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A QUASI-TRAPEZOID INEQUALITY FOR DOUBLE INTEGRALS
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Abstract

A quasi-trapezoid inequality is derived for double integrals that strengthens considerably
existing results. A consonant version of the Griiss inequality is also derived. Applications
are made to cubature formulae and the error variance of a stationary variogram.

1. Introduction

Although important for applications, numerical integration in two or more dimensions
is still a much less developed area than its one-dimensional counterpart, which has
been worked on intensively. For some interesting recent commentary, see Sloan [8].
Even the traditional integration of polynomial forms over rectilinear regions translates
in higher dimensions to problems with some complications (c/. Rathod and Govinda
Rao [6]).

Central to questions of numerical integration in one dimension are Ostrowski's
theorem and inequalities of trapezoid type. For a compendious treatment of the latter
see Mitrinovic et al. [5] and the references therein. Recently new versions of some of
the classical tools have been developed for a two-dimensional context.

Suppose/ (•, •) is integrable on [a, b] x [c, d] and for* e [a, b] and y e [c, d] set

f\x,y):= I I f(s,t)dsdt + (b-a)(d-c)f(x,y)
J a Jc

-(b-a) I f (x, t)dt -(d-c) [ f (s, y)ds.
J c J a
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Barnett and Dragomir [1] have proved the following two-dimensional theorem of
Ostrowski type.

THEOREM A. Iff (•, •) is continuous on [a, b] x [c, d] andf^'y = 32//dxdy exists
on (a, b) x (c, d) and is bounded, that is,

d2f(x,y)
< oo,

(x,y)e(a,b)x(c,d)
then for any x e [a, b] andy e [c, d]

Here and subsequently it is implicit that//', is integrable on [a, b] x [c, d].
An interesting particular case, which is in fact the best inequality we can obtain

from (1.1), is the 'quasi-midpoint' inequality

\fH(a + b)/2, (c + d)/2)\ < (1/16X6 - af{d - cf {f^.

The first two authors have applied (1.1) to cubature formulae in [1] and to the analysis
of variograms in [2].

Define the functional

/ • := [/V c) + / V d) +f\b, c) + f\b, d)] /4

ds_(b_a)

When Theorem A applies, we have

\f\a, c)\ < (l/4)(b- a)2(d - c)2 jf^

and similarly for/1 (a, d),f\b, c) and/^6, </), so that

l/*l < (1/4)(Z> - a)2(rf - c)2 l / ^ l ^ -

In this article we show that a much stronger result holds, namely the following.

THEOREM 1. Under the conditions of Theorem A,

This we establish in Section 2, where it is shown that it follows from an appropriate
double-integral identity. In Section 3 we derive a conformable inequality of Griiss type
and in Section 4 apply our ideas to cubature formulae. We conclude in Section 5 with
an application to bounds on the error variance of a continuous stream with stationary
variogram.
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2. Integral identities

First we derive a useful ancillary result.

LEMMA 1. Suppose that at < a2 and fi\ < p2 o.nd that 3 2 / /dsdt is integrable on
[a\, a2] x [/},, p2]. If either (a, a') = (pt\, a2) or (a', a) = (aita2) and similarly for
P, P', then

I
Jfi

(s-a)(t-P)f:',dtds

/ (*, P') ds

- ( a 2 - « i ) [2f(a',t)dt+ I' f f(s,t)dtds.
Jp, Ja, Jfi,

PROOF. This is immediate from a repeated integration by parts.

We now proceed to our main double-integral identity.

THEOREM 2. Under the assumptions of Theorem A,

PROOF. Take x € [a, b], y e [c, d] and apply Lemma 1 with the four choices

(aua2,pup2,a,P)
= (a, x, c, y, a, c), (a,x, y, d, a, d), (x, b, y, d, b, d), (x, b, c, y, b, c).

Addition of the resultant identities yields

f I p{x,s)q{y,t)f's',dtds
Ja Jc

= (d-c)(b-a)f(x,y)-(d-c) / f(s,y)ds
Ja

/

d pb pd

f(x,t)dt+ / / f(s,t)dtds,
J a J c

where p(x, s) is defined ass — aif s € [a, x] and as s — b if s e (x, b], whilst q(y, t)
is t — c if t e [c, y] and t — d if t e (y, d].

We now make the four choices
(x, y) = (a, c), (b, c), (a, d), (b, d)
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and add again to derive

[4]

/ f [p(a,s)+p(b,s)}[q(c,t) + q(d,t)]f's',(s,t)dtds
Ja Jc

= 4 f f f(s,t)dtds
Ja Jc

+ If (a, c) + f(a, d) +f(b, c)+f(b, d)](b - a)(d - c)

- 2(d - c) f \f (s, c) +f (s, d)]ds-2(b-a) [ [f(a,t)+f (b, t)] dt.
J a Jc

Since

p(a,s) + p(b, s) = 2s -(a + b), q(c, t) + q(d, t) = 2t - (c + d),

this is equivalent to the desired identity.

Our theorem provides

b pdlrl-If
J a J c

and a simple calculation yields

a+b
S 2

c + d
! 2

f's',(s,t)dtds

U — du =
05 - a)2

(2.2)

Theorem 1 follows as an immediate corollary.

3. An inequality of Griiss type

The well-known Griiss inequality (see for example Mitrinovic et al. [A, p. 296])
states that if / , g : [a, b] -> R are integrable on [a, b] and

<P < f (x) < <J>, y < g(x) < T for all s 6 [a, b],

\I\<-(b-a)2(r-y)(<t>-<p),

I:=(b-a) { f(x)g(x)dx- I f(x)dx I g(x)dx.
Ja Ja J a

Moreover, the constant 1 /4 is best possible.
We establish a closely related result.

then

where
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THEOREM 3. Suppose f, g : [a, b] —*• Rare continuous on [a, b], differentiate on
(a, b) and with bounded derivatives. Put

I I / ' I L : = sup | / ' ( 0 | < oo, jg'j^ : = sup \g'(t)\ < oo.
te(a,b) te(a,b)

Then
\l + \f(a)-f (b)][g(a) - g(b)Kb - a)2/4|

< (b~2
a) [ll/-/(o)llcx,l|g-g(a)l|w + ll/-/(&)IUIg-gWlleo]

+ ^ 7 ^ II/'IL llg'IL. (3-D

PROOF. Define h : [a, bf ^ R by h(s, t) = [f (s) -f(t)][g(s) - g(t)]. We have

Ha, a) + h(a, b) + h(b, a) + h{b, b) = 2[f (b) ~ f (a)][g(b) - g(a)]

and

I [h(s,a) + h(s,b)]ds
J a

= f [h(a,s) + Hb,s)]ds
J a

= I {[f(s)-f(a)][g(s)-g(a)) + [f(b)-f(s)][g(b)-g(s)]}ds.
Ja

Also
d2h(s, t)

dsdt
so that

= -f'(s)g'(t)-f'(t)g'(s),
OSOl

["["( a + b\(t a + b\d2h(s,t) j t j
I I [s — \\t r— I —T-r— dt ds

J a J a 2 )

Hence applying Theorem 2 to h on [a, b] x [a, b] provides

= (b-a)f {[f (s)-f (a)][g(s)-g(a)] + [f (b)-f ( ds
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Since

-I" f
2-h Ja

[f(s)-f(t)][g(s)-g(t)]dsdt = I,

we deduce that

, U (b) - f (a)][g(b) - g(a)] (ft 2

b-a

2 , a
/

Ja

Thus the left-hand side of (3.1) is bounded above by

\(b - a)2[\\f - f (a)\U\g - gWHoo + ||/(*) -f\U\g(b) - g\\x]

The desired result follows from (2.2).

4. Application to cubature formulae

Take arbitrary divisions /„ : a = x0 < Xi < •• • < xn-\ < xn = b of [a, b]
and Jm : c = y0 < yx < • • • < ym_t < ym = d of [c, d] and set fc, := x,+i - xt

(i = 0 , . . . , « — 1) and /, := yJ+l — yy- (/ = 0 , . . . , m — 1). Define

+yj

Barnett and Dragomir [1] considered a quasi-midpoint rule for double integrals
given by

i=O ; = 0

and proved that provided the integrals involved exist and HZ/Jloo is finite, then

f f f(s, t) ds dt = CM if, /„, Jm) + RM (J, / „ Jm),
Ja Jc

https://doi.org/10.1017/S1446181100008075 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008075


[7] A quasi-trapezoid inequality for double integrals 361

where the remainder satisfies

\RM(f.i..j.)\<j;lf;,LTltiTlt-
1=0 ;=o

We are now able to establish a quasi-trapezoid formula. Set

fe, :. », *+4 f"

and define
n — \ m — \

i=0 j=0

Then we have the following result.

THEOREM 4. Letf : [a, b] x [c, d] ->• R satisfy the conditions of Theorem A. Then
we have the cubature formula

/

b r-d

/ / (S, t) ds dt = CT (f, /„, Jm) + RT (f, h, Jm) ,
J c

where the remainder term satisfies

i=0 ;=0

PROOF. Applying Theorem 1 to the interval [*,-, xi+i] x [yj, yj+l] for / = 0 , . . . ,
n — 1 and j = 0 , . . . , m — 1 gives

Summing over i from 0 to n — 1 and j from 0 to m — 1 and using the generalized
triangle inequality yields the desired inequality (4.1).

REMARK 1. Set

v(h) :— max [h,, : i = 0 , . . . , n — 1}, /x(l) := max {/, := j =0,... , m — 1}.

Then since
n—\ n—\

1=0 1=0

https://doi.org/10.1017/S1446181100008075 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008075


362 N. S. Barnett, S. S. Dragomir and C. E. M. Pearce [8]

and
m — 1 m —1

j=0 j=0

the right-hand side of (4.1) is bounded above by

which is of order two precision.

5. The error variance of a continuous stream with stationary variogram

Suppose (X(t)) is a continuous-time stochastic process, possibly nonstationary.
Typically (X (t)) represents a continuous-stream industrial process such as is common
in many areas of the chemical industry. In [3], the authors considered X (t) as defining
the quality of a product at time t. The paper was concerned with issues related to
sampling the stream with a view to estimating the mean quality X characteristic of
the flow over the interval [0, d]. The sampling location / is said to be optimal if it
minimizes the estimation error variance

2 1 , 0 < t < d.

In [3] it was shown that for constant stream flows, the optimal sampling point is
the midpoint of [0, d] for the situation where the process variogram

V(0) = 0, V(-«) = V(u), u e [-d, d]

is stationary. We remark that variogram stationarity is not equivalent to process
stationarity.

In this paper we use Theorem 1 to give an approximation of the estimation error
variance E[(X - X(t))2] for t = d.

From [3], it can be shown using an identity given in [7] that

j V(v-u)dudv

V(u)du\. (5.1)

Suppose V is continuous on [—d, d], twice differentiate on (—d, d) and has
bounded second derivative V" bounded on that interval. It is shown in [2] that from
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(1.1) it is possible to get the bound

363

for all t e [0,d].
The best inequality we can get from (5.2) is for t = t0 = d/2 when we have the

bound

For / = d,

This can be complemented as follows.
Put / (s, t) = V(s - t), a = c = 0 and b = d in Theorem 1 to get

d r-d

if
JO JO

V(s - t) ds dt +

d V(-t)+V(d-t)

V(0) + V(-d) + V(d) + V(0) .

dt-,
V(s)+V(s-d)

JO 2 Jo 2

Since V (0) = 0 and V(-d) = V(d), we have

ds ^ I M L - (")

Jo

V(-t) + V(d - t) f V(s) + V(s - d)
dt = / dsL 2

f V(t) + V(d - t) f
Jo z Jo

)du

)du

and by (5.3)

/

d pd t>d

I V{s-t)dsdt-2d / V(u
Jo Jo

But, by the identity (5.1), we deduce that

[ I V(s-t)dsdt-2d I V(u)du = -d2E\(X -
Jo Jo Jo L

Consequently, by (5.4), we get

(5.4)

E[(X-X(d))2]-
V(d)

< — II V'll
- 1 6 II lloo

which gives an approximation for E[(X — X(d))2] in terms of V(d).
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Note that for small d the approximation is accurate and is of order two precision.
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