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SOME NEW POINCARE-TYPE INEQUALITIES

WING-SUM CHEUNG

New and improved Poincare-type integral inequalities involving many functions
of many variables are established. These in turn can serve as generators and
can generate numerous Poincare-type integral inequalities by choosing different
parameters.

1. INTRODUCTION

Poincare's inequality is the integral inequality [12]

(1) Ao f f2dx^ I \vf\2dx,
Jn Jo.

where Q is a bounded region in K2 or R3, / € Cl(Q), / = 0 on the boundary of Q,
and Ao is the smallest eigenvalue of the problem

A / + \f = 0 in Q ,

/ = 0 on9f i .

Since (1) gives an effective estimate on the average of a C1 function / by the average
of its gradient, it plays a fundamental role in the theory as well as applications of
integral and differential equations. Variations and generalisations of (1) are generally
known as Poincare-type integral inequalities. A brief account on various Poincare-type
integral inequalities can be found in Beckenbach-Bellman [1], Hardy-Littlewood-Polya
[7], Milovanovic-Mitrinovic-Rassias [11], Mitrinovic [12], Nirenberg [13], and more
recently in Horgan et al [8, 9, 10], Pachpatte [14, 15], Rassias [16, 17], and Cheung
[3]. It is the purpose of this paper to give some new and general Poincare-type integral
inequalities which improve the existing ones in the literature as special cases. It turns
out that the method used here is very effective, easy to apply, and more importantly
it is rather algorithmic in the sense that with slight modifications it can be applied to
establishing other types of integral inequalities like Wirtinger-type integral inequalities

Received 26th June, 2000
The author is supported in part by a HKU CRCG grant.
The author wishes to thank the referee for his very thoughtful suggestions and comments.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 SA2.00+0.00.

321

https://doi.org/10.1017/S0004972700019365 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019365


322 W-S. Cheung [2]

[4, 6], Sobolev-type integral inequalities [2, 4], and Opial-type integral inequalities [5],

et cetera.

Throughout this paper n ^ 1 and m ^ 2 will be two fixed integers. For the sake

of consistency we shall always take i, j as indices running from 1 to n and a, (3 from

1 to m. A general point in Rn is denoted by x = (xi,... ,xn) and the volume form

on Rn by dx - dxi • • -dxn. If ft is a region in Kn, CQ(£1) will denote, as usual,

the collection of all real-valued continuously differentiable functions on ft which vanish

on the boundary dQ of Q. Partial derivatives of / e CQ(Q) will be denoted by ft,

i= 1 , . . . , n .

Since most summations and finite products appearing in this paper will be either
n m

from 1 to n or from 1 to m, we shall simply write J2 > II > • • • ^ J21 EL • • • when no
- . . t=l a=l t a

confusion may arise.

The following elementary inequalities, which are easy consequences of the quadratic

mean-arithmetic mean-geometric mean inequality, will be needed in the sequel (see, for

example [7, 11 , 12]).
LEMMA A. For any pa > 0 and qa, ka ^ 0 satisfying ]T] qa/Pa — 1,

a a ya

where the equality holds if and only if k\ = • • • = km.

LEMMA B . For any rt ^ 0 and s ^ 0,

where

c(s,n) :=
1 ifO£s< 1 .

2. MAIN RESULTS

n
Let Q = n( a«i^i] >̂e a fixed rectangular region in Kn, and M :— max{6j - ai :

«=i

i = l , . . . ,n}.

THEOREM 1. For any f° 6 CQ{Q) and any real numbers pa ^ 2, qa ^ 0 with
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Theorem 1 generalises and improves some existing results of Poincare-type inequal-
ities in the literature [3, 10, 12, 14, 15]. For example, we have the following simple
consequences.

COROLLARY 2 . [3] For any fa € CQ(Q) and any real numbers pa ^ 2 with

El/Pa = 1,

PROOF: This follows immediately from Theorem 1 by letting qQ = 1 for all a . D

COROLLARY 3 . [3] For any fa € C^(fi) and any real numbers qa ^ 0 with

PROOF: This follows immediately from Theorem 1 by letting pa = q for all a . D

COROLLARY 4 . [3] For any fa e C%(Q),

2

PROOF: This is immediate from Corollary 2 with pa = m for all a or from Corol-
lary 3 with qa = 1 for all a . D

Note that from the preceding results, Poincare-type inequalities involving only one
function (the case m = 1) can be obtained easily for free. For instance, we have

COROLLARY 5 . For any / e CQ (Q), and any real number q ^ 2,

n\2J Jo.

PROOF: This follows from Corollary 3 by letting fa = f for all a. D

REMARK. Note that when q = n — 2 and fi is a square, the Poincare-type integral
inequality obtained in Corollary 5 above is sharper than that in [12]. In fact, here our
constant is M 2 / 8 , while in [12] the constant is 7M 2 /12 .

To prove Theorem 1 we need the following basic lemma.

LEMMA 6 . If f e C,}(ft), then for any tefl,

bi

|/»(*x. - - - ,U-i,Ui,ti+i,... ,tn)\dui .
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P R O O F : Since / € CQ(Q), for each i = 1 , . . . , n , we have

/ W = / fi(tl>--• iti-i,1li,ti+i,. . . ,tn)dUi

and also

Taking absolute values and adding these up with respect to i, we then have

PROOF OF THEOREM 1: By Lemma A, Lemma 6 and Lemma B, we have

a "a

Pa

Pa

for all t € ^ • Since pQ ^ 1, c(pQ, n) = nPa l and so

By Holder's Inequality, we have

Now since

/ r \f?\paduidt= E r / i

M /
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we have

Pa/2

dt

by Lemma B. Since pQ ^ 2, c ( (2 /p a ) ,n ) = 1 for all a and so

a
THEOREM 7 . For any fa e Co(fi) and any reai numbers pa ^ 2, qQ ^ 0 with

£ / i W r f

where

Theorem 7 generalises and improves some existing results of Poincare-type integral
inequalities in the literature [3, 10, 12, 14, 15]. The following are simple consequences
of Theorem 7.

COROLLARY 8 . [3] For any JQ € C£(Q) and any real numbers pa > 2 satisfy-
ing £ l / p a = 1,

PROOF: This follows immediately from Theorem 7 by putting qa = 1 for all a. D

COROLLARY 9. [3] For any fa e C^(fi),
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PROOF: This is a simple consequence of Corollary 8 by putting pa = m for all
D

PROOF OF THEOREM 7: By a generalisation of Holder's inequality for the case of
many functions and Corollary 5, we have

la I Pa f /• 1 10 /P0

la I Pa

Qa/Pa

Therefore, by Lemma A, we conclude that

REMARK. Further interesting Poincare-type integral inequalities can easily be gener-
ated by the results above. For instance, by taking m = 3 in Corollary 9, we have

f I V /|3 + j I V <?|3 + J I V h\A ;

taking m = 2 in Corollary 9, we have

^ \ [ S7f\2+ [ \V9\2} ,[
and by putting f — g = h in these inequalities, we obtain

and
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