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Abstract. Electrospray ionisation has revolutionised mass spectrometry. Coupled to high mass
resolution, it provides the stoichiometric formula of a lot of molecules in a mixture. The link
between the mass spectrometry data and the chemical description relies on an interpretation of
the measured masses. We present here the tools and tricks developed to exploit Orbitrap mass
spectra. This piece of work focuses on the numerical method to assign a molecular formula to
a measured mass. The problem is restrained to the solving of the Diophantine equation where
the constant coefficients are stoichiometric groups. Peculiar case of a set of convenient groups is
given with the chemical constraints it brings to the problem.
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1. Introduction
Planetary and earth science samples like oil (Kozhinov et al. (2013)), Titan ana logs

(Pernot et al. (2010)), cometary analogs (Danger et al. (2013)) were extensively studied
with Orbitrap instrument (Figure 1).

The Orbitrap is a Fourier Transform mass spectrometer designed by Alexander
Makarov (Makarov (2000)) and exploited during the mid 00’s (Makarov (2006)). It deliv-
ers a mass resolution of m

Δm � 105 for a measured mass at 400u. The resolution decreases
with mass in 1√

m
. The capability of resolving every molecular mass in a mixture depends

on its peaks density, which is unknown a priori. Thereafter, we assume that ions are
produced by electrospray ionisation (Yamashita & Fenn (1984)) and that the mass spec-
trometry is the one of molecules in the mixture, modulo the addition or subtraction
of an integer number of protons. Our method applies to molecular and radical ions
alternatively.

The higher the resolution, the higher the number of detected peaks that can be inter-
preted as molecular masses. Independently, the number of possible different formula that
are in an interval around a given mass increases with m. In order to cope with the combi-
natorial explosion of the masses cardinal and the loss of resolution, a series of numerical
recipes and assumptions must be made. In the review (Meija (2006)), the author makes
a pretty much exhaustive list of mathematical tools that have an implication in the data
analysis. A software suite that has been developed at IPAG since 2010 assembles several
algorithms in order to produce an integrated environment to handle FT-MS data. This
piece of code is called ATTRIBUTOR. The improvement proposed here is a method that
computes all the masses that match the measurement at the natural number level. To do
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Table 1. Masses of interest (u).

Element Mass Groups Mass
1H 1.007 825 032 23 12C1H2 14.0156500645

12C 12 14N1H 15.01089903666
14N 14.003 074 004 43
16O 15.994 914 619 57

Figure 1. Typical Orbitrap mass spectrum of Titan analogs.

so, we demonstrate that a chosen set of stoichiometric groups corresponds to a set of
chemical rules when combined with positive integer coefficients. Then we describe our
way to efficiently generate the list of Diophantine equation solutions.

2. Stoichiometric formula decomposition
The link between a measured mass and the stoichiometric formula in the associated

molecule is the linear combination of the mass of the elements. Masses are expressed in
the u unit which is the International Union of Pure and Applied Chemistry (IUPAC)
recommendation and standard. It sets the mass of 12C in its fundamental state to 12u.
From a relativistic point of view, the binding energy between nucleons is equivalent to
inertial mass and therefore could be measured with mass spectrometry. This is observed
through the fact that elements have a non integer mass compared to a twelfth of 12C’s
mass. Table 1 consists in a crop of the NIST database concerning the mass of the elements.

The mass is a linear combination as follows:

‖Nj ·M t
j‖=

∥∥∥(n1, · · ·, nj

) · (m1 · · · mj

)t∥∥∥=

j∑
i=1

ni ×mi =m (2.1)

with Nj , the Diophantine set of stoichiometry; Mj , the masses of the elements.
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Change of basis. The goal of this work is to introduce the chemical rules in the way
the candidate solutions to a given Diophantine equation are generated. The nitrogen rule
states that molecular ions containing exclusively hydrogen, carbon, nitrogen and oxygen
have an odd nominal mass when an even number of nitrogen atoms are present and
an even nominal mass when an odd number of nitrogen atoms are present. For radical
ions, the nitrogen rule becomes reversed. Since the generation algorithm is an integer
exhaustive search, we need first to demonstrate that the use of alternative basis satisfies
the wanted constraints. Any Diophantine set in N

j can be written as a vector in an
alternative stoichiometric space. Indeed, any set of j linearly independent vectors in Z

j

form a basis. The change of basis is built as follow from the canonical basis C,H,N,O to
the chosen alternative basis C,CH2,NH,O:

A=

⎛
⎜⎝

C CH2 NH O

C 1 1 0 0
H 0 2 1 0
N 0 0 1 0
O 0 0 0 1

⎞
⎟⎠, A−1 =

⎛
⎜⎜⎝
1 − 1

2
1
2 0

0 1
2 − 1

2 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠ (2.2)

A is the decomposition of the new basis vectors on the canonical stoichiometric basis
and A−1 the inverse of A. Since the alternative basis is a set of j linearly independent
vectors, A is always square and invertible. Let us write a stoichiometric decomposition
in the C,CH2,NH,O basis as N ′

j =
(
n′
C , n

′
CH2

, n′
NH , n′

O

)
. It comes:

N ′t
j =A−1 ·N t

j =

⎛
⎜⎜⎝
1 − 1

2
1
2 0

0 1
2 − 1

2 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎝
nC

nH

nN

nO

⎞
⎟⎠=

⎛
⎜⎝
[l]n′

C

n′
CH2

n′
NH

n′
O

⎞
⎟⎠ (2.3)

m= ‖N ′
j ·M ′t

j‖=
(
n′
C , n

′
CH2

, n′
NH , n′

O

) · ([l]12 14.0156 15.0109 15.9949
)t (2.4)

Natural number coefficients and parity chemical rules. Few rules are commonly
accepted to filter most probable molecular identification out of mass measurements
(Kind & Fiehn (2007)). Our goal here is to avoid a heuristic approach and go through
an exhaustive search that incorporates restrictions. The idea is to take advantage of
the fact that most of the rules can be set when a A matrix is chosen. The image of
any Diophantine N ′ set through the A linear application is trivially a Diophantine set
N . In other words, any combination of natural number of

(
n′
C , n

′
CH2

, n′
NH , n′

O

)
is a

stoichiometric formula with positive integer coefficients. The reciprocal is not true; the
A−1 matrix in Eq. 2.2 has non integer coefficients. Hereafter, we demonstrate that parity
properties are stable through natural number combination of the chosen groups.
The equivalence between having natural number coefficients and respecting the nitro-
gen rule relies on the reciprocal. Let us demonstrate that the decomposition on the(
n′
C , n

′
CH2

, n′
NH , n′

O

)
basis of any stoichiometric Diophantine set Nj respecting the

nitrogen rule will have integer coefficients:

⎛
⎜⎜⎝
1 − 1

2
1
2 0

0 1
2 − 1

2 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎝
nC

nH

nN

nO

⎞
⎟⎠=

⎛
⎜⎝
nC − nH

2 + nN

2
nH

2 − nN

2
nN

nO

⎞
⎟⎠ (2.5)
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Figure 2. Comparison of an exhaustive search with C, H, N, O and C, CH2, NH, O combination
in a given mass range around 170.13u. The much higher density without change of basis is of
no help close to the target mass since none of additional combinations has a better match than
the one produced with C, CH2, NH, O combinations.

if nN and nH are odd:{
nN ≡ 1 (mod 2)

nH ≡ 1 (mod 2)
⇒

{
nH

2 ≡ 1
2 (mod 1)

nN

2 ≡ 1
2 (mod 1)

⇒ (
nH

2 − nN

2

)≡ 0 (mod 1) (2.6a)

nC ≡ 0 (mod 1)⇒ (
nC − nH

2 + nN

2

)≡ 0 (mod 1) (2.6b)

then if nN and nH are even:{
nN ≡ 0 (mod 2)

nH ≡ 0 (mod 2)
⇒

{
nH

2 ≡ 0 (mod 1)
nN

2 ≡ 0 (mod 1)
⇒ (

nH

2 − nN

2

)≡ 0 (mod 1) (2.7a)

nC ≡ 0 (mod 1)⇒ (
nC − nH

2 + nN

2

)≡ 0 (mod 1) (2.7b)

Thus, respecting the nitrogen rule and having N ′
j ∈Z

j is equivalent.
Coefficients positivity and stoichiometric ratio. A remarkable property of this change

of basis is that introducing constraints in the elemental ratios is equivalent to put con-
straints on the coefficients. This can be done by chosing only natural numbers for N ′

j

coefficients. The chosen A matrix has peculiar properties if N ′
j ∈R

+j . Indeed:{
nC − nH

2 + nN

2 � 0
nH

2 − nN

2 � 0
⇒

{
nH � 2nC + nN ⇔DBE� 1

nN � nH

(2.8)

With this A matrix, the positivity of the coefficients of N ′
j implies that the DBE (double

bond equivalent, given by1 + nC − nH

2 + nN

2 ) cannot be lower than 1 and that the number
of nitrogen cannot exceed the number of hydrogen atoms. An example is given in Figure 2.

3. Exhaustive search for a stoichiometric formula
Any natural numbers linear combination of

(
n′
C , n

′
CH2

, n′
NH , n′

O

)
will have DBE � 1,

nN � nH and will respect the nitrogen rule. We can now build an algorithm to search
for a natural Diophantine set associated to the closest mass relative to a measurement
peak. If the error model is m̂=m+ ê, with ê being the measured error, there is no easy
way to directly estimate the mass bias m− m̂ without knowing the error a priori. Choice
is made not to use a heuristic algorithm but an exhaustive search, to have a complete
knowledge of the mass biases, the distances between computed masses (m) and measured
mass (m̂). The following sections describe how the set of computed masses are generated.
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Table 2. Coefficients array for the (j − 1)th heaviest masses.

n′
CH2 n′

χ n′
NH n′

O

j−1∏
k=1

(maxk + 1) rows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m
a
x
j
−

2
+

1
)(
m

a
x
j
−

1
+

1
)

rows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(maxj−1 + 1) rows

⎧⎪⎪⎨
⎪⎪⎩

0

· · ·

0
0
...

maxj−1

...

0
...

maxj

maxj−2

0
...

maxj

1 0 0
...

...
...

max1 maxj−2 maxj−1

The Diophantine equation itself. There is no algorithm that allows to prove there is a
solution to a Diophantine equation in general (Robinson (1972)). There are only few the-
orems for peculiar cases. The Bezout’s identity sets one condition for a linear Diophantine
equation to have integer solutions:

∀(m1, · · ·, mj)∈Z
j , ∃(n1, · · ·, nj)∈Z

j , n1 ·m1 + · · ·+ nj ·mj = gcd(m1, · · ·, mj) (3.1)

Where gcd(m1, · · ·, mj) is the greatest common divisor or m1, · · ·, mj . In the case of non-
negative solutions, a solution exists for each number greater than the Frobenius number
of the (m1, · · ·, mj) set. For instance, 4 being the Frobenius number of (3, 5, 7), 4 is the
largest rugby score that cannot be obtained. There is no closed-form for j � 3. Frobenius
number is defined if and only if the mj are mutually prime. For our basis groups, the
rounded masses: (12, 14, 15, 16) are coprime integers and their Frobenius number is 49,
which means every integer mass greater than 49 can be associated with a Diophantine
set (Einstein et al. (2007)). Finding the Diophantine sets requires two steps: one to
enumerate sets and one to check if they are solution to the equation.

The N ′
1→j−1 enumerator. The goal is to enumerate all the combinations of all masses

but the lightest and to fit in the remainder with the lightest mass. It is an Euclidian-like
algorithm. Let us call the jth mass the lightest one so :

m′
j <m′

1 < · · ·<m′
j−1 (3.2)

Let us build the array shown in Table 2. To do so in a vectorised manner we need
to calculate the range for the coefficient to span MAX = (max1, · · ·, maxj−1) and the
stretches STR= (str1, · · ·, strj−1) as follow:

maxk =

⌊
m̂

m′
k

⌋
and strk =

⎧⎪⎨
⎪⎩

j−1∏
i=k+1

(maxi + 1) if k < j − 1

1 else

(3.3)

With 	x
 being the floor function of x. Then, with κ being the 1-based column index
and ρ being the 0-based row index, the value in a cell of the array in Table 2 is:

T (κ, ρ, STR,MAX) =

⌊
ρ

strκ

⌋
mod (maxκ + 1) (3.4)
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In our example of the A matrix, one can compute the row where a (n′
CH2

�
maxCH2

, n′
NH �maxNH , n′

O �maxO) set is:

ρ(N ′
j−1, STR) =

j−1∑
k=1

(n′
k × strk) (3.5)

Let us remark a quick method to build a bijection between N
j−1 and N.

Jumping the array: avoiding pointless calculation. For each row, the j − 1 heaviest
mass coefficients are set. The lightest is still to be computed to approximate the m̂
target:

n′
j(ρ) =

⌊
m̂−∑j−1

k=1(n
′
k ×m′

k)

m′
j

⌉
=

⌊
m̄

m′
j

⌉
(3.6)

Where 	x� is the rounding function of x, returning the closest integer. If m̄� m′
j

2 , it
means the set coefficients already exceed the target mass to approximate. The array has
the property that as the row index increments and one coefficient goes back to zero,∑j−1

k=1(n
′
k ×m′

k) is guaranteed to decrease. Indeed, each time a coefficient goes back to
zero, the coefficient in the column before increments. Since the masses of the basis groups
are sorted, the sum decreases necessarily. The best way to decrease

∑j−1
k=1(n

′
k ×m′

k) is
to skip all the rows until the value decreases, that is to say, jump to the row where the
non-zero coefficient on the rightmost column returns to zero. The identification of the
most right non-zero coefficient can be done by testing nullity from right to left in a given
row. Let be k, the column index for the coefficient we want to set to zero, the index ρtogo
is computed by ceiling the number of blocks with equal coefficient in the k− 1 column:

ρtogo = strk−1 ×
⌈
ρmassexceeded

strk−1

⌉
(3.7)

Each time a N ′
j−1 is set, that means for each row, the coefficients that are going to

change in the next row are known as well as m̄, the rest of the mass to fill. That is to say
each time a coefficient changes, one can write a new Diophantine equation and check for
the existence of a solution. Let k be the column index of the last coefficient to increment
on the next row, then:

	m̄�= (n′
k 	m′

k�) + · · ·+ (n′
j 	m′

j�)⇔
{
	m̄� ≡ 0 (mod gcd(	m′

k� , · · ·, 	m′
j�))

(n′
k, · · ·, n′

j ∈Z
j−k)

(3.8)

This means that if the rest to fill is not a multiple of the greatest common divisor of
the (k, · · ·, j)th rounded masses, the equation has no integers solution and therefore no
natural numbers solution. If true, there is no point at iterating on the rows and it is
better jump to the next 	m̄� that is found the exact same way we jumped to the next
lighter one with the Eq. 3.7.

The algorithm. In order to take into account a charge bearer that may not respect the
nitrogen rule and that we do not want to decompose, its mass has to be subtracted before
computation. The constraints on the elemental ratios can be overcome by considering
additional groups into the generator. For instance, if N2 is added to the group set, the
nN � nH constraint is no more. This also can be done by manual setting of the ranges,
at users risks.
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Algorithm 1 Diophantine Solver
Data: m: mass to decompose; Mj : list of j masses sorted like in eq.3.2
Result: Sr: list of approximations of m; Cr,j : coefficients array associated
begin

Remove the assumed charge bearers mass (protons and electrons)
Initialize empty C and S
Set the ranges and stretches values for each coefficient
Compute the maximum number of rows
Initialize the row counter
while row counter � maximum number of rows do

for all masses but the lightest do
Compute the coefficients (eq. 3.4)

Find the non-zero coefficient associated with the heaviest mass
if There is no solution (eq. 3.8) OR Target mass is exceeded then

Jump to the next candidate row (eq. 3.7)
else

Complete with the lightest mass (eq. 3.6)
Add the results to C ans S
Increment the row counter

Adjust with the constant parameters removed at the beginning
Sort the two output lists by absolute bias
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