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1. In a linear topological space E one often carries out various " smoothing "
operations on a subset A, such as taking the convex hull co A and the closure A ~.
If E is also a (real) vector lattice, the solid hull

sol A = {y e E: \ y | ^ | x | for some xe A}

is also a natural " smoothing out " of A. If sol A = A then A is called solid,
and if £ has a base of solid neighbourhoods of 0 as do all the common
topological vector lattices such as C(X), Lp, Kothe spaces and so on—then E is
called a locally solid space.

The example here constructed shows that these smoothing operations act
much more pathologically on bounded, and indeed on compact, sets in non-
locally-convex spaces than they do in locally-convex ones. Several examples of
this kind are known: let us describe briefly some of the well-known results to
put our example into perspective.

In any linear topological space, closure preserves convexity (that is, if A
is convex so is A~) and it is this that makes the closed convex hull co A of a
set A, defined as the smallest closed convex set containing A, coincide with the
closure of the convex hull of A. In a locally solid space it follows from the basic
decomposition lemma for vector lattices that solidity is preserved both by convex
hulls and by closure: hence, similarly, the closed convex solid hull of a set A,

* that is the smallest closed convex solid set containing A, coincides with
(co (sol A))~ and is therefore denoted co sol A. Similarly with the closed solid
hull sol A of A. Note that sol (co A) is not generally the same as co sol A, the
latter being the larger set.

It is almost trivial that in a locally convex space both closure and convex hull
preserve boundedness. In a locally solid space, solid hull also preserves bounded-
ness, and so in a locally convex and locally solid topological vector lattice, if A is
bounded so also is co sol A.

On the other hand, if E is not locally convex then boundedness need not be
preserved by convex hulls—there are well-known examples of a compact set C
such that co C is unbounded and indeed sol (co C) is the whole space.
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To summarise the situation in a general locally solid space:

Operation

closure

convex hull

solid hull

Property preserved

closed convex solid bounded

• */ J /

x V y x ( • if loc. convex)

x x / /

Below, we produce a set A in a locally solid space E such that co A is bounded
—indeed compact—but co sol A is all of E. In other words, A behaves itself with
regard to convex hulls whereas the (in view of local solidity seemingly not much
larger) set sol A misbehaves badly. Further, co A provides an example of a
bounded and even compact convex set C such that co sol C is all of E, and thus
answers the following question raised by D. H. Fremlin:

It has been known for some time (1) that if £ and Fare Lx spaces, any con-
tinuous linear map T: E-*F can be decomposed into continuous, linear, positive
and negative parts. This may fairly easily be generalised (2; p. 21, p. 86) to the
case where Fis one of a large class of order-complete vector lattices with locally
convex, locally solid topologies, which includes all Lp spaces (1 ^ p ^ oo), all
Kothe spaces, etc.

Fremlin's question is: Is the local convexity of Fnecessary? The answer is
Yes, for the map T\lx-*J( constructed in the proof of Lemma 2.4 satisfies the
required conditions except for local convexity of the range space, but is easily
seen not to be decomposable in the desired way. By composing T with the
operator S on /t defined by

Sx = y where yn= P~1xa

(in the notation of Theorem 2.3) one can even construct a compact operator
which misbehaves in this way.

2. Construction of example
The example is set in the space Ji = M{S) = Jt(S, §, fi) of measurable

real functions (= random variables) on a measure space S = (S, S, y) with the
topology of convergence in measure; as usual, functions which are equal
almost everywhere are counted identical. It is well known (6, p. 54) that Jt is
a complete metrizable linear topological space, non-locally-convex if /i is non-
atomic. The natural ideas here are those of probability theory, and we refer the
reader to the excellent books of Breiman, or Feller, or Kingman and Taylor
(3, 4, 5) for the definitions and properties of the terms used—chiefly of the
distribution and density function of an x e J(, of its variance

and of independence of random variables.
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Note 2.1. To start, we need to produce a sequence of independent random
variables <]>k each having the uniform distribution over 0 ^ x ^ 1. A simple
way of doing this is to let 5 = [0, 1]N with the product of Lebesgue measure on
each factor, and to let <f>k be the kth coordinate projection. But since it is pleasant
to work with the simpler measure space S = (0, 1) with Lebesgue measure, we
note that standard results [e.g. (3; p. 16, p. 37)] show that the functions

have the required property, where O-^^^.. . is the binary expansion of /e(0,1).
(In ambiguous cases choose the expansion that ends in zeros.)

Recall that a function x has the Cauchy distribution (4, p. 50; 5, pp. 310,349)
if its distribution has the density function (TI(1 +x2))~l. Let us say x has the
C(X) distribution, where X>0, if X~lx has the Cauchy distribution.

A simple computation verifies:

Lemma 2.2. With the <l>k as above, the functions xk defined by

xk(t) = -cot <t>k(t), (teS)

are independent random variables with the C(l) (i.e. Cauchy) distribution.

The main result of the paper is:

Theorem 2.3. Let /?„ = log log (n+2), n]= 1, 2 ... (the 2 just ensures that
Pn>0for all n) and define a subset of'M by

Then co A is compact but co sol A is all of' Jl.

The proof is contained in the following lemmas.

Lemma 2.4. For any real sequence an->0, (M\a.^xn\n e N} is compact in Jt.

Proof. We shall construct a compact convex set of which the set in question
is the continuous linear image. Let l0 denote the space of real sequences with
only finitely many non-zero terms, with the lt norm. Denote the «th coordinate
of u e l0 by u(n); let ek denote the &th basis vector, with 1 in the kth place,
0 elsewhere. By a standard result (4, p. 50), if functions xn are independent and

distributed C(l) then any finite linear combination £Anxn is distributed

I K I )• Thus if we define the linear map T:lo-*J/ by
/

E.M.S.—P
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then Tu is distributed C(|| w ||) whenever u # 0. It follows trivially that for any
sequence {un} in l0 with || un ||-»-0 one has Tun-*0 in measure; hence T is con-
tinuous. Since Jt is complete we can thus extend T uniquely by continuity to
a continuous map from lt to M. Now {<xnxn:neN} is the image of the set
S = {ocnen:n e N}; the latter forms a sequence converging to 0, so that co S is
compact in ly. Since co {anxn:n e N} is clearly contained in T(co S) the result
follows.

Lemma 2.5. Let A be as in the theorem, and let m>0. Then there is a
sequence of convex combinations of elements of sol A converging in measure to
the constant function ml.

Proof. Define Fk: R -> R for each k > 0 by

F / •. 1 1 ^ 1 V. I ^ I — &)

. ( 5 ) ^ < —

(0 otherwise.

With /?„ as in the theorem, define kn>0 such that log (1 +k2) = nmf}n, that is

ft. = («"" '--1)*;

and define the function yn e M by

Clearly 0 ^ j n ^ )5~J | xn | so that yn e sol A; and since the xn are independent,
so are the yn. Each j n is bounded, and since xn has the density function
l/(n(l+s2)) one has

/>" ^^/(TTCI + s2)) = log (1 + k2
n

o

= m, independent of n.

Also, in the same way,

71Pn JO

Now define convex combinations zn of the yn by

-= (?- ; -?- ; •
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Then since \yr = m for each r we have Jzn = m, and the standard computation
rules for variances give

But

Si.
2

(*)?0-

= I
py
(log(r+2))"m/2

r t ' i (loglog(r+2))2r2

which is easily seen to converge. Hence the numerator of (*) is bounded, while
the denominator tends to oo,and therefore J(zn—m)2-»0as/i-*oo. ThuszB->wl,
in the L2 norm and therefore in measure, as n-+co, and the result is proved.

Theorem 2.3 follows at once from this. For co A is compact by Lemma 2.4,
while Lemma 2.5 shows that co sol A contains the positive constant functions.
Since co sol A is solid it therefore contains all bounded functions in Jl; these
functions are clearly dense in Jl, and therefore co sol A = Jt.

The reason for the original choice of the sequence {/?„} was in order to ensure
that Pn-*co but £ exp(M/Jr)/r

2 converges for each M> 0. If one is satisfied with a
r

set A such that co A is bounded (rather than compact) while co sol A is all of Jt,
one can take /?„ = 1 and avoid the rather delicate estimates involved in the
above proof: the details are left to the reader.
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