bc =1

EH(E ) (AL D)

dz \cz4+d cz+d
and
(&) s (23 7)
- (e )[Li']"j_p rez-+ ()8 (6 g)
= 5 (7)ol (0 — w — 2merviez 4 dyroeoin

() (&)

SR s ()Y

e B e e

d \»r+! az -+ b
e+ dy () ) ()
er(ez + d) dz cz-+d

R =2

1 m+1 e m+1 d —w-m- 1h(az+ b)
+ (= D" wly e ez + d) -+ d

By a simple calculation, we find

Dag = (75) @ =t w—gm = (ML) e
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Hence we have

() v i)

cz+d
m+1 m+1-p b
=N (1) ﬂﬂ)ﬂ@, ezt d -mep((fdﬁ) h)(gz,,t_),
1;0( ) ( p 1771 c’(cz+d) dz cz+ d
This completes the proof. Q.E.D.

Lemma 2.3. Let X be a compact Riemann surface of genus g > 1, let
U = {U,, 2.} be a projective coordinate covering of X such that the transition
functions are given by

_ QusRpt by (aaﬂ baﬁ)
2, = —oBTE ek e SL(2, C),
Cas25 + daﬁ Cop daﬁ ( )

and let 2e H'(X, 0*) be a complex line bundle on X. Then linear differ-
ential operators L, (P|2) is a 2-related semi-canonical form if and only if
coefficients {P, .(z.,)} satisfy in each U,NU,

@11) Poifz) = (ot + d) " Puuf2)
and for m = 3,4, ---, n,
P, (25) = (CasZs 1 dog) ™" (P, o(20)
@12) + 5 - (D) — Dom —2) -+ (m — Dz,
(Custy + APy 2.

Proof. L,(P|z)is a 2" '-related semi-canonical form if and only if in
each U,NU,

dz,
dz,

Ln,ﬁ(Pﬁ|Zﬂ)y - ( ) ZaﬂLn,a(Palza)’za_ﬂly .

Since @,;d.s — bosCay = 1, we have
. 1
dz;  (Cup?p + dop)’
and by Proposition 2.1,
2ag(2) = (Cap?p + dup)" 'eas s
where e, is a complex number.

By virtue of Lemma 2.2, we have
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d )" y n+1< d )"
e w2 + d,
( dz,/ (Coszs + dop)™ ™ =(Cass : dz; Vo

and denoting

(@,=ala—1)---(a— £+ 1),
it follows that
= ()P ) @;‘z;fdaﬁ)n )

(n - l)é D
d \'?
c da - n+2£+1< ) ) .
- ( w525 T ,s) dz, Y
Comparing the coefficient of (d/dz,)’y, we obtain the desired result.
Q.E.D.
LEMMA 2.4. Let F(2) be any polynomial whose degree is less than n.
Then
(2.13) ST(— 1)@( ’Z)F(e) —0.
£=0

Proof. For a non negative integer m less than n, we introduce the
polynomial F,(z) by

d " m
Fm(z> = (7) (1 — 2)
Zz:( 1)Z< )5(5 -1 (b —m+ 1",
Since F,(1) = 0, it follows that
n . n 3

We can now conclude (2.13) by induction on the degree of F(2). Q.E.D.

Proof of Theorem 2.1 By virtue of Lemma 2.3, we have

(dLZﬁYPm,.s(Z,;) = (Cap2s + d,p) 2™ ’;:2 Zi: 1)p+q{p}< ) [;2’7:2 }ﬁ%‘t

=0
«,9 q(c ﬁzﬁ + da )p+q< i ") m—p,a(za)
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N 1 ifp=0
where {p}={(;n>(m_1)...(m_p) ifp>0.

Therefore we have;

p=0 ¢g=0

m—-2 m—£—2 ¢ -
0,,8(25) = (Cap2s + dug)™™" Z > (— 1)P+q{m 5}( 4 A,
(2.14) = p J\q
. . [2m =21 —pl b d p+q< “C?f)é qP

[2m — 2l —p]l q caﬂ (C ﬂz'g + zxﬁ) dzﬂ m- p’f,a(za)

where

A, = l(_ 1)¢ (m—2)!m!@m — ¢ — 2)!

(m—2¢—11(m—0!@2m =3¢~
By a straightforward calculation we obtain; the coefficient of

(cus2s + daﬁ>-2m(‘dd?)sa<za) in 0,(z,)

= Destems+ dor B0 N L) A

= (= Deus(Cass + dug)™ Celm, 5,0 5] (= 1)

@em — ¢ — 2)!

(/—s)'(m—ﬁ—t)'(m—€+t—Fs—1)'
where c(m, s, t) is a constant depending sololy on m, s, t.
Since

m— _ . 7 (2m __ g _2)[ »

Z( )(6—s)'(m—ﬁ~t)'(m—ﬁ+t—}—3—1)‘
~ 1 sy e\@s+ 204 20— 20— 2)!
- L 5e(E)

Qs+ a+2t—4¢—1)!
where a =m —t — s,

and since 2s + 2a + 2t — 4 — 2)!/(2s + a + 2t — £ — 1)! is a polynomial
F(¢) of degree a — 1 with respect to 4, we have

met @m — £ — 9)!
Z( v (Z—s)'(m——ﬂ——t)'(m—ﬂ—i—t—{—s—l)'
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By virtue of Lemma 2.4, if @ > 0 then it follows that
TR 4)F@ =o.
a! = 4

This means that the coefficient of (c.;2; + d.p)*™(d/dz,)’ P, (2.) (m >t + s)
in 0,42, is zero.
We can now conclude

6m,a(za) = (caﬂzﬂ + daﬂ)zmﬁm,ﬁ(zﬁ) .

Conversely if we put,

& (4 ¢ —=Diem—1! ([ d
Pz = & <m> (m — Dl (m+¢— 1)!'( dz, ) . (22

we can verify that the semi-canonical form defined by (2.18) is 2-related
if and only if the equation (2.14) holds. But we have shown that in the
equation (2.14) there are no terms with p + ¢ > 0, hence the right hand
side of (2.14) is equal to

<caﬁzﬁ + daﬁ)_2mﬁm,a(za) = 0m,,3(z;3) .
This completes the proof. Q.E.D.

THEOREM 2.2. Let X be a compact Riemann surface of genus g >1
and for a projective coordinate covering U ={U,, 2,}, let {6, .(2.)} € T'(A, O(k™))
(m=2,38,---,n). In each coordinate open set U,, consider the differential
equation

(L) Bl L)

where {P, (2,)} are defined by

& (¢ —=DI@2m —1)! d \¢-m
P, (z) = ,,Z;‘z (m) (m— 1! (m+¢—1)! ( dZ“) O, o(22) -

Selecting n linearly independent holomorphic solutions ¢, .(2.) -+ ¢, «(22)
of the differential equation (2.15), introduce the vector-valued functions in
each coordinate open set U, as follows
Solya(za)
?2,4(22)
SDa(za) = ’ :

On,o(22)
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hen in each intersection U,N U, there is a unique matrix p,; € SL(n, C)
wch that

GDa(Za) = paﬁ(caﬁzﬁ + daﬂ)l_nsaﬁ(zﬂ)

.16) det [soa<za)£:soa<z.,>, o ( d(i,, ) o] =

where c, is a non zero constant.

‘onversely if holomorphic vector valued functions {¢.2.)} defined in each
rojective open set U, satisfy (2.16), then {0, .(2.)} defined by (2.6) is an
lement of I'(u, O(x™)).

Proof. By Theorem 2.1, the semi-canonical form L,(P|2) is a 2-related
ifferential operator. Therefore if ¢, (2.), - - -, ¢n.«(2.) are n linearly inde-
endent solutions of the differential equation (2.15), 2, .01,.(2.), * - *5 A5, e0n, o(Z)
re linearly independent solutions of (2.15) in U,. Hence there is a non
ingular 7 X n matrix p.; and {p.(2,)} satisfy in U,N U,

Soa(zu) = Paﬁ(caﬁzﬁ + daﬂ)1—7l¢ﬁ(zﬂ) *

ince L,(P|z)is a semi-canonical form, the Wronskian of functions ¢, .(z.),
o2y 5 0nu(2,) 1s constant. Hence the matrix p,, is contained in
‘L(n, C). The converse is obvious from Theorem 2.1. Q.E.D.

3. The transvectant

In this paragraph we shall introduce differential operators called the
ransvectants. The transvectant is the one of basic methods to create
ew covariants from given covariants and is known since 19-th century
n the classical invariant theory, we shall now generalize the classical
ransvectants.

Let & = (U,, z,) be a projective coordinate covering of a Riemann
urface X such that the coordinate transition functions are given by

o= Gt b g o (“aﬂ’ baﬂ) e SL(2, C).
Cupg?s 1+ daﬂ Capy Qap

Let p be a point in X, and consider in various neighborhoods U, of
he point n, X n, matrix valued holomorphic functions f.(z.) such that, if
he point p is contained in U,NU,, {f.(2.)} satisfy;

3.1) fa(za) = (cuﬁzﬁ + daﬂ)_mlAaﬂfﬁ(zﬁ)
where m, is a integer and A,;€ GL(n, C).
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Similarly let {g.(z,)} be n, X n, matrix valued holomorphic functions such
that, in a neighborhood U,NU; of p, {g.(2.)} satisfy

(3'2) gtx(za) = (caﬁzﬂ + daﬁ)-szaﬁgﬁ(z,ﬂ)
where m, is a integer and B,; € GL(n,, C).

DerFiniTION 3.1. Denoting (m), ke {0,1,2, ---} by

mm—-1)---(m—k+1) if >0

(m)"z{ 1 k=0,

assume (m,),(m,), = 0. Then the r-th transvectant {f.(z.), g.(2.)>" of f.(z.)
and g,(z,) is defined as follows

(ful2.), 82.))"(2.)

= 5 o Cas) R gh) e,

where ¢( ) stands for the transposed matrix.

ProposiTioN 38.1. Suppose matrix valued functions f[.(z.), g.(2.) satisfy
(3.1), (3.2), and if (m,).(m,), + 0, then the r-th transvectants {f.z.), 8.(2))"
satisfy the following transformation relation
(3.3) {f22), 820" = (Capzs + daﬂ)zr-(ml+m2)Aaﬁ<fﬁ(zﬁ): gﬂ(zﬁ)>r ‘B, .

Proof. By virtue of (ii) in Lemma 2.2, we have

, ___1_<L)‘

my \da fu(z.)

== Aaﬂ(caﬁzﬂ + daﬁ)u—ml i (— 1)3( g) (d/dzﬂ)l_pfﬂ(zﬁ) czﬁ(caﬁzﬁ + daﬂ)—p ’
#=0 p (my)-p

and

_(ni]’;ji( ddz,, )ega(za)

ey £\ (d]dzy)t-? -
= B,s(Cap2s + dp)" pZJ) (— l)f(p>( / (z;;’zz)g_f*’(zﬁ) CPs(Copp + dap)™? .

Hence, putting
M(f, g) = (f_",)(— 1)’( 2 >(§) (— 1)p< Z) (d/dzﬂ)“pfﬂ(zﬁ)( Cap )p)

¢= = D (my)e-p Cas?p + Cap
=t — 0\ (d[dzg) %1 tgy(2,) C, a
. — 1)q(” ) 5 #\Zp ( 5 ) ) ,
<az=:°( q (m2)r—s—q Cas?p T dup
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we obtain
(fol22)s 8207 = (Cap2y + Aup)” """ A M(f, 8) ' Bas -
We shall show that
M(f, 8) = {f25), 8:zs))" .

Putting £ —p=j,r— ¢ —q==Fk and p + q = s, denote a(j, &, s) by

a(j, k, s) = the coefficient of (— 1)* (d[dz,)'f(z5)(d[dzy)" ‘g5(25) <,,,ﬁ,__>s

(ml)j(mz)kj! k! Cas?p T daﬂ
in M(f, g) .
Then we find
0 if s >0.
This shows
M(f, 8) = {fzp), 85(zs)" . Q.E.D.

By virtue of (ii) in Lemma 2.2, the following proposition is clear.

ProrosITION 3.2. If matrix valued holomorphic functions {f.(z.)} satisfy
the relation (3.1) in each U,N U,, then matrix valued functions (d/dz,)™*'f(z.)
satisfy in U,NUy;

(3.4) (%d‘i )" @) = oz + dyA (E%)’"‘*‘fﬁ(zﬂ).

a

§4. The Eichler cohomology groups

We shall review some basic facts and definitions about Eichler co-
homology groups associated to the given projective structure on the
Riemann surface X. Let % = {U,, z,} be a projective coordinate covering
of X such that the coordinate transition functions are given by

2, =

aaﬁzﬂ + baﬁ (aaﬁ baﬁ

SL(2,C) in U,NU,
cozs ¥ A )6 ( ) in NU,

caﬁ af
and let 2 € H'(X, 0*) be a complex line bundle defined by transition functions
(4.1) Z,,ﬂ(zﬂ) = calgzlg + daﬁ .

For any integer n = 0 consider the subsheaf P,(1-") C @®(2-") consisting
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of holomorphic sections of 2~ which are polynomials of degree < n. If
pe U, is a point of X and fe 0(2""), is a germ of section at p, then f is
represented by a holomorphic function f(z,), and in U,NU, {f(2.,)} are
related by

fﬁ(zﬂ) = (Cnﬂzﬂ + daﬂ)nfa(‘za) .
By Proposition 3.1, we have an exact sequence of sheaves
dn+1
(4.2) 0—> P, ") —> 0(A ") ——> 0(A™**) —> 0 for any n = 0.

From this exact sequence 4.2, we obtain for any integer n = 0 an exact
sequence of complex vector spaces

0 —> I'(X, 04" 2-) -5 HY(X, P,(1-")) —> (X, 012 "))* — >0,

where ['(—)* stands for the dual vector space to I'(—). The groups

H'(X, P, (A ™)) are the Eichler cohomology groups of the Riemann surface
X.

§5. The monodromy representations

We shall investigate flat vector bundles coming from monodromy
representations of the fundamental group of X.

Let {p.(z,)} be the holomorphic vector functions satisfying (2.16) in
U.N U, and denote the Wronskian matrix of ¢.(z,) by F.(2.):

(5.1) F(z) = [o.20) fd‘% oz (L) ez

If p in a point of U,N U,, there is a holomorphic vector valued function
?,4p) such that,

(5.2) F(p)D.s(p) = pusF'(p)  for pe U.NU,.
A05'(=p)
(5.9) ey =| o T
257z

Thus {®@,,(p)} are considered cocycles as describing a holomorphic
vector bundle @, and flat vector bundles {p,;} are analytically equivalent
to @.

We introduce vector valued functions ‘p}(z,) = (p¥.(2.), - - -, ¢¥.(2.) in
each coordinate open set (U, z,) by
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(5.4) tp*(2,) = the n-th row of F,(z,)*.
{¢¥(2,)} satisfy in each intersection U,N U,

(5.5) 02 = 2572 pap) i (Zp) -

Let

0,,4(2) = {012} (1 =i=dimI'(X, 0(*))
0,/2) = {0,, .z} (1=j=dimI'(X, 0k

0,,2) = Oz} (1= k< dim I'(X, 06)

be a basis of the complex vector space I'(X, 0(k*)) D - - - ® (X, 0(k™)), and
let (642), - - -, 0,(2)) be a point in the vector space @~., I'(X, O(™). We
shall introduce local coordinate {---,¢®, ---, ¢, -, ¢, -- -} at the point
(02(2)’ ) 071(2)) in C_BZ@:? F(X’ @(’Cm)) by
(56) { Ty t1(:2)’ Tty t,(i:;)a ) t;cn)’ s } — {02(2’ t)» 03(2’ t): ) 011(29 t)}
where t™ (2 < m < n) are complex numbers such that [#£™]| are small
enough, and

dim I'(X, 0(x™))

0.(z,t) = 0,(2) + > ™0, , 2<m<n).

£=1

Let {p.(z., £)} (vesp. ¢.(2.)) be vector valued holomorphic functions corre-
sponding to the point (0,2, %), - - -, 0.(2, t)) (resp. (0,(2), - --,0,(2) in the
vector space @7 _, I'(X, O(k™)) by Theorem 2.2. Then in each intersection
U,N U, vector valued holomorphic functions {¢.(z,, £)} satisfy;

5.7 PulZar 1) = (CaZs + dog)' " 0us(Dps(25, 1)
Soa(za) t)lt=0 = Spa(za) )
where p,4(t) € SL(n, C), and p,41)|.~0 = Pus-

It is easy to verify that p,,(f) varies complex analytically with the
choice of the parameter ¢ = (--- ™ --.).
We consider semi-canonical forms L (P,(z,,t)|2);

(5.8) L(P.(z2., t)z.) = (éi;)n + g] (’;)Pm(za, t)(-éi,zj)"_[ ,

corresponding to an element (6,2, ?), - - -, 0.(2, t)) € ®~_, I'(X, O(t™)), where
P, (z,,t) are defined by
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&g\ ¢—=1@m— 1 d \m
(5.9) Pudzod) = ; mZ=2 <m> (m—D'(m+ ¢—1)! ( dza)
: (0m,a(za) + tmjomj,a(za))
and

(510) 0m(z’ t) = 077:.(2) + Z tmjamj(z) for m = 2, 3, e,

In each coordinate neighborhood U, with local coordinate z,, select a
point p,, and consider the differential equations

(5.11) L (P2, 1), 2)¥(2er 1) = 0
under the initial conditions;
1 0
F.(p) =
0 1

where p is a point in U, and F, (z,) is the Wronskian matrix of the dif-
ferential equation (5.11).

If U, and W both are chosen sufficiently small, there are unique
holomorphic solutions ¢,(z,, t) satisfying (5.7).

By an easy calculation, we can verify that the vector valued functions
0/0t,,,)0u(Za, )|, =0 satisfy the non-linear differential equations:

(i) 7+ 2 ()Peeg)

wn O ()

DeriniTION 5.1. Lel U = {(U,, 2,)} be a projective coordinate covering
of a compact Riemann surface X, let {¢.(z)} e 'Y, (™)) (m = 2,38, ---, n)
and let {p,(2,)} be vector valued holomorphic functions satisfying the rela-
tion (2.16) in each U,NU,;. We define the matrix valued holomorphic
differential 1-forms #'?(z,) in each coordinate open set U, as follows

ooz = 35 (7)(1) (£ — ! @m — 1! ( 4y

En N/ \m/(m — ! (m+ ¢—1)! \dz,
19 e >( d )q (2.) ‘o2z, .
a a, dza a a. a Q, a
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Lemma 5.1. If p is a point of U,N U,, n X n matrix valued holomorphic
1-forms {65 %z,)} satisfy in U,NU,

02U zp)) = A0.5)05 " (24(D)) -

Proof. Denoting the vector valued holomorphic function A.(z,) by

pi = £ (D))o o (2 s &) o

A straightforward computation shows that

_(n\(n — 1! nm
Alz) = (m)a@——:b! (o2, .2

where (,>»" ™ stands for n — m-th transvectant.
By a property of the transvection, {A4.(z,)} satisfy in U,N U,

AL2) = puscoszs + Ao AL
Applying the relation (5.5), it follows that
Af2) ‘92 = pustas(2)As(25) "05(25)0%5 -
This completes the proof. Q.E.D.

LEMMA 5.2. Let p be a non negative integer, then

_?e(x,tl);;%f n—1 _ Z (— 1)e<p —; z) (p 1— fj x)

where

(92 ) _ Mx—1- fo— L+1)

Proof. Putting

Fia= 5

and

_xx+1)-(x+n-—1)
G, (x) = X% ,,,,,,,,ﬁ!,,’? Trn—2

F,(x) and G,(x) are polymomials of degree n.

We shall prove by induction on n;
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F.(x) = G(x) .
If n =1, the assertion is obvious. For any polynomial p(x), we define
the difference operator 4dp by 4p(x) = p(x) — p(x — 1). Since A(k _Z x) =

(k ; i_{ x>’ we have

AF,(x) = F,_((x), and 4G,(x) = G, ,(x).
By the induction’s hypothesis, 4(F,(x) — G,(x)) = 0. Therefore F(x) — G(x)
must be a constant.
Since

FO = (SE0(M) e+ 0@+ (p+m =0 and GO =0,

the proof is thereby concluded.
The following lemma is an immediate consequence of Lemma 5.2.

Lemma 5.3. Let n and m be positive integers and let p be a non nega-
tive integer, then

. - (%)
B+ it Do+ 4Dt it m
mm+1)---(m+n—1)

(p+1)(p+2) (p+n+m’

DeriniTION 5.2. Let % = {(U,, 2.)} be a projective coordinate covering
of a compact Riemann surface X, let {g.(z.)} e I'(¥, O(x™)) (m = 2,8, ---, n)
and let {p.(z,)} be vector valued holomorphic functions satisfying the rela-
tion (2.16) in each U,NU, We define the matrix valued holomorphic
differential 1-forms {*¢%%(z,)} by

o) = 5 ()(E) e

: [(W&%;)”'”((fd%:)"“goa(zg i) |autzdz.

Moreover we introduce the matrix valued holomorphic functions {B,, .(2.)}
in each U, as follows

B, (2. = lillj( D™ 1( )(6>(n§€—~1)1')27§t2'-?- ;—1);)'

( dza> kqa(z»(»—&g)"'l(({z—a)" pu(2) ‘612 )

(5.14)
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PropositioN 5.1. In each intersection U,N U,, the following relations
hold.

(i) *0%%(z) = Ad (p.)*05 (2

(ii) 69 — *¢l»a = dB,, ,

Proof. First of all, we shall prove

*gle,q — (— n-m__(_zm - 1)'((71, - 1)!)2 n-m
(B15)  *0re) = (= 1)y (R ¢ @)

By virtue of Lemma 5.3 it follows that

IR, fn—m—k 1
2 1)( ) )(e+k+m)(g+k+m+1).-.(z+k4{2ﬁ—1)

(n—k-—DIk+m—1!
m=D'n+m-—1"~ '

Hence we have;

() = 3 i(izmi:szln’;‘ (DM — k=D m+ E — D!

. n—m ﬂgfg)n—m—k L((‘d )70 . . >
( k )( dz, 0z (( gy, ) @)z

On the other hand, the n — m-th transvectant for vector valued func-
tions ¢,(2,) and ¢¥(z,) is given by
{pu2.), 0¥z )>"“”‘

(6.17) = - 1),)2 Z (— D" "n—k—D'(m+ k— 1!

(3G e () )

comparing (5.16) and (5.17), we obtain (5.15).
By a property of the transvectant, we conclude

(5.16)

“0ip(z,) = Ad (0,)*077(z,)
By a direct computation, one can verify the part (ii). Q.E.D.

We denote by Ad,p the flat vector bundle over X defined by the
transition functions Ad,p,, acting on the space of n X n matrices of trace
Zero.

If we normarize the vector valued function ¢,(2,) so that the Wronskian
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matrix F(z,) of ¢(z,) is equal to the unit matrix at a point p in U,, from
(5.17) (resp. (5.13)) it follows that

T,(*6%7(2)) =0 (resp. T,(0.79(z.) = 0).

Therefore matrix valued holomorphic 1-form *6L91 (resp. 6'%) is a Prym
differential contained in the space I'(X, 0"°(Ad, p)).

LemMmaA 5.4. Let {§%'"(z,)} be matrix valued holomorphic differential
1-forms in each coordinate open set (U, z,) by (56.13), and after passing
to a refinement of the covering U if necessary, select holomorphic matrix
valued functions G(z,) € OF™ such that

— dG(z,) = 6%’ z,) and G(p.) =0
where p, is a point in U,.

Then the following variational formulas hold in each U,;

(5.18) aita* ¢a(zay t)]::o = Ga(za)goa(za) .

Proof. Since the vector valued functions (3/0¢, )02, 1)|.-, satisfy the
differential equation (5.11) in U,, an easy calculation shows

0

m

020 Dlico = (—L 0.0, 0,",.]) ol2) . QED.

We shall consider the complex variety V = N/SL(n, C);
N = {()(19 ) Xg) Yly T Yg)e SL(na C)2g][X1, Y1]7 ) [Xg’ Yg] = 1}

where [,] stands for the commutation and SL(n, C) acts on N by the
inner automorphisms. By Theorem 2.2, any element of @7 _, I'(X, O(x™))
defines a flat vector bundle {p,;} on X.

We define the complex analytic mapping

6: & I'X, 0¢™) —> V
(5.19) =2

[ w

(02’ Y 0m) — (P(‘h), ) P(O'g), p(fl)y ) p(fg) mod SL(n’ C)

where p denotes the representation associated with the flat vector bundle
defined by the transition functions {p,}-

TueoreMm 5.1. Let {U,, z,} be a projective coordinate covering of a
Riemann surface X, and let {p,,(t)} be cocycles defined by (5.7), then the
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following variational formulas hold in each intersection U,N Us;

05D o Paﬂ(t)lt -0 = Ad (0;)G.(2) — Gy(z,)
1 <j < dim I'(X, O0(™) .

Proof. Since ¢ (2., t) = 22" p.s()pa(25 t), we have

9
azaat _Zn 1Lk l 4 ZZ a )t
6tm, PolZas D10 ot Oli=00s(25) + 225" 00s— at ~ (25 D -

mj m j

By Lemma 5.2 it follows that

n - 0 -
Rﬁa 1Pa,§ at - SDa(Za; t)!::o = PaplGa(za)PaﬁSDﬂ(Zﬂ)

mj

and
0
'ar‘ﬁoﬁ(zﬁ’ Do = Ga(25)04(25) -
Hence we can conclude
Paﬁ(t) atﬁ — paﬁ't 0905(2;3) = (Ad (Pn NG.(z,) — ﬁ(zﬂ))ﬁoﬂ)(zﬁ) .
mj
This completes the proof. Q.E.D.

We shall investigate the differential equation (5.11) in a small neigh-
borhood of the origin in the parameter space ¢ (see (5.6)).

LeEmma 5.5. Let X(2), Y(2) be vector valued functions defined as follows
X@) = |20, Y@ =|(—1)%2@

where a =0,1,2, ---,n — 1 and 2 = z%al.
We introduce the n X n matrix valued function M,.,(z) by
M, .(2) = (X(2), Y(e))" ™

where {, "™ stands for the n — m-th transvectant.
Then we obtain;

(1) the maximum degree of components in M, ,(2) is equal to 2(m — 1)
2 Tr (M, (2), M, (W) = c,d;(z — w)**?
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where 9,, is the Kronecker delta and c, is a non zero rational constant
dependent sololy on (i, n).

Proof. From definition the following properties hold

. az+ b\ _ 1-n
(i) X(_cz a d) — (cz + d)"A,X(2)

(ii) Y(‘c‘zi Z) = (cz + d)'" LA Y(2)

where ¢ = (z 3) e SL(2,C) and ¢ — A, is the n-th symmetric represen-

tation of SL(2, C).

By virtue of Proposition 3.1. we have

M2 = (o2 4 d)y 2 Ad (ADM, (@)
cz+d

In particular, putting ¢, = <(1) Il)> (pe(), 0, = (__(1) (1)) we have
(5.20) M, .(z + p) = A, M, (2)A;}

and

(5.21) M, . (—1z) = z*™ DA, M)A} .

It follows from (5.20) that the maximum degree d of components in the
matrix M, .(2) is not greater than 2(m — 1). If d < 2(m — 1), again by
(5.20) we have M, ,(0) = 0. Since a straightforward computation shows
that the (n, n — m + 1) component in the matrix M, ,(2) is not zero, the
maximum degree of components in the matrix M, ,.(2) is equal to 2(m — 1).
From (5.20), (5.21), for any non zero complex numbers z, w we have

Tr (M,,«(2), M,,.(w)) = Tr (M, .(z — w), M,,,.(0)) .
Tr (Mn,z(— 1/2): Mn,k("‘ l/w)) = z=m-Dy-2E-D Ty (Mn,i(z)’ Mn,k(w))

T (0, (Y 2), MO = Te (M~ 12), Moo 1)

Hence we conclude;
Tr (M,,:(2), M, (w)) = cd;(z — w)**~?

where ¢, is a constant.
We shall show that the constant c, is not zero.

By a direct computation the (p, @) component M, .(2) in the matrix
M, .(2) is given as follows,
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M@= B o(7)(2)

. (Z _ 1)!(2m - 1)!_<g + q _‘B__ 1)z(m+q—p—1)

(m — 1! (m+ ¢ —1)! qg—1

where we denote for any integer ¢

ze
20 — {7{ ¢>0

0 =<0

Since the degree of the (p, ¢) component in the matrix M, ,(2) is m — 1 if
and only if p = ¢, the coefficient of 2"~'w™-! in the polynomial Tr (M, ,.(2),
M, ,(w)) of 2 variables z, w is equal to

e T e )
Since

() o ol e~y

= B0 ) ety =y
- (n)(2m —D!  (n—1D!

m/ (m — D! (n+m—1)!

the coefficient of z"~'w™-' in the polynomial Tr (M, .(2), M, .(w)) is not
zero. This means that the constant c¢, is not zero. Q.E.D.

Let us introduce vector valued holomorphic functions X.(z,), Y.(z.),
M, .. (2, in each projective coordinate open set (U, z,) by

Xa(za) = X(Za), Ya(za) = Y(Za) and Mn,m,a(za) = Mn,m(za) .

Then {X,(z,)} correspond to semi-canonical form

Lop.]2) = ( d‘; )

and Y,(z,) = Xi(z.).
By virtue of Proposition 5.1 for any element 6, (z.) € I'(%, O(x™)),

(5.22) (M., m,o(2)0n,.(2.)) € T'(A, Ado o)

and
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(5'23) Tr (Mn,m,a(za)y Mn,e,a(wa)) == cmam,g(za —_ wa)z(”“” .

DeriniTION 5.3. The C-linear mapping B, from the complex vector
space of holomorphic m-differentials I'(X, 0(x™)) to the vector space
I'(X, 0"°(Ad, p))[dI'(X, O(Ad, p)) is defined by

Bn: I'(X, 0(™) —> I'(X, 0~(Ad, p))/dI"(X, O(Ad, p))
{02} = (M, (2001, (2)}/mod AT'(X, O(Ad, p)) .

THEOREM 5.2, Let @ be the complex analytic mapping defined by (5.19);
6: @ I'X, 0¢™) —> V
m=2

and let p be the n-th symmetric tensor representation of the fundamental
group n(X). Then the mapping 6 is non-singular at the origin (0, ---,0)
e @ I'(X, 0(c™)) and the tangent space to the image at the point pc V can
be identified with the (n* — 1) (g — 1)-dimensional subspace of H'(X, Ad,p)
consisting of the period classes of the Prym differentials I'(X, 0"°(Ad, p)).

Proof. By virtue of Lemma 5.1 and Theorem 5.1, the tangent vector

puit) 7 pus(D],-o & H'(X, (Ada )
mj
is equal to the period class of the Prym differential {M, ..(2.)0,. (2.)} up to
a non-zero constant. By (5.23) and recalling {6, .}(1 < j < dim I'(X, 0(c™))
is a basis of I'(X, O(x™)), we can conclude that the image in H'(X, Ad, p) of
the mapping on the tangent space induced by the mapping 6: ® I'(X, 0(x™))
—V is the space of period classes of the Prym differentials I"(X, 0"°(Ad, p)).
Since it follows from the Riemann-Roch theorem that

dim @ I'(X, 0(™) = (n* — 1)(g — 1)

and
dim I'(X, ¢"°(Ad, p))/dT"(X, O(Ady p)) = (n* — 1)(g — 1),
the mapping € is non-singular. This completes the proof. Q.E.D.

By Theorem 5.2, the mapping

@ Ba: ® (X, 0(™)) 1; (I{f(}?l’(‘;((i? (;)))

is an isomorphism. Hence the following diagram holds:
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0—> éi} I'X, 0(x™) —> @ H'(X, Py_iy(~ ™ ")) —> AI(X, O(k™))* —> 0

UD Bn UDBE
TEOGBLD gy pg,p s [TE BT,
dr'(X, 6(Ad, p)) dr'(X, 0(Ad, )

where lows sequences are exact and [ ]* stands for the dual vector space.
Hence two vector spaces @ H(X, P,,,_,(t™")) and H'(X, Ad, p) are canoni-
cally isomorphic. (See [4], [6])
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