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A FAMILY OF UNITALS IN THE HUGHES PLANE 

BARBU C. KESTENBAND 

We construct a family of unitals in the Hughes plane. We prove that they are 
not isomorphic with the classical unitals, and in so doing we exhibit a config­
uration that exists in the latter, but not in the former. This new configurational 
property of the classical unitals might serve in the future again as an isomor­
phism test. 

A particular instance of our construction has appeared in [11]. But it only 
concerns itself with the case where the matrix involved is the identity, whereas 
the present article treats the general case of symmetric matrices over a suitable 
field. Furthermore, [11] does not answer the isomorphism question. It states 
that (the English translation is ours) "It remains to be seen whether the unitary 
designs constructed in this note are isomorphic or not with known designs". 

We shall use the notation of [9]: 
F: GF(q), q odd. 
O: GF{q2), q odd. 
t: a primitive root of O. 
<ï>s,0Ar: the sets of squares, nonsquares, respectively, in O. 
*¥: the regular nearfield of order q2, with the same elements as O, in 

which addition is the same as in O, while multiplication, denoted by 
• , is defined as follows: 

pa if a E 0$ 
p • a 

pqci if a e Oyv 
Since pq — p for all p G F, we have p • a — pa for all p £ F and 
ae*¥. 

II: the Desarguesian projective plane over O. 
£1: the Hughes projective plane over x¥. 
We adopt the view that the points of n and Q are the same. The points of £1 

fx\ (x\ fl\ 
will be denoted by y , 1 or 0 , as the case may be. The points of 

(x}° 
n will sometimes be denoted by \ y I, where z is not necessarily an element 

of F. 
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1068 BARBU C. KESTENBAND 

The lines of £l are sets of points satisfying one of the following equations 
[9]: 

y — sz = k • (x — rz), r,s G F, k G *F — F; 

y = mjc + Az, m G F, AG1?; 

JC + /xz = 0, / iG 1 ?; finally, z = 0. 

We use • only when multiplication in *F is not necessarily the same as in 
O. Thus we do not use • when z is involved, because we have established that 
z G F in all cases. Notice that the lines of the last three types contain the same 
points in Q, as in FL 

A 2 — (v,£, 1) design is a set of v points, with distinguished subsets called 
blocks, such that each block has k points and any two distinct points appear 
in a unique block [5, p. 246]. We will occasionally use "block" and "line" 
interchangeably. 

A 2 — (s3 +1, s + 1,1) design is called a unital [5, p. 246]. The original unitals 
were obtained as the sets of absolute points and non-absolute lines of certain 
polarities of 11. Specifically, let H — (hy) be a Hermitian matrix over O, i.e. 

one for which h^ = hjt for all i, j . A unital comprises the points I y which 

satisfy the equation: 

(1) hux
q+l + h22y

q+l + h33z
q+l + hnxyq + h2\x

qy + hl3xzq + h3\x"z+ 

h23yzq + h32y
qz = 0 

fx\ fx\{q) 

If u = I y is a point of n (viewed as a column vector), let u(<?) = l y = 

\ yq \> Then equation (1) can be written: 
VzqJ 

(2) uTHu(q) = 0 

In time, as new families of unitals were found (see [1], [2], [4], [6], [8]), the 
original unitals began to be called "classical unitals". As the unitals constructed 
in this paper - in Q - consist of the same points as the classical ones (but not of 
the same blocks), we deem it fitting to christen them "classical Hughes unitals". 

If H is a symmetric matrix with entries from F, it is Hermitian over O. Then 
the classical unital it defines contains together with a point u, the point u(c/). To 
see this, note that (2) is equivalent to: 

u(q)THTu = 0 
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UNITALS IN THE HUGHES PLANE 1069 

But HT = H by assumption, and also [u(^)](^) = u for any point u, so that 
the last equation can be rewritten as: 

u(q)TH[u{q)]{q) = 0 

Comparing this with (2) proves the claim. 
We need to introduce new notation: 

Lkrs 

*~>krs 

the line y — sz = k(x — rz) in I~L 
the line y — sz = k • (x — rz) in Q. 
the line y — sz = kq(x — rz) in 11. 
the line y — sz = kq • (x — rz) in Q. 

Pq: the image of the point P under the involutory automorphism of <î>. 
We have the following straightforward implications: 

P G Lkrs & Pq G L\rs and P G Lkrs & Pq G l\rs. 

THEOREM 1. Let H be a symmetric matrix over F, and U, the classical unital 
it defines in IL Then the lines L^ and Lkrs have the same number of points in 
common with U. 

Proof Observe first that if a point P G Lkrs, then either P G L^s or P G L\rs. 
Let L^s intersect U at the u + v distinct points P\,..., Pu, Qi,...,Qv, where 

P i , . . . ,PU G L^ and Qu . . . , Qv G L\rs. 
Then Qf G LkrS9 i = 1 , . . . , v, and thus Lkrs includes Pu.. .,PU, Qq,..., g?-
These points are distinct, for if Pt — QJ for some i, 7, then P, G L r̂5 (^L\rs, 

(r\ (r\q) (r\ 
so Pt = I 5 , but then (2/ = I ^ I = h = / , i , a contradiction. 

Furthermore, the above points are all in U, so we see that \Lkrs DU\ ^ u + v. 
To show that equality holds, assume, contrariwise, that Lkrs contains another 

point R of U. 

(r\ (r\ 
This extra point cannot be \ s : if \ s is on U, then, since it is on Lkrs 

as well, it must be one of the points P i , . . . , Pu, Qq,..., Q$, whereas R is not 
supposed to be on this list. 

Since Lkrs C Lkrs ULfw, we have either R G Lkrs n L/" or /? G L r̂5 Pi f/, but not 
both. 

In the first situation, as R is distinct from Pi , . . . ,P u , it has to be one of the 
Q/s. But this is not possible, either, because the Q/s are on L\rs, while R is on 

(r\ 
Lkrs, and these two lines meet at s \ ^ P. 

https://doi.org/10.4153/CJM-1990-057-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-057-1


1070 BARBU C. KESTENBAND 

The case R G L\rs Pi U is disposed of in like manner, by taking into account 
the fact that L\rs meets U at Pq,..., P«, Qq,..., (?;?. Q.E.D. 

As the lines !*„ are the only lines of £1 that are different from those of n , 
what Theorem 1 shows is that the lines of Q, intersect U at q + 1 points or at 
one point. Hence 

COROLLARY 1. Let U be a classical unital defined by a symmetric matrix over 
F. Then the points of U, together with the lines of Q that are not tangent to U, 
as blocks, form a unital. 

As already agreed upon, we shall henceforth refer to the unitals of Corollary 
1 as the "classical Hughes unitals". 

We now tackle the non-isomorphism problem. In order to show that the two 
families are distinct, we will describe a configuration which always exists in the 
classical unital, but only sometimes in the new unital. Specifically: 

We will say that a unital has property « if it meets the following requirement: 
For any point P and any block B\ — {2o? • • • ? <2<?} not on P, consider the 

blocks Co,. . . , Cq, containing the pairs {P, <2o}, • • • ? {P, Qq}- Then: 
(i) There are q — 1 blocks #2, • • •, Bq, mutually disjoint and also disjoint from 

B\, such that each Bt intersects each C7, i = 1 , . . . , q, j = 0 , . . . , q. 
(ii) No other block intersects more than two of the C/s. 
We now prove that the classical unitals do, and the classical Hughes unitals 

do not, have property K. 

THEOREM 2. Classical unitals have property «. 

Proof Since any two classical unitals are equivalent, in the sense that there 
is a collineation of n that maps one onto the other, ([5], p. 62), it suffices to 
prove the theorem for the unital U: 

f° ° M 
yq+l +xzq+xqz+yzq+yqz = 0, where / / = 0 1 1 • 

VI 1 07 
Let r be the subgroup of PGL(V) that fixes U (also known as the unitary 

group). It is known that T is 2-transitive on the points of U ([5], p. 62). Hence, 
if a point P G U and a block B\ = {go? • • • ? Qq} are given, there is an element 

of T that maps P, QQ, onto 0 , 0 I, respectively. Thus we will assume 

without loss of generality, that P = 0 and 0 G B\. 

Note further that \ b G U for some A, b G O, and UJ + uoq = 0, implies that 
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b £ U as well. Hence the points on any block through P are, besides P, 

b , where a, b are fixed, while LJ ranges through the solution 

set of the equation x + xq — 0. 

fao\ faq\ 
On the other hand, the collinearity of Z?0 , . . . , bq entails that of 

fa0 + p\ faq + p\ 
I ^o ] ' • • • ' ( \ I for any p. 

We have thus established that the map | 0 - - > 0 , f c j — * b J, 

with uj + (J* — 0, is a central automorphism of £/, in the sense of [3], p. 82, 

with 0 as center. These automorphisms form a group isomorphic with the 
VoJ 

additive group of F, because u + ufl = 0 implies CUJ + (ca;)^ = 0 for any c £ F. 

Now, Z?i being given, the blocks B2l..., ^ are obtained by the action of this 

group on B\. 

It remains to be shown that no other block of U intersects more than two of 

the C/s. 
fdi+x\ (aj+y\ fak+z\ 

Assume that U has three collinear points bt , bj , bk 

fat\ faj\ 
with x, y, z all different, and also b[, bj, b^ all different, where \ bt , I ^; J, 

(ak\ 
bk G B\. We will prove that this assumption leads to a contradiction. 

a\ - at ak - at The collinearity of the three points in B\ is equivalent to •—• 
bj - bi bk - bt 

a; — at + y — x ak — at + z — x 
If the first triple is also collinear, we get —— = , 

bj - b( bk - bi 
, • i y ~ x z ~ x 

which reduces to — = —. 
bj - bt bk - bt 

v — x 
As x, y, z are all different, the last equation can be rewritten as = 

z -x 
bj-bj 
bk ~ bt ' 
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f at \ fcii+x\ 
Since \ bt , b[ G f/, we obtain the equations: 

(3) bfl + en + aq + bt + bq = 0 

and frf+1 + at + x + aq + x^ + b, + &f = 0, whence x +xq — 0. 
Similarly, y + yq = z + ẑ  = 0. 
As a consequence, we have y — x — —(y — x)q and z — x — — (z — x)q. Thus: 

y—x ty—x\q . , , y — x 
= ( ) , in other words G F. 

z — x \z — x / z—x 
y — x 

Denote = s ^ 0,1. We have s — sq. Then: 
z — x 

(4) bj-bi = s{bk-bi) 

and also aj — at — s{ak — at). 
Equation (4) gives successively: 

bj = bt + s(bk - bt), bf = bq + s(bq - bq), 

b<j+l = bfx + s(bqbk + bibq
k - 2bq+l) + s\bk - bi)q+{. 

Upon substituting these three equations into (3) (with / replaced by y), and 
then using (3) repeatedly, one obtains (s2 - s)(bk - bt)

q+l = 0. 
This final equation gives bk = bh the contradiction that completes the proof. 

Q.E.D. 
We turn now to proving that the classical Hughes unitals do not enjoy property 

K. A few preparatory results are needed. 
Throughout the remainder of the paper, U will stand for the unital in Theorem 

2, regarded as a point-set, both in IT and £1 Also, we will denote t{cf+X)l2 by w, 
t being a primitive root of O. 

It is an easy check that the solutions of the equation x + xq = 0 are x = aw, 
where a ranges through F. 

LEMMA 1. The line y = ax, a ^ 0, meets U at points whose first coordinates 
x are of the form: 

Proof In the equation of U (see Theorem 2), let z = 1, and substitute y = ax 
to obtain: 

(5) aq+lxq+l + (aq + \)xq + (a + 1)JC = 0 
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We have the readily verified identity: 

(ax + 1 + — J = aq+ixq+l + (cfl + \)xq + ( a + \)x + f\ + —q J 

ca; + 1 + — = 1 + 

Thus (5) is equivalent to: 

whence: 

ax + l + i - = f l + -L>) ^ - 0 / = 0 , . . . , ?. 
ofl \ oflj ' ' * 

Now solve for JC. Q.E.D. 

LEMMA 2. For / = 1 , . . . , q, denote tl(q~]) — 1 = fl. Then: 

If q = 1 mod 4, i and rt have opposite parities. 

If q = 3 mod 4, i and rt have the same parity. 

Proof. Since —1 = r ( r _ 1 ) / 2 , the equation in the statement of the lemma can 

be written as: 

(6) ^ = ^ - i ) + r tf-i)/2 

As (— \)q — — 1, raising both sides of (6) to the qth power gives: 

(7) tqri = tqi(yq~X) + t(q2~1^2 

We have the identity (check!): 

fi(q-\) + r(^2-D/2 = t(q
2-\)/2-i{q-\)[ti{q-\) + f(q

2-\)/2^ 

Therefore, using (6) and (7), we obtain: 

flTi _ t(q-l)(q+\/2-i)tn 

Hence r (^ I ) r ' = fte-Dto+1/2-^ s o t h a t : ((? _ 1 ) r . = (q - I) f i l l - A mod 

q2 — 1, i.e. r, + / = ——- mod q + 1. 

Thus r, + / is an odd multiple of —— and the conclusion follows. Q.E.D. 

LEMMA 3. The lines y = ax and y = a • x, a ^ O , intersect U at 0 and 

q more points. Denote the first coordinate of the latter by x. 
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If q = 1 mod 4 and — + r G Os, or q = 3 mod 4 ara/ — + r G O^, —-— 

of these points have x G 05 , wm'/e f/ie remaining —-— points have x G 0#. 

Furthermore, the above paragraph remains valid if O/y ara/ 0 5 are mter-

Proof It is an immediate consequence of Lemmas 1 and 2 that the present 
one holds for the line y = ax in FL 

If a G F, the two lines in question are one and the same. So assume a $ F. 
Let the points of U on y — ax be: 

I 0 J , I aa\ I , • •., I aau I , I av\ I , . . . , I avv I , 

where a/ E Os, / = 1 , . . . , w, i/y £ Oyy, 7 = 1, . . . , v, w, v = and « + v = g. 

Then the line y = a • x has the following points in common with U: 

I 0 I , I a<r, I , • • •, I aau I , I oflv\ I , . . . , I oflv% 

The proof is finished, because the involutory automorphism of <I> leaves 0s 
and <!># invariant. Q.E.D. 

LEMMA 4. In n, the lines y — wx and y = wqx meet U at 0 and at 

exactly one more point for which y G F. 

Proof To find the points of intersection between y — wx and U, one solves 
the equation: 

(8) /H+Z + Zl+y+^o 
w wi 

Since we want y G GF(q), we impose y = yq. Besides, we have wq = t(q2+q)/2 = 
ttf-\)/2t(q+\)/2 = _^+i)/2 = ^ T h u s ( 8 ) becomes: 

yielding y — 0, —2. Similarly for ;y = H^JC. Q.E.D. 

(*\ 

COROLLARY 2. /« Q, £/ze line y — w • x meets U at \ 0 and at exactly one 

more point with y G F. 
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Proof. When q = 3 mod 4, w is a square and then so is —2/w, hence 

/ - 2 / w \ 
—2 is on y = w 'X. 

Assume there were a third point in U with y G F for which y = w - x. As y 

is a square, and w is, too, JC must be a square as well. But then y = wx for this 

point, so we have found a third point in U that lies on _y = wx and has y G F, 

in violation of Lemma 4. 
/ - 2 / w n 

If g = 1 mod 4, w is a nonsquare, and so is —2/wq, hence —2 I is on 

y — w - x. The rest is as in the previous paragraph. Q.E.D. 

LEMMA 5. Let a G F, a ^ 0. Among the solutions of the equation x + xq — 

«, ra^re are; —— nonsquares and —-— squares if q = 3 moa 4. —-— 

nonsquare s and —-— squares if q = 1 mo J 4. 

Proof If w is a solution of x +xq — 1, then au, where « G F, is a solution of 

x +xq = a, because a — aq. 

Since, on the other hand, a G F implies a G O5, we see that the number of 

squares and nonsquares among the solutions of x + JC^ = a ^ 0 is independent 

of a. 

Further, we noted earlier than the solutions of x + xq = 0 are JC = AW, # G F. 

Therefore they are all in O5 (if w G O5) or all (except JC = 0) in <£# (if w G O^). 

But u> = t{q+l)/2, so that w G 0 5 for g = 3 mod 4 and w G Oyv for # = 1 

mod 4. 

Assume first q = 3 mod 4. Then the solutions of JC + xq = 0 are all in O^. 

Among the remaining q — q elements of O there are — - — nonsquares and 

squares. But there are q — 1 equations of type x + xq = a ^ 0. Thus 

each of these equations has roots in <&N and —-— roots in O5. 

If q = 1 mod 4, the nonzero solutions of JC + xq = 0 are in Oyv- The rest is as 

in the preceding case. Q.E.D. 

LEMMA 6. Consider the unital U in H and Q. Of the q+\ blocks joining the 

point 0 I with the q + 1 points of the block y = wx (in H) or y = w • x (in 

VoJ 
Q), two are y — 0 and y — —2z. The x-coordinates of the points in these two 

blocks satisfy x +xq = 0. 
For all the points in the remaining q — 1 blocks, x +xq ^ 0. 
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Proof. Let z — 1. We require x + xq = 0 and y = wx in the equation of £/. 
This gives yq+l +y + J*7 = 0, in other words wq+lxq+l +wx + wqxq — 0. 

But wq = — w and xq — — x, which reduces the last equation to wx{wx+2) = 0, 
whence y = wx — 0 or —2. 

The same conclusion must hold for y = w x. Q.E.D. 

LEMMA 1. Any two classical Hughes unitals are equivalent. 

Proof. Let U, U' be two classical Hughes unitals. We will exhibit a 
collineation 0 of ft with Ue = V. 

The points of U, U' form two classical unitals in n , defined by the symmetric 
matrices // , H', respectively: uTHu(q) = 0, uTH'uiq) = 0. 

Their intersections with the Desarguesian subplane £IQ of Q, are the two conies 
A : uTHu = 0, A' : u r / / 'u = 0. 

Since any two conies in £2Q are equivalent ([5], p. 52), there exists a matrix A 
over F with H = AT H'A. Thus A defines a collineation of Qo> which extends 
to a collineation 0 of Q [10]: 

a9 = Aa for any a G Q 

Let a E £/, i.e. a r / /a (^ = 0. Then: 

(Aa)TH'(Aa)(q) = *T AT H'A{q) a{q) = ^TATH'A^{q) = ar//a(^} = 0, 

showing that Aa G £/', hence f/0 = V. Q.E.D. 

THEOREM 3. T/ẑ  classical Hughes unitals do not have property K. 

Proof. By Lemma 7, it suffices to consider the unital U in Q. 

We will choose the point P and the block B\ to be 0 and y — w • x. We 

will then obtain a block (as a matter of fact there are many) that intersects at 
least three, but not all, of the C/s, in violation of property K. 

Let q = 3 mod 4, in which case w G <J>$. 
In Fig. 1 we illustrate the situation in n - where property K holds - for 

(^ 
P = 0 (not shown) and #i : y = wx. 

VoJ 
Here, -2 /w , a2 , . . . ,aM G Os, I / I , . . . , I / V G Oyy. 
In view of what follows, we need to make sure that u è 2. By Lemma 3 

(applied to II), as long as q ^ 7, we have M ^ ^ 3. 
For q = 3, we have u> = r2 and f8 = 1, whence — + —- = t6 + 1 and it is an 

w w4 

easy check that t6 + 1 G Oyy, so that by Lemma 3 again, u = 2 as needed. 
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' 0 \ la2w\ 

-21 w* 

^ 

' °2 \ 

^w 

wo„ 
1 1 

1 

Vl \ 
WVi 

1 K 

f v v 

I 1 

,r~ 

( 
c0:y = o 

Sf) ( 
C\\y--2z 

C2 + Cl2w\ 

A T J rC2:y = w°2Z 

B2 

r 

Ou + a2w\ 

( wou 

( 
Cu: y = wauz 

f 1V\ + a2w\ 

7 c 
Cu+\:y = w\xz 

( 
Cq: y = wvvz 

lvv + a2w
1 

1 7 , 

* anw\ 
0 

0 i 

^ 

/«V 

^ 

o2 + aqw\ 

w02 

J 

l<5u + a.qw\ 

I 7" , 
+J 

^ 

Ni+aqw\ 
I wvj 

I 7" ) 
Fig. 1 

The block Co : y — 0 contains points whose first coordinates satisfy x+xq = 0, 

i.e. multiples of w by the elements of F. 

The same holds for the block C\ : y = — 2z, because in this case yq+l + yzq + 

yiz = {-2z)q+{ - 2zq+l + (-2z)qz = 4zq+l - 2zq+l - 2zq+l = 0 and thus the 
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equation of U boils down to x + xq = 0 (because z = 1). 
Thus, in Fig. 1, #2, • • • ? Qq are the nonzero elements of F. Then, a,2,..., ^ 

are also distinct elements of F, one of which is zero, and related to the former 
(straightforward verification) as follows: 

2 
(9) aik = 2 + f l * ' k = 2,...,q 

The blocks #; are subsets of the lines: 

(10) y + ciiW2z = wx, / = 2, ...,<? 

Fig. 2 shows what takes place in £2. Here, Z?i : y = w • x. 
The blocks Co,. . . , Cu are the same as in Fig. 1, while C£+1,..., C'q are the 

images of CM+i,..., Q , respectively, under the involutory automorphism of O. 
Consider the blocks Cu and C'u+l. By Lemma 6, the x-coordinates of the points 

in these blocks satisfy x +xq = a ^ 0 (a could be different for the two blocks). 

Thus, by Lemma 5, on both blocks, the first coordinate is a nonsquare —— 

times. 

Since + —— > q, there must be an "overlap", in the sense that there 

exists a nonzero element a\ G F for which ou + a\w and v\ — a\\v are both 
nonsquares. 

Consider the block y + aiw2z = w • x. It is a simple check that it contains the 

faiw\ fauw\ rv\-ai\v\ 
three points 0 U - 2 and wqv\ 

The block in question, however, does not meet Cu: if it does, the point of 
intersection either has x G O5 and therefore satisfies the equation y +aiw2z = wx 
(but there is no such point, because on Cu the only point that satisfies this last 

( au + aiw\ 
WCJU and we already know that au + atw £ O^), or it has 

x G <&N and hence must satisfy the equation: 

(11) y + aiw2z = wqx 

But this cannot be the case, either, because this last line (in EI) meets Co and 
r-aiw\ r~auw\ 

C\, at 0 , —2 , respectively, and if it intersected Cu as well, it 

would be (by property «, which does hold in IT) one of the blocks #2? • • • ? Bq, 
which it is not, because its equation —(11)— does not agree with (10). 
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We have thus shown that the block y +ai\v2z — w -x meets C0, C\, C'u+X, but 
not Cu, in conflict with property K. 

If g = 1 mod 4, the proof is fairly similar, but there are differences that need 
to be explained. In this case W G O J V 
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Fig. 3 illustrates the situation in II, for P = 0 and B\ : y — wx. 
VoJ 

We have —2/w, i/2 , . . . , vu G $>N, and cri,. . . , av G <J>5. 

By Lemma 3 again, u ^ —-—. But q ^ 5, so u ^ 2. 

Furthermore, (9) and (10) hold in this case, too. 

Fig. 4 shows what happens in Q. 
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Here, B\ : y — w • x. 
Consider the blocks C'u and Cu+\. 

Using Lemma 5 as in the first case, we see that there must exist a nonzero 
element ai G F for which vq

u — aiw and cr\ + aiw are both squares. 

Consider, in Q, the block y +ai\vzz = w • x. It contains the points 0 

h2H 7 I 
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We will now show that this block fails to intersect the block C'u: if it does, 
and the point of intersection has x G O^, that point will satisfy the equation y + 

aiw2z — wqx. But the only point on C'u satisfying this equation is wqvq
u 

and we have seen that vq
u — a\w £ Oyy. 

If, on the other hand, the point of intersection has x G 0 5 , it has to satisfy 
y + aiw2z = wjc, i.e. wqvq

u + aiw2 = wx, whence: 

(12) x = —i/l + aiw 

But all the points on C'u have x — vq
u — atw for some /. Upon combining this 

with (12), one gets i/q = (ai + at)w/2, whence, because wq = —w, one obtains: 

(13) vu = -vq
u 

( Vu\ 
The point wvu must satisfy the equation of U, so we also have: 

(14) wq+li/q
u
+l +vu + vq

u + wvu + wqvq = 0 

Using (13) and wq = — w, equation (14) yields vu — —2/vv, which transforms 
2 

(12) into x — + fl/vv. Now, by (9), this in turn becomes x — at.w, which 
w 

corresponds to the block C\ and this block has no points with x G 0 5 . 
Hence our block intersects Co, C\, Cu+\, but not C'u, so property K does not 

hold and the proof is complete. Q.E.D. 
In the interest of future research we wish to point out to another configura-

tional property that seems to distinguish the classical unitals from their Hughes 
counterparts. 

It is known ([7]) that the classical unitals do not admit the so-called Pasch 
(or, as it has been known lately, O'Nan) configuration, which is defined as a 
family of four blocks each of which intersects the other three at three distinct 
points, and it is a long-standing conjecture that the lack thereof characterizes 
them. 

We have carried out the actual construction of the classical Hughes unital on 
28 points, and it does contain some Pasch configurations, reinforcing one's belief 
in the above conjecture. There are, however, pairs of intersecting blocks that are 
not embeddable in said configuration and we have not been able to discern an 
encouraging regular pattern. For this reason we had to resort to property n for 
the nonisomorphism proof. 
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