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A Ramsey Theorem with an Application to
Sequences in Banach Spaces

Robert Service

Abstract. The notion of a maximally conditional sequence is introduced for sequences in a Banach

space. It is then proved using Ramsey theory that every basic sequence in a Banach space has a sub-

sequence which is either an unconditional basic sequence or a maximally conditional sequence. An

apparently novel, purely combinatorial lemma in the spirit of Galvin’s theorem is used in the proof.

An alternative proof of the dichotomy result for sequences in Banach spaces is also sketched, using the

Galvin–Prikry theorem.

1 Introduction

A well-known and significant problem in Banach space theory going back at least to

the 1958 paper of Bessaga and Pełczyński [3] was whether every infinite-dimensional

Banach space contains an unconditional basic sequence. This was finally settled in

the negative in 1991 by Gowers and Maurey with their construction of a hereditar-

ily indecomposable space [8]. Earlier an important partial negative result was given

when Maurey and Rosenthal constructed a weakly null basic sequence without any

unconditional subsequence [10]. By contrast, it was known already to Banach that

any weakly null normalized sequence in a Banach space always has a basic subse-

quence. The example of Maurey and Rosenthal prompted a line of research begun

by Elton [6], where the property of unconditionality is replaced by some weaker, but

closely related, property in order to obtain positive results. Thus, Elton defined the

concept of a near-unconditional sequence and showed that every weakly null nor-

malized sequence has a near-unconditional subsequence. Later other types of partial

unconditionality conditions and corresponding results were given by Odell [12] and

Argyros, Merkourakis, and Tsarpalias [2]. The surveys [1, 13] serve as good intro-

ductions to the subject. A common thread is the use of a Ramsey-theoretic result at

some point of the proof.

This paper has two objectives. The first is to address a natural question regarding

basic sequences that fail to have any unconditional subsequences. More specifically, it

is proved that every such sequence has a subsequence which is maximally conditional,

a concept defined in this paper as follows.

Definition 1.1 A basic sequence (xk) in a Banach space is maximally conditional if,

given any two infinite disjoint sets E, F ⊂ N and any positive real number C < ∞,
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there exists a finitely supported sequence (ak)k∈E∪F of scalars such that

∥

∥

∥

∑

k∈E

akxk

∥

∥

∥
> C

∥

∥

∥

∑

k∈E∪F

akxk

∥

∥

∥
.

More intuitively speaking, any two subspaces spanned by subsequences of (xk)

have angle 0. The result that any basic sequence has either an unconditional subse-

quence or a maximally conditional subsequence appears below as Theorem 2.2. Al-

though easier to prove, this theorem should be viewed as an analogue of Gowers’ di-

chotomy theorem which says that every infinite-dimensional Banach space contains

either an unconditional basic sequence or a hereditarily indecomposable subspace. In

fact, this result of Gowers’ can be rephrased as follows: any basic sequence either has

an unconditional block sequence or a block sequence (yk) such that any two block

subspaces of (yk) have angle 0. The reader is referred to the relatively easygoing ex-

position in [9] for a proof of this fact and to [7] for a more complete treatment of

Gowers’ original proof.

The second purpose of this paper is to draw attention to an apparently novel Ram-

sey theoretic lemma used in the proof of Theorem 2.2 on maximally conditional sub-

sequences. The lemma in question is related to Galvin’s theorem and expresses the

fact that for any set A of pairs (A,B) of disjoint finite subsets of N there exists an

infinite set M ⊂ N such that either there is no (A,B) ∈ A such that A ∪ B ⊂ M, or

else M is densely saturated by pairs (A,B) ∈ A in a specific sense. This purely com-

binatorial result, which appears as Lemma 3.1 below, seems natural enough to merit

independent interest and should have potential applications beyond those presented

in this paper.

2 Maximally Conditional Sequences

Recall that a sequence (xk) in a Banach space X is called a basis for X if for every

x ∈ X there exists a unique sequence (ak) of scalars such that x =
∑∞

k=1 akxk with

the series converging in the norm of X. A basic sequence is a sequence (xk) which

is a basis for the closed linear span [(xk)]. A basic sequence (xk) is unconditional

if each convergent series of the form
∑∞

k=1 akxk is unconditionally convergent, i.e.,
∑∞

k=1 aπ(k)xπ(k) converges for every permutation π : N → N.

The following characterisation of unconditionality is convenient for the purposes

of this paper. A good reference for any of the facts about Banach spaces mentioned

without proof below is Megginson’s textbook [11] .

Lemma 2.1 A basic sequence (xk) in a Banach space X is unconditional if and only

if there exists a constant C < ∞ such that for all finite sets E ⊂ N and all sequences of

scalars (ak) one has

(2.1)
∥

∥

∥

∑

k∈E

akxk

∥

∥

∥
≤ C

∥

∥

∥

∞
∑

k=1

akxk

∥

∥

∥
.

Recall that if (xk) is any basic sequence, then for any finite set E ⊂ N one can define

a bounded linear projection PE (depending on the sequence (xk)) on the closed linear
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span [(xk)] by setting

PE

(

∞
∑

k=1

akxk

)

=

∑

k∈E

akxk.

For an infinite set E the series
∑

k∈E akxk, where the elements of E are enumerated in

ascending order, need not converge if (xk) is not an unconditional basic sequence.

Next we introduce some notation which will be used for the rest of this paper. For

any basic sequence (xk), let

B(xk) = {E ⊂ N : PE is a bounded projection on [(xk)]}.

For disjoint E, F ⊂ N it holds that PE∪F = PE + PF , while for any E, F ⊂ N we also

have the identities PE∩F = PEPF = PFPE and PN\E = I − PE, where I is the identity

operator on [(xk)]. It follows from the above that B(xk) is in fact a Boolean algebra of

sets.

If B(xk) = P(N), then it can be deduced with little effort from the principle of

uniform boundedness that the condition of Lemma 2.1 holds. Thus B(xk) = P(N) if

and only if (xk) is an unconditional basic sequence.

If (xk) is not unconditional, how small can B(xk) in fact be? It follows from the

discussion above that each finite and co-finite subset of N must be an element of

B(xk). A well-known space demonstrates that

(2.2) B(xk) = {F ⊂ N : |F| < ∞ or |N \ F| < ∞}

is possible for a basic sequence (xk).

Namely, let (yk) be the summing basis, formally defined as the standard vector

basis of c00 in the completion of c00 given by the norm

‖(ak)‖Σ = sup
n∈N

∣

∣

∣

n
∑

k=1

ak

∣

∣

∣
.

The fact that equation (2.2) holds with (yk) in place of (xk) is easily verified directly,

a task left to the reader.

The definition of a maximally conditional sequence given in the introduction can

be rephrased as follows: (xk) is maximally conditional if PE fails to define a bounded

operator on [(xk)E∪F] for any pair of disjoint infinite E, F ⊂ N. Now we can state the

main theorem of this paper.

Theorem 2.2 Every basic sequence in a Banach space has a subsequence that is either

an unconditional basic sequence or a maximally conditional sequence.

Note that if (xk) is maximally conditional, then (2.2) holds. The converse is not

true in general. Before proving Theorem 2.2, we give an example showing that the

property of being maximally conditional is in fact a strictly stronger property for a

sequence (xk) than the minimality property defined by (2.2).
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Consider the basis (zk) which is again formally the sequence of natural basis vec-

tors in c00. The ambient space is the completion of c00 with respect to the norm

‖(ak)‖v =

∣

∣

∣
a1

∣

∣

∣
+

∞
∑

k=1

∣

∣

∣
ak+1 − ak

∣

∣

∣
.

Note that ‖zk‖ = 2 for all k. We claim that

B(zk) = {F ⊂ N : |F| < ∞ or |N \ F| < ∞}.

Take E ⊂ P(N) such that |E| = ∞ and |N \ E| = ∞. Now ‖
∑n

k=1 zk‖ = 2 for all

n ≥ 1, while

∥

∥

∥
PE

(

n
∑

k=1

zk

)∥

∥

∥

v
≥ |{k < n : k ∈ E, k + 1 /∈ E}| → ∞

as n → ∞, so PE cannot be a bounded projection.

On the other hand, if E, F ⊂ N are disjoint sets such that E ∪ F contains no two

consecutive numbers, then in fact

∥

∥

∥

∑

k∈E

akzk

∥

∥

∥

v
≤ 2

∑

k∈E

|ak| ≤
∥

∥

∥

∑

k∈E∪F

akzk

∥

∥

∥

v
,

so the sequence (zk) is not maximally conditional.

3 Proof of the Main Theorem

We present two proofs of Theorem 2.2. The first one is based on a combinatorial

lemma which seems natural enough to merit independent interest. Another proof

relying on the Galvin–Prikry theorem, suggested by Edward Odell, is presented at the

end of the paper. At this point we follow [4] and introduce some convenient notation

related to sets. For a set M ⊂ N we let

M(∞)
= {E ⊂ M : |E| = ∞} and M(<∞)

= {E ⊂ M : |E| < ∞}.

In practice, this notation is used only for countably infinite sets M, so that M(∞) will

always be an uncountable set and M(<∞) a countably infinite set.

We start preparing for the first proof of Theorem 2.2 by noting that (xk) is maxi-

mally conditional if and only if, for any two disjoint sets E, F ∈ N(∞) and any C > 0,

there exist finite sets A ⊂ E and B ⊂ F and a sequence of scalars (ak) such that

∥

∥

∥

∑

k∈A

akxk

∥

∥

∥
> C

∥

∥

∥

∑

k∈A∪B

akxk

∥

∥

∥
.

This serves to motivate the Ramsey-theoretic Lemma 3.1 whose proof relies on Gal-

vin’s theorem (see [4] for a proof of this fundamental result). Galvin’s theorem states

that if D ⊂ N(<∞) and R ∈ N(∞), then there exists a subset S ∈ R(∞) such that either
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• there exists no D ∈ D such that D ⊂ S,
• for every S ′ ∈ S(∞) there exists an initial segment D of S ′ such that D ∈ D.

We now come to the key lemma on which our first proof of Theorem 2.2 is based.

Lemma 3.1 Let A be a set of pairs of the form (A,B), where A,B ∈ N(<∞) and

A ∩ B = ∅. Let R ∈ N(∞). Then there exists a subset S ∈ R(∞) such that one of the

following alternatives holds:

(i) there exists no (A,B) ∈ A such that A ∪ B ⊂ S,

(ii) for any two sets E, F ∈ S(∞) there exists a pair (A,B) ∈ A such that A ⊂ E and

B ⊂ F.

Proof To start off, we apply Galvin’s theorem with the family

A
′
= {A ∪ B : (A,B) ∈ A}.

This gives us a a subset T ∈ R(∞) with one of the following properties:

(i) there exists no D ∈ A ′ such that D ⊂ T, or

(ii) for all T ′ ∈ T(∞) there exists an initial segment D of T ′ such that D ∈ A ′.

In the first case we can set S = T and the conclusion of the lemma follows. We

suppose then that (ii) holds. In this case simply setting S = T is not enough, but

rather we will find a set S ∈ T(∞) such that alternative (ii) in the statement of the

theorem holds.

Let D be the family of all finite sets of the form

{a1 < b1 < a2 < b2 < · · · < an < bn} ⊂ N

for some n ≥ 1, such that there exists (A,B) ∈ A with A ⊂ {a1, . . . , an} and B ⊂
{b1, . . . , bn}. We apply Galvin’s theorem again, this time with D and T.

Let us show that for every T ′ ∈ T(∞) we can find a set D ∈ D with D ⊂ T ′, thus

ruling out the first alternative given by Galvin’s theorem. Let

T ′
= {t1 < t2 < · · · }

and denote the set of even terms {t2k}
∞
k=1 by T ′ ′. Now T ′ ′ ∈ T(∞), so by our as-

sumption about T, there exists an initial segment {t2k}
n
k=1 = A ∪ B with (A,B) ∈ A.

Since A ∩ B = ∅, there exists a (unique) set D satisfying

{t2k}
n
k=1 ⊂ C ⊂ {tk}

2n+1
k=1 ⊂ T ′,

and such that, enumerating D in increasing order, elements of A appear only as odd

terms, elements of B appear only as even terms, and, in addition, |D| is even. Thus

we have found D ⊂ T ′ with D ∈ D as claimed.

Now having ruled out the first alternative given by Galvin’s theorem, we find a

set S = {s1 < s2 < · · · } ∈ T(∞) such that every infinite subset of S has an initial

segment in D. If E, F ∈ S(∞), pick an increasing sequence of terms

a1 < b1 < a2 < b2 < · · ·

with ak ∈ E and bk ∈ F for all k. The resulting set must have an initial segment in D.

Hence there exists a pair (A,B) ∈ A with A ⊂ E and B ⊂ F.
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Let C > 0. We call a basic sequence (xk) projection-unconditional with constant

C , if (2.1) holds with C . The content of Lemma 2.1 is precisely that a sequence is

unconditional if and only if it is projection-unconditional with some constant C <
∞. We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2 Fix the basic sequence (xk). Let us assume that (xk) does not

have any unconditional subsequence. In particular, for each C < ∞ it fails to have

a subsequence which is projection-unconditional with constant C . For a particular

value of C , let AC consist of all pairs (A,B) where A,B ∈ N(<∞) such that A∩B = ∅

and there exists a sequence of scalars (ak) such that

∥

∥

∥

∑

k∈A

akxk

∥

∥

∥
> C

∥

∥

∥

∑

k∈A∪B

akxk

∥

∥

∥
.

Note that a subsequence (xk)k∈S related to an infinite set S ⊂ N of indices is projec-

tion-unconditional with constant C if and only if there is no pair (A,B) ∈ AC such

that A ∪ B ⊂ S. Therefore, we conclude from Lemma 3.1 and our assumption that

(xk) has no unconditional subsequence, that for every R ∈ N(∞) there exists S ∈ R(∞)

such that for any E, F ∈ S(∞) there exists a pair (A,B) ∈ AC with A ⊂ E and B ⊂ F.

Using this fact we construct a sequence (Sk) of sets Sk ∈ N(∞) such that Sk+1 ⊂ Sk

for all k and also that for any E, F ∈ S(∞)
k there exists a pair (A,B) ∈ Ak with A ⊂ E

and B ⊂ F. Finally, construct a set S = {sk}
∞
k=1 by picking an increasing sequence

(sk) of integers with sk ∈ Sk for each k. Now it is easy to verify that the related

subsequence (xk)k∈S is maximally conditional, using the fact that for any E, F ∈ S(∞)

we have |E ∩ Sk| = |F ∩ Sk| = ∞ for all k.

Having given a proof of Theorem 2.2 via Lemma 3.1 let us sketch an alternative

proof which uses a slightly stronger Ramsey result than Galvin’s theorem, namely, the

Galvin–Prikry theorem. This alternative, and somewhat more direct proof, is based

on an outline suggested by Edward Odell, and is included with his kind permission.

We use standard terminology and results from infinite-dimensional Ramsey theory

to the extent found in the final chapter of the book [4].

Fix a basic sequence (xk). Call M ∈ N(∞) an even-projection set if, writing M as

an increasing sequence (mk), the formula

∞
∑

k=1

akxmk
7→

∞
∑

k=1

a2kxm2k

defines a bounded projection on [(xmk
)]. For each C < ∞ the family

{

{mk} ∈ N(∞) :
∥

∥

∥

∞
∑

k=1

a2kxm2k

∥

∥

∥
≤ C

∥

∥

∥

∞
∑

k=1

akxmk

∥

∥

∥
for all (ak) ⊂ R

}

,

where the sets {mk} are indexed as increasing sequences, is a closed subset of N(∞) in

the classical topology (recalled in Section 4 below), so the set of all even-projection

sets is in fact an Fσ set. By the Galvin–Prikry theorem one can then conclude that
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there exists a set S ∈ N(∞) such that either every S ′ ∈ S(∞) is an even-projection set

or none is.

Suppose first that every S ′ ∈ S(∞) is an even-projection set. Writing S as an

increasing sequence (sk), let T = {s2k}
∞
k=1. Let us show that the associated sequence

(xk)k∈T is unconditional by showing that for any E ⊂ T the projection

∑

k∈T

akxk 7→
∑

k∈E

akxk

is always well defined. Fix E ⊂ T. Now we can find a set R = {rk}
∞
k=1 indexed as

an increasing sequence such that E ⊂ T ⊂ R ⊂ S and elements of E appear only

as even terms in the sequence (rk). Now any sequence (ak)k∈T can be extended to a

sequence (ak)k∈R by setting ak = 0 for k ∈ R \ T. Since R is an even-projection set,

the projection
∑

k∈T

akxk =

∑

k∈R

akxk 7→
∑

k∈E

akxk

is well defined.

Suppose now that no S ′ ∈ S(∞) is an even-projection set. Now we can show

directly that (xk)k∈S is maximally conditional. Let E, F ∈ S(∞). Pick an increasing

sequence (rk) with odd terms in E and even terms is F. Then R = {rk}
∞
k=1 is not an

even-projection set, so for any C > 0 we can find scalars (ak)k∈E∪F with ak = 0 for

k /∈ R such that ‖
∑

k∈E akxk‖ > C‖
∑

k∈E∪F akxk‖.

4 An Open Problem

We conclude by stating an interesting question regarding the family B(xk) introduced

in Section 2. The Cantor topology on P(N) is defined by taking as basic open sets all

sets of the form UA,B = {M ∈ P(N) : A ⊂ M,B ∩ M = ∅}, where A,B ⊂ N are

finite sets. The restriction of this topology to the subspace N(∞) is variously called the

classical topology or the Baire topology on N(∞). Now it is an elementary observation

that for any C > 0 the set BC = {M ∈ B(xk) : ‖PE‖ ≤ C} is a closed subset of P(N)

with respect to the Cantor topology. Since we can write

B(xk) =

∞
⋃

n=1

Bn,

it follows that B(xk) is in fact an Fσ subset of P(N).

The unanswered question regards the structure of B(xk). It is conjectured by the

author that for any Boolean subalgebra B ⊂ P(N), which is an Fσ set with respect to

the Cantor topology and which contains all finite sets, one can find a basic sequence

(xk) in some Banach space such that B(xk) = B.
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