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Tensorial metasurface antennas radiating
polarized beams based on aperture field
implementation
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This paper presents a procedure for the design of tensorial metasurface antennas radiating polarized beams through aperture
field synthesis. The aperture field is generated using the surface wave to leaky wave conversion resulting from metasurface
modulation. The design procedure of the feeder is presented with a description of the geometrical parameters affecting the
antenna matching. Numerical solutions for single beam and multi-beam metasurface antennas working respectively, at
12.25 and 20 GHz are presented. In addition, a metasurface prototype working at 12.25 GHz is manufactured and measured.
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I . I N T R O D U C T I O N

In recent years, great interest was given to the realization of
low-cost light antennas with high performances in order to
extend their use to the public sector. Among the possible can-
didates, modulated metasurface antennas give interesting per-
formances with a relatively low cost and complexity of
production. Metasurfaces are two-dimensional structures
consisting of sub-wavelength elements, printed over a
grounded dielectric slab. By acting on the size, shape, and
orientation of the printed elements, the metasurfaces are
modulated. Several examples of such modulated metasurfaces
have been designed and presented in the literature [1–7].

The propagation of surface waves (SW) along metasurfaces
can be controlled by introducing a modulation of the metasur-
faces. In addition, a proper choice of the modulation para-
meters leads to the generation of radiated leaky-waves (LW)
propagating away from the metasurface. Moreover, the meta-
surface modulation parameters can be used to control the
properties of the generated LW (amplitude, phase, and polar-
ization). In [7–9], a method for the generation of aperture field
distributions using modulated tensorial metasurfaces was pre-
sented. In these articles, a wide range of radiation pattern was
achieved with a validation using numerical simulations.

This paper is an extension of [9] for which feeder design
and experimental results have been added. In Section II, the

theoretical procedure for the generation of aperture field dis-
tributions using modulated metasurfaces presented in [7] is
resumed. Section III presents the design procedure of the
feeder as well as the geometrical parameters affecting the
antenna matching. In Section IV, the aperture generation pro-
cedure is validated through numerical simulation of a single
beam and a multi-beam metasurface antenna working at
12.25 and 20 GHz, respectively. Simulation results are com-
pared with theoretical radiation patterns. Finally, a metasur-
face prototype, operating at the frequency f ¼ 12.25 GHz, is
manufactured and measured in Section V. Conclusions are
drawn in Section VI.

I I . F O R M U L A T I O N

The general geometry is depicted in Fig. 1. A feeder excites a
cylindrical surface wave propagating above a metasurface
realized by printed conducting elements above a grounded
dielectric substrate. The physical properties of the metasurface
are described in terms of equivalent surface tensorial imped-
ance Zs. This latter is defined as the ratio between tangential

electric (Et) and the magnetic (Ht) fields at the surface bound-
ary S, namely:

Et(r′)
∣∣
r′[S = Zsn̂ × Ht(r′)

∣∣∣
r′[S

= ZsJ(r′), (1)

where r′ = x′x̂ + y′ŷ is a point on the antenna surface, n̂ is the
vector normal to the surface S, and J(r′) = n̂ × Ht(r′)

∣∣
r′[S is

the equivalent surface current.
Under the assumption that the metasurface is composed of

reciprocal and lossless materials, the surface impedance is a
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purely imaginary symmetric tensor [10]. Thus, equation (1)
reduces to:

E1

E2

[ ]
= j

X11 X12

X12 X22

[ ]
J1

J2

[ ]
(2)

For this kind of structures, the dominant mode is a hybrid
EH surface wave mode [11]. The magnetic field above the
metasurface will be of the general form [7]:

Ht(r′) = I(r′) e−jksw (r′)·r′ ĥ(r′) (3)

where I is the field amplitude, ĥ is the magnetic field polariza-
tion unit vector, ksw = ksw

t k̂
sw

and ksw
t are the wave vector and

the propagation constant, respectively.
The propagation constant ksw

t is obtained using transverse
resonance technique [11, 12]. It should be noted that Zs

depends on the considered wavenumber and propagation dir-
ection, namely

ksw = ksw
t (v,w)(x̂ cos(w) + ŷ sin(w)), (4)

where ksw(v, w) is the wavenumber associated with the dom-
inant mode propagating along the direction k̂

sw
t defined by the

angle w (Fig. 1) at the angular velocity v.
A sinusoidal modulation of the surface reactance compo-

nents along the direction of propagation leads to the gener-
ation of an infinite number of Floquet-modes [12]. We
consider a reactance components variation of the form :

Xij(x) = �Xij 1 + Mij cos
2p
pij

x

( )[ ]
, (5)

where �Xij, Mij, and pij are the average reactance, the modula-
tion index and the periodicity of the ij component,
respectively.

For small modulation indices, modes of order 21 are pre-
dominant [12]. Under this condition, LW can be generated if
the quantity ksw

t − (2p/pij) is smaller than the free space
propagation constant k0. The generated LW will then have

the following form [7]:

ELW
t = ELW

1
ELW

2

[ ]

= j

M11

2
�X11J1e

−j
2p
p11

x
+ M12

2
�X12J2e

−j
2p
p12

x

M21

2
�X21J1e

−j
2p
p21

x
+ M22

2
�X22J2e

−j
2p
p22

x

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦, (6)

A) Aperture field generation:
The idea is to control this LW using the modulation para-
meters as proposed in [7], in order to generate an arbitrary
objective aperture field distribution of the form:

Eobj
t =

Eobj
1

∣∣∣ ∣∣∣ej arg(Eobj
1 )

Eobj
2

∣∣∣ ∣∣∣ej arg(Eobj
2 )

⎡
⎣

⎤
⎦ =

Eobj
1

∣∣∣ ∣∣∣Cobj
1

Eobj
2

∣∣∣ ∣∣∣Cobj
2

⎡
⎣

⎤
⎦ = Eobj

t

∣∣∣ ∣∣∣Cobj. (7)

The phase distribution of the LW is controlled by acting on
the periodicity of the modulation using holography principle.
The holography principle is applied in a local framework for-
mulation in order to obtain the desired phase distribution
while at the same time ensuring the anti-Hermitian property
of the impedance tensor [7]. This leads to the following
condition:

Zs(r′) = R(r′)−1 Xloc
11 Xloc

21
Xloc

21 Xf

[ ]
R(r′), (8)

where Xloc
n1 = �Xloc

n1 1 + Mloc
n1ℑ Cloc

obj,n ·Cloc∗
inc,1

( )[ ]
, the loc super-

script indicates that the quantity is written in the local frame-
work, R(r′) is the transformation matrix between the local
and the global framework, and Xf is a free parameter [7].

Equation (8) is obtained by defining the incident phase
wave Cinc as the phase of the current J, and the objective
phase wave Cobj.

Then, each amplitude component is obtained imposing the
product between the modulation index and the average
impedance to be proportional to Eobj

i

∣∣∣ ∣∣∣, yielding [7]:

�Xloc
11 r′
( )

Mloc
11 r′
( )

Hloc
2 r′
( )∣∣ ∣∣/ Eloc

obj,1 r′
( )∣∣∣ ∣∣∣

�Xloc
12 r′
( )

Mloc
12 r′
( )

Hloc
2 r′
( )∣∣ ∣∣/ Eloc

obj2 r′
( )∣∣∣ ∣∣∣

⎧⎨
⎩ . (9)

B) Objective aperture field calculation
In this paper, we focus on the generation of single or multiple
beams with arbitrary polarizations and directions of radiation.
A single linearly polarized beam pointing at u0, f0 can be
obtained using the following aperture distribution [7–9]:

Eobj
t (r′) = e−jk0 sin u0 cosf0x′+sin u0 sinf0y′( )ê(f0), (10)

where the amplitude is constant over the aperture and the

Fig. 1. Metasurface geometry and LW generation.
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polarization of the radiated beam is controlled by ê(f0) as:

ê(f0) =
cosf0x̂ + sinf0ŷ for û polarization

− sinf0x̂ + cosf0ŷ for f̂ polarization

{
.

(11)

A circularly polarized beam can then be generated by
superposing two orthogonal linearly polarized beams with a
p/2 phase shift. In addition, multiple beams can be obtained
by superposing the field distribution corresponding to each
desired beam. This leads to [7–9]:

Eobj
t (r′) = 1

Nbeams

∑Nbeams

k=1

Ek
t (r′), (12)

where Nbeams is the number of beams and Ek
t (r′) is the object-

ive field corresponding to each individual beam.

I I I . M E T A S U R F A C E
I M P L E M E N T A T I O N

The surface impedance variation obtained using equations (8)
and (9) is implemented using a square lattice of sub-
wavelength metallic patches printed over a grounded dielec-
tric substrate [1–9]. The unit cells consist of a circular patch
with a v-shaped slot (see Fig. 2). The geometry is described
by the following parameters: the spatial periodicity d

′
, the

patch diameter d, the slot width g, and opening angle u,
and the patch rotation c. A database of the impedance
tensor elements variations with respect to the unit-cell para-
meters is generated in order to implement the desired react-
ance distribution.

Figure 3 describes the feeding structure generating the
cylindrical wave excitation. The feeder consists of a circular
patch of radius r2 with an annular slot of inner radius r1.
The slot is also described by its thickness e (Fig. 3(b)).

For a fixed substrate of permittivity 1r and thickness h, the
antenna adaptation is influenced by the parameters r1, r2, and
e. The resonant frequency is mainly controlled using the outer
radius r2. On the other hand, the parameters r1 and e have
more influence on the level of the scattering parameter |S11|
at the resonant frequency.

Figure 4 represents the variations of the scattering param-
eter |S11| in dB with respect to the frequency for different
values of the outer radius r2. The metasurface is printed on
a substrate Rogers TMM6 of thickness 1.27 mm and relative

permitivity 6. The curves were simulated using the software
HFSS for the parameters (r1;e) ¼ (0.8;0.25) mm. It can be
seen from the figure that the resonant frequency is shifted
by varying the parameter r2.

In Fig. 5 the variation of the parameter |S11| in dB for dif-
ferent values of the inner radius r1 is presented. It can be seen
from the figure that the parameters mainly affects the level of
the scattering parameter at the resonant frequency even
though it produces a slight frequency shit. The latter has to
be corrected by readjusting the outer radius r2. A similar
behavior is observed with the parameter e.

Fig. 2. Unit cell design: circular patch with a v-shaped slot.

Fig. 3. Structure generating the cylindrical wave excitation. (a) Position of the
feeder. (b) Structure of the feeder.

Fig. 4. Metasurface adaptation with respect to the outer radius r2 for a
substrate Rogers TMM6 of permittivity 6 and thickness 1.27 mm.
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I V . N U M E R I C A L R E S U L T S

Following the design procedure developed in Sections II
and III, two metasurface antennas able to radiate a broadside
Rright-hand circularly polarized (RHCP) beam at 12.25 GHz
and two independent beams at 20 GHz were designed.

The broadside RHCP antenna was designed for a substrate
FR4 of thickness 1.6 mm and relative permittivity 4.4 with a
diameter of 13l. The objective aperture field distribution
was calculated with MATLAB using equations (10) and
(12). Its representation in the cylindrical coordinates is
given in Fig. 6. The corresponding local reactance tensor com-
ponents Xloc

11 (r′) and Xloc
12 (r′) are illustrated in Fig. 7.

Using an in-house MATLAB code based on the proposed
procedure, the metasurface giving the objective aperture
field distribution was generated. The metasurface was then
imported in the simulation software ANSYS Designer in
order to simulate the radiation pattern. Figure 8 represents
the circular components of the simulated far-field radiation

pattern for the f ¼ 08 cut-plane. The left-hand circularly
polarized (LHCP) component is represented in red while
the RHCP component is represented in blue. We can see
from the figure that the metasurface radiates the desired
RHCP beam at broadside with a cross-pol level of 230 dB.

Fig. 5. Metasurface matching with respect to the inner radius r1 for a substrate
Rogers TMM6 of permittivity 6 and thickness 1.27 mm.

Fig. 6. Aperture field distribution for the broadside RHCP radiation pattern.
(a) Eobj

r

∣∣∣ ∣∣∣; (b) arg(Eobj
r ); (c) Eobj

f

∣∣∣ ∣∣∣; (d) arg(Eobj
f ).

Fig. 7. Variations of the reactance tensor components for a broadside RHCP
metasurface. (a) Xloc

11 (r′) (V); (b) Xloc
12 (r′) (V).

Fig. 8. Far-field radiation pattern (normalized) in dB for the f ¼ 08 cut-plane.
The RHCP component ERHCP is given in solid line while the LHCP component
ELHCP is given in dashed lines.
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As a second example, an antenna radiating the first beam at
(u0, f0) ¼ (308, 08) with linear polarization along the f-axis
and a second beam pointing at (u0, f0) ¼ (458, 1358) with
RHCP has been considered.

The metasurface has a radius of 5l and has been realized
printing the conducting elements on a Rogers TMM6 sub-
strate of thickness 1.27 mm and relative permittivity 6. The
incident surface wave with a cylindrical wave front was gener-
ated using a feeder of parameters (r1;r2;e) ¼ (0.8;3.5;0.25) mm
and placed at the center of the metasurface.

Figure 8 represents the aperture field distribution (phase
and amplitude) required to obtain the desired two beams radi-
ation pattern in cylindrical coordinates. The aperture distribu-
tion has been calculated with MATLAB using equations (10)
and (12).

The corresponding local reactance tensor components
Xloc

11 (r′) and Xloc
12 (r′) are illustrated in Fig. 9. As it can be

seen from Fig. 10, the complexity of the aperture distribution
needs a strict control of the phase and amplitude of the gen-
erated LW.

A metasurface having the corresponding impedance values
has been generated using our in-house MATLAB code and
simulated on the software ANSYS Designer. The designed
structure is represented in Fig. 11 and the corresponding far-
field radiation patterns for the f ¼ 08 and f ¼ 1358 cut-
planes are given (in black) in Fig. 12. The simulated radiation
pattern is compared with radiation given by the perfect con-
tinuous objective aperture field distribution (in blue) and
with the free-space radiation resulting from the equivalent
magnetic currents (in red).

As can be seen from Fig. 12, the far field radiated by
the metasurface antenna corresponds to the objective multi-
beam radiation pattern and is in close agreement with the the-
oretical results. As expected, we obtained the first beam with
linear polarization along the f axis, pointing at u ¼ 308,
f ¼ 08, as well as a second beam, with RHCP pointing at
u ¼ 458 and f ¼ 1358. The cross-polarization levels are
equal to 216 dB for the first beam and 220 dB for the second.

V . E X P E R I M E N T A L R E S U L T S

In this section, a prototype metasurface antenna designed
using the presented procedure is measured. The designed
antenna radiates a RHCP broadside beam at an operating fre-
quency of 12.25 GHz (Ku band). The manufactured circular
metasurface of radius 13l was printed on a substrate FR4 of
thickness 1.6 mm and permittivity 4.4.

For the considered substrate, the antenna is matched with a
feeder of parameters (r1;r2;e) ¼ (0.8;3.5;0.25) mm. Figure 13
presents the measurement and simulation of the variation of
the scattering parameter |S11|(dB) with respect to the fre-
quency. The manufactured antenna is represented in the
inset of the figure. It can be seen from the figure that the
antenna is matched at the desired frequency. In addition, a

Fig. 9. Aperture field distribution of the two beams metasurface antenna [9].
(a) Eobj

r

∣∣∣ ∣∣∣; (b) arg(Eobj
r ); (c) Eobj

f

∣∣∣ ∣∣∣; (d) arg(Eobj
f ).

Fig. 10. Variations of the reactance tensor components for a two beams
metasurface [9]. (a) Xloc

11 (r′) (V); (b) Xloc
12 (r′) (V).

Fig. 11. Metasurface structure on ANSYS Designer.
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close agreement is found between the simulation and the
measurement.

The far-field radiation pattern of the manufactured antenna
was simulated in Designer and measured in the GeePs labora-
tory in France. The simulated radiation pattern (in red) and
the measurement results (in black) for the f ¼ 08 cut-plan
are presented in Fig. 14 at a working frequency of
12.25 GHz. The RHCP components are represented by solid
lines while the LHCP components are presented in dashed

lines. It can be seen from the figure that the desired RHCP
beam is radiated at broadside with a measured cross-pol
level of 220 dB. In addition, the measured side lobe level is
227 dB. A close agreement is obtained between the measure-
ment and the simulation in the region of the principal lobe.
The discrepancy outside of the lobes is probably due to the
fact that the dielectric is assumed infinite in the simulations
using Designer. There is a, therefore, discontinuity in the
structure at the end of the metasurface. In addition, due to
the complexity of the structure, the mesh quality is signifi-
cantly limited by the computer performances.

V I . C O N C L U S I O N

In this paper, previous work on the generation of aperture field
distribution using modulated tensorial metasurface is extended.
The design procedure of the feeding structure and the antenna
matching parameter are presented. The proposed method is
validated with numerical simulations by comparison with
theoretical radiation of perfect aperture field distribution.

Fig. 12. Far field radiation pattern in dB. (a) f ¼ 08 cut-plane Ephi. (b) f ¼ 08
cut-plane Etheta. (c) f ¼ 1358 cut-plane ELHCP. (d) f ¼ 1358 cut-plane ERHCP.

Fig. 13. Simulation and measurement of the scattering parameter |S11|(dB)
with respect to the frequency.

Fig. 14. Simulation (in red) and measurement (in black) of the circular
components of the far field radiation pattern (normalized) for the f ¼ 08
cut-plan. Solid lines represent RHCP components and dashed lines
represents LHCP components. The working frequency is 12.25 GHz.
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In addition, an antenna prototype is manufactured and mea-
sured giving good agreement with simulations results in term
of scattering parameters and radiation pattern.
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