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ABSTRACT It has been recognized that the magnetic flux observed 
on the solar surface appears first in low latitudes, and then this flux is 
gradually dispersed by super granular convective motions and meridional 
circulation. Theoretically, the magnetic flux transport could be explained 
by the interactions between magnetic fields and plasma flows on the solar 
surface through the theory of magnetohydrodynamics. 

To understand this physical scenario, a quasi-three-dimensional, time-
dependent, MHD model with differential rotation, meridional flow and 
effective diffusion as well as cyclonic turbulence effects is developed. Nu­
merical experiments are presented for the study of Bipolar Magnetic Re­
gions (BMRs). When the MHD effects are ignored, our model produced 
the classical results (Leighton, Astrophys. / . , 146, 1547, 1964). The 
full model's numerical results demonstrate that the interaction between 
magnetic fields and plasma flow (i.e., MHD effects), observed together 
with differential rotation and meridional flow, gives rise to the observed 
complexity of the evolution of BMRs. 

I. INTRODUCTION 

Leighton's model of sunspots and solar cycle in relation to the expansion and 
migration of unipolar (UM) and bipolar (BM) magnetic regions was published 
in 1964. Since then, a number of investigators (DeVore et al 1984; Mcintosh 
and Wilson, 1985; Sheeley, et al 1985; Sheeley, and Devore, 1986; Wilson, 1986; 
Wilson and Mcintosh, 1991; Wang and Sheeley, 1991) have extensively stud­
ied the magnetic flux transport in relation to the solar cycle by means of a 
modified Leighton model with additional physics. Recent rapid development of 
numerical simulation gives us the capability to study highly complex, nonlinear 
mathematical systems. Wang and Sheeley (1991) have presented a numerical 
simulation including differential rotation, supergranular diffusion, and a pole­
ward surface flow (i.e., meridional flow) of the redistribution of magnetic flux 
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erupting in the form of BMRs. They reproduced many of the observed properties 
of the Sun's large-scale field not encompassed by Babcock's (1961) or Leighton's 
(1964) model. Wilson and Mcintosh (1991) compared observed evolutions of 
large-scale magnetic fields with simulated evolutions based on the kinematic 
model of Devore and Sheeley (1987). They concluded there must be significant 
contributions to the evolving patterns by non-random flux eruptions within the 
network structure, independent of active regions. 

On the basis of magnetohydrodynamic theory, we understand that the non­
linear dynamical interactions between the plasma flow and magnetic field are 
essential to understand magnetic flux transport. However, none of the previ­
ous investigations have invoked MHD to study this problem. In this paper, we 
present a quasi-three-dimensional, time-dependent, MHD model with differential 
rotation, meridional flow and effective diffusion as well as cyclonic turbulence 
to study magnetic evolution of BMRs. The mathematical model, initial and 
boundary conditions are presented in Section II. Numerical results and conclud­
ing remarks are given in Sections III and IV respectively. 

II. MATHEMATICAL MODEL, INITIAL AND BOUNDARY CONDITIONS 

The mathematical model appropriate for the physical scenario we described in 
the previous section can be expressed by a set of incompressible simulated MHD 
equations including differential rotation, meridional flow and turbulent diffusion. 
These governing equations are: 

V u = 0 (1) 

[di + ( u V K u - u / ) 
l_ 

4TTV -Vp + — ( V x B) x B + Fg - 2p<20 x (u - u/) 

-pu>o x Wo X (r — rl) + M t V
2 ( u - u / ) (2) 

dt 

dp 

a n 
— = V x ( u x B) + A(Vx B) + KV2B + S (3) 

+ ( tZV)p = AC?+ ( 7 - 1 ) 
dt V '" -» ' \ ' '[(Tt 2 

ut ( dui t duk \2" /gin ( duhy 
\dxk dxj) . 

(4) 

where p is the plasma mass density, u the plasma flow velocity vector, p the 
plasma thermal pressure, and S, the magnetic induction vector, respectively. 
The other quantities are defined as follows; u;0 is the angular velocity of solar 
differential rotation referring to the center of the solar coordinate system, that 
is given by empirical value as 

, (0.2337 - 0.04835 cos2 0o) _, 
"° = H 864W a r C S e C S " ( 5 ) 

with 60 being the latitude of the center of a sunspot (or active region) . The ut 
is the prescribed background plasma velocity field including differential rotation 
and meridional flow which is given by 
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ul = ulTir + uifif + ul^i^, (6) 

with uTl being the radial component velocity on the solar surface, u't is the 
velocity of the meridional flow which is chosen to be u$l = 0.015/sin 9 for the 
present study and u^ is the velocity due to the differential rotation relative to 
the rotating coordinate system, that is 

0.04835(cos2 90 - cos2 9)r sin 9 _, 
"* = 86400 m SCC S _ ( 7 ) 

ft is the dummy position vector referring to the location of the sunspot (or active 
region), Fg is the gravitational force of the sun, K is the effective diffusivity and 
A represents the coefficient of the cyclonic turbulence, 5 is the additional source 
terms such as emerging flux etc., the fit is the turbulent viscosity. 

Finally the term AQ represents the heat source due to the initial dynamics 
of the quiet photospheric motion such that 

AQ = («/ • V)P o - ( 7 - 1) 
J 2

 [ fHfduij [ dutky 
<rt 2 \dxk dxi J (8) 

This term is prescribed to assure the self-consistency of the MHD solution, 
namely, the initial dynamical equilibrium of the solar atmosphere is obtained. 

This set of MHD equations differs from those of usual first principle MHD 
theory. These differences arise from additional physics we have included in this 
formulation. For example, the additional terms in Equation (2) represent the 
inertia centrifugal force (i.e. 2pw0 x (u - ul)), the coriolis force (i.e. 2/x3o x 
(wo x (f—fi))) and effective diffusion due to random motion of the granules or 
the super-granules. The additional term in Equation (3) represents the cyclonic 
turbulence (i.e. A(v X £))• 

Ideally, we should solve this set of equations in full three dimensions. How­
ever, this is costly and unnecessary, as we are interested only in exploring the 
fundamental physical processes rather than in simulating the realistic situation 
on the sun. Consequently, we prescribe the behavior of the radial derivatives of 
velocity and magnetic field on the basis of the mathematical convenience. These 
functions are: 

8 = Br(r)Br(6, <j>)iT + B„{r)B9(9,4)\+ + ^ ( r ) ^ ( f l , 4>)k (9) 

u = ur(r)ur(9, <f>)ir + v.0(r)ut(9, <t>)"i« + u^rju^tf, <£)t̂  (10) 

with 

dBA , 1 a 
= -(z + ir)B+ dr v r H, 
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dur 

~dr~ = 

dug 

dr 
due 

dr 

2 
--ur 

r 
1 

= -u9 

r 
1 

= -uj, 

(12) 

Substituting equation (12) and (13) into equation (2) by setting ur = u'T, we 
have 

dp 

dr 
ue(u6 - ue<) + u^(u^ - u^i) 

4TT 

Bt_(dB±_ d{rBe) 
r V dO dr 

+ 2pui0sin9(u^, - u^l) - pg 

Bi,( d , _ , \ 1 dBT (i^hlteW <"> 
where Ho is the depth of the sunspot (i.e. -~ 2 X 104 km) and a is an arbitrary 
constant which is the measure of the decreasing rate of field strength against 
height. 

Using these relationships, the computation reduces to a calculation on the 
solar surface. That is why we called our model a quasi-three-dimensional, time-
dependent MHD model. 

To assure self-consistency of the numerical simulation of the evolutionary 
MHD processes, proper initial and boundary conditions are needed. We ob­
tain our initial conditions by assuming the solar atmosphere is in dynamical 
equilibrium. Thus, these initial conditions are: 

d 
rsinO dO 

1 £$ 
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— —tana (14) 
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9+ 

e~ 

d 
i 
d 
2 

o, <t>- + 1 <4> <4>+-h 

- < <e+ + i 
<e < e- + \ 

(15) 

where (<j>+,9+) and (<j>~,9~) represent the coordinates of sunspots with 
positive and negative polarity respectively and d represents the diameter of the 
sunspots. 
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(ii) Initial velocity field is given by 

uT = uTi = 0 or 0.1 kms~l 

0.015 , . 
Uf = ufi = , kms 

sin9 
uj, = u<j,l = w0(9)rsin9 kms~l (16) 

(iii) Initial pressure field is 

Idpo _ j_ 
r d9 ~ 4ir 

— ^ - i -~t(B+8ia9)) 
Uin9\ d<f> d0[ 

1 dPo 1 

rsin9 d<j> 4ir 
-̂ *o / d dB«o 

rsintf \d0' 
BrO ( ar _ 1 dBr0

 s 

_ * S ( i a - + ' f f i ! ) | (u) 

In addition, the 5r^ , B$o and B ô are given to satisfy the solenoidal con­
dition (i.e. V • § = 0). 

The boundary conditions employed here are computational boundary con­
ditions which simply are the forward differencing linear extrapolation. 

in . NUMERICAL SIMULATION RESULTS 

The computational domain for the simulation is set as a rectangular region with 
51 grids in the carrington longitude (<j>) and 35 grids in the latitudinal direction 
(9) in which we have chosen 0.5 degree for each grid in this study. It is assumed 
that the differential rotation and meridional flow velocity depend upon latitude 
only. Therefore, the prescribed flow pattern within the computational domain 
will depend on the domain's latitude but not on its longitude. 

Before we carry out this simulation study, we need to know two important 
coefficients: effective diffusivity (K) and cyclonic turbulence (A). We know that 
the range of values of effective diffusivity is quite wide, for example, K = 160 -
300 km2 s_1 given by Parker (1979); Leighton's value of K is 800 - 1600 km2 s'1 

(Leighton, 1964); DeVore et al (1985) selected K = 300 km2 a - 1 for their study. 
Wang (1988) derived a value of K being 100 - 150 km2 a'1 on the basis of 
observations. The purpose of this study is to learn the fundamental physical 
processes due to the simulated MHD effects (i.e. photospheric dynamo) and is 
not to simulate a particular event. Therefore, we simply choose values within 
these ranges for this study. The value of cyclonic turbulence is chosen according 
to the scale law (A < K/L), where L is the characteristic length of sunspot, it is 
chosen to be 6000 km for the present study. 

The first issue which we shall examine is how the simulated MHD process 
(i.e. photospheric dynamo) will effect the Leighton's results (1964). To achieve 
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this purpose, we simply reduce the present set of governing equations into a 
single diffusion type equation of Leighton's theory which is expressed by Eq. (3) 
with A = 0. To perform such a simulation, we set up a bipolar magnetic region 
with strength ± 1800 G and two degrees apart, then, allow the mathematical 
system to evolve. The Br contours for K = 120 km2 s _ 1 at time 240 hrs after 
introduction of the bipolar magnetic region (BMR) are shown in Figure la which 
resembles the classical Leighton's results. As we have pointed out earlier, these 
results simply represent the magnetic field transport due to effective diffusion 
and differential rotation. Figure lb shows the simulation results using the full set 
of governing equations with differential rotation and K, equal 120 krrr 3 - 1 at 240 
hrs after introduction of the BMR. It shows the interaction between the plasma 
flow and magnetic fields. In such a case, the photospheric dynamo process sets 
in. Significant differences between Fig.la and lb are evident; (i) with MHD 
effects the simplicity of magnetic field strength contours disappeared, (ii) the 
magnetic field has migrated significantly in longitudinal direction, because we 
have ignored meridional flow in this calculation and (iii) the MHD effects lead 
to highly sheared neutral line. 

10° 12° 14" 16° 18° 20° 22° 24° 

Longltuda 

Fig. 1 The radial magnetic field strength (Br) contours at 240 hrs after introduc­
tion of the BMR without (a) and with (b) simulated MHD effects. 
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Fig. 2 

The radial magnetic field strength (Br) contours and transverse magnetic 
field at 120 hrs after introduction of the BMR without meridional flow (a) 
and with meridional flow (b) using the full set of simulated MHD equations. 
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Figure 2 shows the effects of the meridional flow on the magnetic field 
transport, Figure 2a exhibits the Br strength contours and transverse field for 
K = 200 km2 3_1 and A = 0.0125 km s_1 without a meridional flow and Figure 
2b shows the same case with meridional flow. It may note that the meridional 
flow produced a slightly poleward movement of the BMR. 

Up to now, we have shown the computed evolution of the morphology of the 
BMR with and without MHD effects. It is interesting to understand the energy 
evolution during these processes. In Figure 3, we show the magnetic energy 
evolution for the cases with and without background velocity effects. Figure 3a 
shows the normalized magnetic energy (i.e., Em(t)/Em(Q)) in the absence of pre­
scribed differential rotation and meridional flow for the case when only diffusion 
and cyclonic turbulence are included. We notice that the normalized magnetic 
energy Em(t)/Em{0) of the BMR through effective diffusion (K. = 200 km2 s'1) 
is decreasing almost linearly with time as represented by curve B. If both effective 
diffusion and cyclonic turbulence A = 0.25 km a - 1 are considered, Em(t)/Em(0) 
decreased a little more slowly than curve A. Curve C represents the case for cy­
clonic turbulence only and Em{t)IEm{Q) shows a slight increase with time. This 
clearly informs us that the photosphere dynamo can be an energy production 
source. In Figure 3b we test the influence of effective diffusion (loss) and cyclonic 
turbulence (source) in the presence of differential rotation and meridional flow 
on the evolution of the normalized magnetic energy. Curve A represents the case 
for K = A = 0; it gives Em(t)/Em(0) being constant, this informs us that this 
simulation model has maintained dynamical equilibrium throughout the process 
and it validates the accuracy of the simulation model. Curves B and C are for 
A = 0 and K = 100 km2 s"1 and 200 km2 s~l, respectively. It is apparent that, 
when the effective diffusivity increases, the decay rate of normalized magnetic 
energy increases. Curves D and E in Figure 3b show the evolution of normalized 
magnetic energy for K = 0 with A = 0.75 km a - 1 and 0.1 km J _ 1 , respectively. 
It is immediately noticed that the growth rate of normalized magnetic energy in­
creased with increasing A. From these studies, we realize that effective diffusion 
and cyclonic turbulence are competing physical mechanisms for the magnetic 
energy evolution in the magnetic flux transport process of a BMR. In Figure 4, 
we present the normalized magnetic energy vs time for a fixed value of cyclonic 
turbulence (A = 0.025 km J _ 1 ) and effective diffusivity 0, 100 and 200 km2 a""1 

respectively. These results clearly show how these two competing mechanisms 
work; when K — 0, the magnetic energy will increase with time but when ef­
fective diffusivity dominates cyclonic turbulence, then the magnetic energy of 
BMR decays. 

IV. CONCLUDING REMARKS 

The purpose of this study has been to show how a simulated magnetohydro-
dynamic (MHD) process which incorporates to the photospheric dynamo might 
affect the evolution of a bipolar magnetic region (BMR) and lead to the com­
plex active region on the solar surface. To accomplish this purpose, a quasi-
three-dimensional, time-dependent MHD model was developed. For the present 
exploratory simulation study, we realize that there are two major physical mech­
anisms which interplay during the evolutionary process of a BMR, and could 
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Fig. 3 
(a) The evolution of the normalized magnetic energy without MHD effect: 
A (ft = 200 km2 a - 1 , A = 0.025 km a - 1 ) , B (ft = 200 km2 a - 1 , A = 
0 km S'1), and C (K = 0,A = 0.025 km s~l). (b) The evolution of 
the normalized magnetic energy with MHD effect: A (ft = 0,A = 0), B 
(ft = 100 km2 s~l,X = 0), C (ft = 200 km2 a - 1 , A = 0), D (ft = 0,A = 
0.075 km s-1), E (ft = 0, A = 0.1 km a"1). 
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Fig. 4 
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The evolution of normalized magnetic energy with MHD effect and var­
ious magnitude of effective diffusion: A (ft = 200 km2 s'1), B (ft = 
100 km2 a - 1 ) , and C (ft = 0), at fixed value of cyclonic turbulence 
(A = 0.025 km a"1). 
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explain the magnetic flux transport on the solar surface. These two physical 
mechanisms are the effective diffusivity and cyclonic turbulence with simulated 
MHD process which triggers the photosphere dynamo. The most interesting 
results from the present simulation can be summarized as follows: (i) If the 
simulated MHD process is appropriate, the decay of a BMR will create more 
complex structures because the nonlinear interactions exist between the plasma 
flows and background magnetic fields and (ii) the magnetic energy of the BMR 
could be increased if the cyclonic turbulence process dominates. In summary, 
we may conclude that MHD interactions are important and needed in the study 
of magnetic field transport. 
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