ASYMPTOTICS OF TWO INTEGRALS FROM OPTIMIZATION THEORY AND GEOMETRIC PROBABILITY

D. J. GATES,* CSIRO Division of Mathematics and Statistics

Abstract

Asymptotic series are derived for two integrals using a Gaussian identity and Laplace's method, demonstrating an improvement over earlier methods.

LAPLACE'S METHOD; OPTIMIZATION

Anderssen et al. (1976) obtain various bounds and approximations for the expected distance

(1)
$$m_k = \int_0^1 \cdots \int_0^1 (x_1^2 + \cdots + x_k^2)^{\frac{1}{2}} dx_1 \cdots dx_k$$

from the origin of a point uniformly distributed in the cube $[0, 1]^k$. They evaluate m_1 , m_2 and m_3 exactly. Otherwise their computationally most efficient formula, by far, is the asymptotic series

(2)
$$m_k = (k/3)^{\frac{1}{2}}(1 - 1/10k - 13/280k^2 - 101/2800k^3 - 37533/1232000k^4) + O(k^{-\frac{9}{2}})$$

as $k \to \infty$. Terms up to k^{-3} give, for example, m_4 accurate to five figures, m_{10} accurate to six figures and m_{20} accurate to seven figures. Their derivation of (2) is, however, cumbersome. We give a simple derivation based on Laplace's method.

The authors also study the expected interpoint distances

(3)
$$M_{k} = \int_{0}^{1} \cdots \int_{0}^{1} \{x_{1} - y_{1}\}^{2} + \cdots + (x_{k} - y_{k})^{2}\}^{\frac{1}{2}} dx_{1} dy_{1} \cdots dx_{k} dy_{k},$$

but do not give an asymptotic series like (2), presumably because of the work required using their method. We give a simple derivation of such a series, again using Laplace's method.

Since

(4)
$$\lambda^{\frac{1}{2}} = (2/\pi)^{\frac{1}{2}} \lambda \int_0^\infty ds \, \exp\left(-\frac{1}{2} \lambda s^2\right),$$

we can write

(5)
$$m_k = (2/\pi)^{\frac{1}{2}} k \int_0^\infty f'(-\frac{1}{2}s^2) f(-\frac{1}{2}s^2)^{k-1} ds$$

908

Received 28 August 1985.

^{*} Postal address: CSIRO Division of Mathematics and Statistics, GPO Box 1965, Canberra ACT 2601, Australia.

where

(6)
$$f(t) = \int_0^1 \exp(tx^2) \, dx.$$

Since f(t) has a maximum at t = 0, and $f'(0) = \frac{1}{3}$, we write

(7)
$$f(t) = \exp(t/3) \int_0^1 \{1 + t(x^2 - \frac{1}{3}) + \frac{1}{2}t^2(x^2 - \frac{1}{3})^2 + \cdots \} dx$$
$$= \exp(t/3)(1 + 2t^2/45 + \cdots).$$

Similarly

(8)
$$f'(t) = \exp(t/3)(\frac{1}{3} + 4t/45 + \cdots).$$

Finally

(9)
$$m_{k} = (2/\pi)^{\frac{1}{2}} k \int_{0}^{\infty} \exp(-ks^{2}/6)(\frac{1}{3} - \frac{2}{45}s^{2} + \frac{1}{90}ks^{4} + \cdots) ds$$
$$= \left(\frac{k}{3}\right)^{\frac{1}{2}} (1 - 1/10k + \cdots).$$

Turning now to (3) we have, similarly,

(10)
$$M_{k} = (2/\pi)^{\frac{1}{2}} k \int_{0}^{\infty} g'(-\frac{1}{2}s^{2}) g(-\frac{1}{2}s^{2})^{k-1} ds,$$

where

(11)
$$g(t) = \int_0^1 \int_0^1 \exp(t(x-y)^2) \, dx \, dy,$$

which has a maximum at t = 0, where $g' = \frac{1}{6}$. Thus we write

(12)
$$g(t) = \exp(t/6) \sum_{n=0}^{\infty} t^{n} I_{n}.$$

where

$$I_n = \frac{1}{n!} \int_0^1 \int_0^1 \{(x-y)^2 - \frac{1}{6}\}^n \, dx \, dy,$$

and

(13)
$$g'(t) = \exp(t/6) \sum_{n=0}^{\infty} t^n J_n,$$

where

$$J_n = I_n / 6 + (n+1)I_{n+1}.$$

Then $I_0 = 1$, $I_1 = 0$, $I_2 = 7/360$, $I_3 = 11/5670$, $J_0 = 1/6$, $J_1 = 7/180$ and $J_2 = 137/15120$. Now putting (12) and (13) in (10) and using standard formulae for moments of a normal density gives

(14)
$$M_k = (k/6)^{\frac{1}{2}}(1-7/40k-65/896k^2+\cdots).$$

And erssen et al. (1976) compute M_1 , M_2 exactly and M_3, \cdots, M_{10} by a slowly

convergent series method. They also obtain an upper bound

(15)
$$M_{k} \leq (k/6)^{\frac{1}{2}} \{1 + 2(1 - 3/5k)^{\frac{1}{2}} / 3\}^{\frac{1}{2}}$$

The table lists the M_1, \dots, M_{10} from Anderssen et al. and their deviations from (14) (as shown) and (15) denoted $(14) - M_k$ and $(15) - M_k$ respectively. This illustrates the accuracy of (14), for k not too small, while its efficiency is obvious.

k	$M_{ m k}$	$(14) - M_k$	(15) – M _k
1	0.33333	-0.026	0.021
2	0.52141	-0.002	0.024
3	0.66167	-0.001	0.020
4	0.77766	-0.0006	0.017
5	0.87853	-0.0003	0.015
6	0.96895	-0.0001	0.014
7	1.05159	-0.00007	0.013
8	1.12817	-0.00004	0.012
9	1.19985	-0.00002	0.011
10	1.26748	-0.00001	0.010

References

ANDERSSEN, R. S., BRENT, R. P., DALEY, D. J. AND MORAN, P. A. P. (1976) Concerning $\int_0^1 \cdots \int_0^1 (x_1^2 + \cdots + x_k^2)^{\frac{1}{2}} dx_1 \cdots dx_k$ and a Taylor series method. SIAM J. Appl. Math. **30**, 22–30.