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ON A RESULT OF SMITH AND SUBBARAO 
CONCERNING A DIVISOR PROBLEM 

B Y 

W E R N E R G E O R G N O W A K 

ABSTRACT. Let d(n;l,k) denote the number of divisors of the 
positive integer n which are congruent to I modulo k. The objective 
of the present paper is to prove that (for some exponent 0<J ) 

£ d(n; I, k) =-logx + c(l,k)x + 0((x/k)e) 
l < n < x K 

holds uniformly in /, k and x satisfying 1 < / < k < x. This improves a 
recent result due to R. A. Smith and M. V. Subbarao [3]. 

Let k and I be positive integers, l<Z<fc, and denote by d(n;l,k) the 
number of (positive) divisors of the positive integer n which are congruent to I 
modulo k. To study the average behaviour of d(n; I, k) one considers the 
Dirichlet's summatory function 

(1) D(x;l9k) = Z d(n;l,k). 
l < n < x 

R. A. Smith and M. V. Subbarao have proved recently in this journal [3] that 

(2) D(x ; /, k) = £ log x + (7(Z, k) + £ (7 " 1) V + 0((kx)1/3d(k)\og x) 

(provided that I and k are coprime and /C<JC) where 

?(I, fc)=lim( X 7 log A 
n = I (mod k ) 

7 = 7(1,1) is Euler's constant and d(k) is the ordinary divisor function. 
The purpose of the present note is to show that the above result can be 

improved by an argument similar to that which is customary from the classical 
divisor problem. 

THEOREM. There exists a constant Q<\ such that 

(3) D(x; I, k) = | l o g x + ( 7 0 , k) + ^ ( 7 - l ) ) x + o ( ( £ ) 9 ) 

holds uniformly in /, k and x, provided that / < / c < x . 
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REMARK. Of course, the main significance of this result lies in the uniformity 
in k (as noted also in [3], p. 39, for the estimate (2)). For fixed fc, our 
improvement is only a marginal one, but our O-term becomes the better the 
larger k is in comparison with x, whereas that in (2) increases with k. Thus the 
main terms in (3) always dominate the error term (for x —» oo)5 which is true in 
(2) only for k«xV2~e (cf. the remark in [3], p. 39). 

The following relation is an immediate consequence of our theorem (as 
Corollary 3 in [3] followed from (2)): 

COROLLARY. 

n = l (mod k) 

holds uniformly in /, k and x, if l<k<x ({•} denotes the fractional part). 
(Throughout the paper, the O- and «-constants are absolute ones.) Proof of 
the theorem. Denoting by \M\ the number of elements of a finite set M, we get 

D(x;l,k) = \{(u, t)eN2:ut<x,t = l (mod fc)}| = 

= |{(u, v)eNxN0:u(kv + l)<x}\. 

Denote this last set by M0 = M0(x; I, k) and put P = (x/k)in, Q = P-l/k, then 
we conclude that 

D(x;l, fc) = | ^ 1 | + | ^ 2 | - | ^ 3 | 

where 

i ! = i 0 n (]o, P] x z), M2 = M0n(zx [o, Q]), Jt3 = M1n M2 

and therefore 

(4) D(x;l,k)= I [ f ( - - ' ) + 1 l + I [x(kv + irl]-[PlQ+ll 

Applying Euler's summation formula (in the form given e.g. by Titchmarsh [4], 
p. 13) we obtain (with i//(y) = y — [y] —|) 

X ( f ( - - / ) + 1) = 7 C o g P + log2) -<MP)Q- f Hu)u~2duy + (P -§ ) 
i<u<p \k \u / I k J1 /2 k 

(5) = ^ ( l o g P + T ) - ^ ( P ) Q + p ( l - ^ ) + 0 ( l ) 
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and 

X x(kv + ir1 = ^(\og(kQ + l)-\ogl)-tlj(Q)P-^-
0 < u < Q * & ^ 

(6) -kx\ il,(v)(kv + ir2dv + 0(l)=^-log(kx) + y(l,k)x-ilj(Q)P+0(l). 
Jo 2/c 

Substituting (5) and (6) into (4) and writing [y] = y — iKy)~2 w e arrive at 

(7) D(x;lk) = pogx + {y(l,k) + ^(y-l))jx-S1-S2+Oa) 

where 

Thus our theorem will be proved if we can show that (for some 0 < | ) 

(8) S= I ^(/(u)) = 0(F29) 
l < u < P 

where /(w) = P2((u + a ) - 1 - 0 ) and either (a, |3) or (ft a) equals (fc/I, 0). To 
establish (8) we make use of a classical result due to Van der Corput [1]: 

LEMMA. Let f{u) be a real-valued function on the interval I = [a,b] with 
continuous derivatives up to the fifth order and suppose that there exists 8>0 
such that, for each triple (p, q, r) of nonnegative integers with p + q + r = 3, one 
has {for uel) 

(a) |/(p+2)(M)/(q+2)(u)/(r+2)(M)| < | f (u)|(17/3)+ô. 

Suppose further that f"(u) is monotone and vanishes nowhere on I and that, for 
suitable ô ' > 0 , 

w if"(u)M/"(")r3)+s' 
for uel. Then there exist real numbers C and co > 0 (depending at most on 8 and 
8') such that 

I X iK/("))l<c([Y^^ 
la<u<b I \J a

 Ca'b] / 

In order to verify condition (a) for our case we note that 

P 2 M - 1 - J ' « | / ( J ' ) ( K ) | « P 2 W - 1 - J ' 

for j = 1 , . . . , 5 and infer (writing La and Ra for the left and right side of (a), 
respectively) that 

LaR*1« p - 1 6 / 3 - V + 3 8 « p-i/3+aa 

https://doi.org/10.4153/CMB-1984-080-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1984-080-9


504 W. G. NOWAK 

Choosing e.g. 8 = \, this is less than 1 if P exceeds some absolute constant 
(otherwise (8) is trivial). Similarly, 

LbR^ « p-2/3-2« 'M36' « p - 2 / 3 + 8 ' < x 

for <5' = i (say) and P sufficiently large. 
We now apply the lemma to the interval T<u<P, where T = P2/3+e and 

e > 0 is a (sufficiently small) constant at our disposal. We obtain 

(9) I ^(f{u))«P2l3+2A u-1-3"du + \f"(P)\-1/2«P 
T<u<P J T 

For the interval W<u<T (where W = P2 / 3 _ e) we use another classical result 
of Van der Corput (see e.g. Titchmarsh [4], p. 92) to estimate the correspond­
ing Weyl sums; this yields (for positive integers h) 

S(h):= X e2™hf(u)«h1/6Pc ,l/6r>(5/9) + (13e/3) 

W < u < T 

Combining the inequalities of Erdôs-Turân and of Koksma (see e.g. Hlawka 
[2], p. 104 and 107) we thus obtain (with H = [P2/21]) 

I 
W < u < T h = l 

(10) X ^( / (^«TH"^ £ h-1|S(h)|«P(4/7)+(13e/3). 

Since the sum over l < w < W can be estimated trivially by 0 ( P 2 / 3 e ) , we 
immediately infer (8) from (9) and (10) (if e > 0 is chosen sufficiently small). 
This completes the proof of our theorem. 

REMARK. Using more elaborate variants of Van der Corput's method one 
could establish slight refinements of our result, i.e. one could prove (3) for 
some explicitly given exponent 6<\ as it is well-known for the classical 
Dirichlet's divisor problem. 
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