
TLP 18 (3–4): 470–483, 2018. C© Cambridge University Press 2018

doi:10.1017/S147106841800025X

470

Shape Neutral Analysis of Graph-based
Data-structures

GREGORY J. DUCK, JOXAN JAFFAR and ROLAND H. C. YAP
Department of Computer Science, National University of Singapore

(e-mail: {gregory,joxan,ryap}@comp.nus.edu.sg)

submitted 1 May 2018; accepted 11 May 2018

Abstract

Malformed data-structures can lead to runtime errors such as arbitrary memory access or cor-
ruption. Despite this, reasoning over data-structure properties for low-level heap manipulating
programs remains challenging. In this paper we present a constraint-based program analysis
that checks data-structure integrity, w.r.t. given target data-structure properties, as the heap is
manipulated by the program. Our approach is to automatically generate a solver for properties
using the type definitions from the target program. The generated solver is implemented using a
Constraint Handling Rules (CHR) extension of built-in heap, integer and equality solvers. A key
property of our program analysis is that the target data-structure properties are shape neutral,
i.e., the analysis does not check for properties relating to a given data-structure graph shape, such
as doubly-linked-lists versus trees. Nevertheless, the analysis can detect errors in a wide range
of data-structure manipulating programs, including those that use lists, trees, DAGs, graphs,
etc. We present an implementation that uses the Satisfiability Modulo Constraint Handling
Rules (SMCHR) system. Experimental results show that our approach works well for real-world
C programs.

KEYWORDS: Constraint Handling Rules, Satisfiability Modulo Constraint Handling Rules,
Satisfiability Modulo Theories, Program Analysis, Data-structures, Memory Errors

1 Introduction

Low-level languages such as C and C++ are notorious for (subtle) bugs due to direct
pointer manipulation. Program analysis may detect bugs, however, automating such
analysis for data-structure manipulating programs in low-level languages is a challenging
problem. Much of the existing work on data-structure analysis (Berdine et al. 2007;
Berdine et al. 2005; Berdine et al. 2011; Dudka et al. 2011) focuses on (or depends on)
shape properties, i.e., is the data-structure a tree or linked-lists, etc.? However, this
complicates automated analysis:

1. Shape information is usually implicit .
2. Common data-structure shapes have inductive (a.k.a. recursive) definitions.
3. Data-structure integrity co-depends on memory safety .

For example, consider the following generic C struct declaration:

struct node { node *next1; node *next2; ...};

Automated shape discovery on type declarations alone is not feasible: this node could be
for a tree, DAG, graph, doubly-linked-list, etc. Even if shape information were available

https://doi.org/10.1017/S147106841800025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800025X

Shape neutral data-structure analysis 471

(or assumed), the next problem is that data-structure shapes have inductive (a.k.a.
recursive) definitions, further complicating automated reasoning. For example, a list
can be recursively defined as follows (in Separation Logic (Reynolds 2002)): list(l) def=
∃t : l = 0 ∨ l �→ t ∗ list(t). Finally, data-structure reasoning for low-level programs is
(co)dependent on memory safety, e.g., an object bounds error may clobber memory that
invalidates the data-structure invariant. Conversely data-structure invariant violations
may give rise to memory errors.

In this paper, we present a shape neutral data-structure analysis that aims to avoid
the complications listed above. Instead of data-structure shape definitions, we analyze
the program against a set of more general data-structure properties that hold for any
canonical graph-based data-structures in standard idiomatic C. The properties include:

1. nodes are contiguous regions of memory.
2. nodes are the correct size.
3. nodes form a closed directed graph (no dangling links).
4. nodes do not overlap with each other.

Such general properties eliminate the need to infer (or assume) data-structure shapes,
and can be derived solely from the types declared by the program.

Our automated shape neutral data-structure analysis for C programs is based on:
(1) symbolic execution to generate path constraints for all possible paths through the
program, and (2) a specialized constraint solver for shape neutral data-structure prop-
erties. For the latter, we first formalize the properties we aim to enforce, then use our
formalization to derive a solver that can be implemented using Constraint Handling Rules
(CHR) (Frühwirth 1998; Frühwirth 2009). Since the generated verification conditions
(VCs) typically have a rich structure (quantifiers, conjunction, disjunction and nega-
tion), we implement the solver using the Satisfiability Modulo Constraint Handling Rules
(SMCHR) system (Duck 2012; Duck 2013). We demonstrate that our implementation is
able to verify many data-structure manipulating C programs, including data-structures
for lists, trees, DAGS, graphs, etc. We also compare against related tools for finding
memory errors related to violations of the data-structure integrity constraints.

In summary, the main contributions of this paper are:

1. Data-structure Integrity Constraints: We propose and formalize a set of shape neu-
tral data-structure integrity constraints based on the properties informally described
above. The integrity constraints cover standard idiomatic C graph-based data-
structures.

2. Constraint Handling Rules Implementation of Shape Neutral Data-structure
Properties: We also present a constraint solver for the integrity constraints that
can be implemented using a Constraint Handling Rules (CHR) extension of built-in
heap, integer and equality solvers. The CHR solver is automatically generated from
the target program’s data-structure type declarations. Goals generated by program
analysis can then be solved using the Satisfiability Modulo Constraint Handling Rules
(SMCHR) system. SMCHR is suitable as it can efficiently handle goals with a complex
Boolean structure, including negation. Furthermore, SMCHR allows different types
of solvers (integer, heap, data-structure) to be seamlessly integrated.

3. Evaluation: Finally we present an experimental evaluation of our overall approach.
We show that the proposed method is effective on “real world” data-structure manip-
ulating code such as that from the GNU GLib library. We also compare our approach

https://doi.org/10.1017/S147106841800025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800025X

472 G. J. Duck et al.

sp((s1;s2),φ) def= sp(s2,sp(s1,φ))

sp(x := E,φ) def= x = E[x′/x]∧φ[x′/x]

sp(x := ∗p,φ) def= access(H, p,x)∧φ[x′/x]

sp(∗p := E,φ) def= assign(H ′, p,E,H)∧φ[H ′/H]

sp(p := malloc(n),φ) def= alloc(H ′, p,n,H)∧φ[H ′/H, p′/p]

sp(abort(),φ) def= false

(a) Summary of the symbolic execution rules.

(0) S1;

(1) while (b1) {
(2) S2;

(3) while (b2)

(4) S3;

(5) S4; }
(6) S5; (7)

(b) Program with loops.

Fig. 1. Strongest post-condition semantics and an example program.

against several existing state-of-the-art memory analysis/safety tools. We demon-
strate that our tool can detect memory errors missed by other systems—especially
regarding more complex data-structures involving multiple node types and sharing.

2 Preliminaries

Our analysis is based on defining a data structure integrity constraint (DSIC). The DSIC
formula is derived from a schema which, when given type declarations, is instantiated
into a first-order formula D. Essentially, D states that data structures must have valid
nodes, valid pointers, and nodes do not intersect. The formal presentation of D is given
in Section 3.

The framework we use to analyze a program in pursuit of our integrity constraint D is
a classic one: Verification Condition Generation (VCG) via symbolic execution, a method
originating from Floyd (see e.g. (Matthews et al. 2006) for a succinct introduction). The
overall algorithm is summarized as follows:

- The program, interpreted as a graph, is annotated with D at certain program points
corresponding to a set of cut-points in the control flow graph.

- VCG is performed as follows. Suppose D holds when control reaches some cut-point
p, then let q be the next subsequent cut-point encountered during program execution.
We then show that q also satisfies D. This is repeated for all cut-points.

This reduces shape neutral data-structure analysis (abbr. to D-analysis) into proving that
Hoare triples of the form {D} C {D} are valid, where C is some code fragment (the analy-
sis target) and D is the desired DSIC, defined later. Intuitively, a Hoare triple {A} C {B}
states that if A holds before execution of C, then B must hold after. Thus, {D} C {D} is
stating that the DSIC D is preserved by C. For branch-free C, our underlying method-
ology is symbolic execution as defined by the strongest post condition (SPC) predicate
transformer semantics shown in Figure 1. All dashed variables (e.g. x′) are implicitly
existentially quantified, and the notation φ[x′/x] represents formula φ with variable x′

substituted for variable x. We assume the standard definitions for sequences (s1; s2), as-
signment x := E and abort(). Heap operations use special heap constraints defined below.
A triple {D} C {D} is established by symbolically executing D through C using the rules
from Figure 1. This process generates a path constraint P . The triple holds iff Verification
Condition (VC) (P |= D) is proven valid with the help of a suitable constraint solver.

https://doi.org/10.1017/S147106841800025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800025X

Shape neutral data-structure analysis 473

Cut-points are chosen to break loops into straight line program fragments amenable
to symbolic execution. For example, consider the program with nested loops shown in
Figure 1b. Also consider the formula D which we use to annotate points (0), (1), (3) and
(7) (i.e., the chosen “cut-points”). The Hoare triples of interest are therefore:

{D} S1 {D} {D ∧ b1} S2 {D} {D ∧ b2} S3 {D}
{D ∧ ¬b2} S4 {D} {D ∧ ¬b1} S5 {D}

It is important to note that we are not requiring integrity at every program point, rather
only at the cut-points, which is a heuristic that works reasonably well in practice (see
Section 5).

Heap Operations. To handle heap operations, we extend the H-constraint language
from (Duck et al. 2013). We assume, as given, a set of Values (typically Values

def= Z)
and define the set of Heaps to be all finite partial maps between values, i.e., Heaps

def=
(Values ⇀fin Values). Let dom(H) be the domain of the heap H. We abuse notation and
treat heaps H as sets of (pointer,value) pairs {(p,H(p)) | p ∈ dom(H)}. Conversely, a
set of pairs S is a heap iff for all p, v, w we have that (p, v), (p, w) ∈ S → v = w. A heap
partitioning constraint is a formula of the form H � H1∗H2, where H,H1, H2 are heap
variables. Informally, the constraint H � H1∗H2 states that heap H can be partitioned
into two disjoint (separate) sub-heaps H1 and H2. The set-equivalent definition is as
follows: H = H1 ∪H2 ∧ dom(H1) ∩ dom(H2) = ∅.

We use the symbolic execution rules for heap operations from (Duck et al. 2013)
summarized in Figure 1. By convention, the state of the program heap is represented
by a distinguished heap variable H (of type Heaps). Each heap operation modifies H
according to some heap constraint access, assign, and alloc defined as follows:

access(H, p, v) def= (p, v) ∈ H

assign(H, p, v,H) def= ∃w : (p, w) ∈ H ∧H = (H − {(p, w)}) ∪ {(p, v)}

alloc(H, p, 1,H) def= ∃w : H = H ∪ {(p, w)} ∧ p �∈ dom(H)

We can extend the definition for arbitrary-sized alloc in the obvious way. Note that our
definitions implicitly assume that accessing unmapped memory (i.e. any p �∈ dom(H))
behaves the same way as abort() (see Figure 1).

3 Data-Structure Analysis

Data-structure analysis (or D-analysis) aims to prove that a suitable data-structure
integrity constraint (DSIC) is preserved by the program. Conversely, a program fails
data-structure analysis if it is possible to generate a mal-formed data-structure that
violates the DSIC. More formally, the analysis aims to prove Hoare triples of the form
{D(H, p1, .., pn)} C {D(H, q1, .., qm)} where C is some code fragment (e.g. a function
definition), H is the global program heap, {p1, .., pn} and {q1, .., qm} are sets of live
pointer variables, and D is a suitable DSIC defined below. For brevity we abbreviate the
DSIC as D (without parameters). If the analysis is successful, then all execution paths
through C preserve D, and C is said to be D-safe.

In this section, we formalize the DSIC necessary to implement our analysis. Later, we
use the formalism as the basis for the implementation using the Satisfiability Modulo
Constraint Handling Rules (SMCHR) system.

https://doi.org/10.1017/S147106841800025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800025X

474 G. J. Duck et al.

(a)

???

(b)

)d()c(

(e)
(f)

(g)

Fig. 2. Various list data-structure shapes. Here (???) indicates a dangling pointer.

Graph-based Data-structures. For our purposes, a data-structure is a directed graph
of nodes. Each node has an associated type that corresponds to a C struct declaration.
A data-structure is considered valid if the following conditions hold, including:

1. Valid nodes: Each node is a contiguous region of memory whose size is large enough
to fit the corresponding node type. Partially allocated nodes (e.g., size too small) are
disallowed.

2. Valid pointers: All non-null pointers stored within the data-structure must point to
another valid node. Invalid, interior or dangling-pointers are disallowed. The null
pointer is treated as a special case that indicates the non-existence of a link.

3. Separated nodes : Nodes must not overlap in memory.

These conditions are desirable for most standard graph-based data-structures imple-
mented in idiomatic C, including linked-lists, trees, DAGS, graphs, etc., or any other
data-structure type that can be described as a graph of nodes and uses standard pointers.
Our D-analysis is specific to the above properties, and does not include any other data-
structure property. In particular, the analysis is shape neutral, and does not aim to
analyze for, nor enforce, a given shape of the graph. As such, our D-analysis is applicable
to any graph-based structure, including cyclic data-structures such as circular linked-lists.

Data-structures in C are declared using some combination of struct declarations
with pointer and data fields. It is not necessarily apparent what the intended shape of
the data-structure is based on the type declarations alone. For example, consider the
following struct definitions:

struct list_node { struct tree_node {

int val; list_node *elem;

list_node *next; } tree_node *left; tree_node *right; };

For example, the list_node definition can be used to construct: (a) a linked-list; (b)
a disjoint list; (c) a circular linked-list; (d) a lasso-list; (e) a list with sharing, or any
combination of the above, as illustrated in Figure 2. Our D-analysis treats (a), (b), (c),
(d), (e) as graphs of list_nodes. List (f) is invalid since the last pointer is dangling
(violates valid pointers). Likewise list (g) is invalid since it contains overlapping nodes
(violates separated nodes).

The D-analysis aims to detect code that violates the DSIC. For example, consider the
following “malicious” function make_bad, which deliberately constructs a mal-formed
linked-list (with overlapping nodes as per list (g)), and thus should fail the D-analysis:

struct list_node *make_bad(void) {

struct list_node *xs = malloc(3*sizeof(void *));

https://doi.org/10.1017/S147106841800025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800025X

Shape neutral data-structure analysis 475

xs->val = 0; xs->next = (struct list_node *)&xs->next;

xs->next->next = NULL; }

Such data-structure violations can lead to counter-intuitive behavior. For example, con-
sider the following “benign” set function that sets the nth member of a linked list:

void set(list_node *xs, int n, int v) {

while (xs && (n--) > 0) xs = xs->next;

if (xs) xs->val = v; }

Next consider the seemingly benign code fragment, (set(xs,1,A); set(xs,1,B);), that
sets the second node’s value to integers A and B respectively. However, if xs was created
with make_bad, the first call to set clobbers the next field of the first node with value
A. The second node now appears to be at address A. The second call to set executes
A->val=B allowing for arbitrary memory to be overwritten.

Formalization. We shall now formalize the integrity constraint D. We assume, as
given, a set of node types Types = {type0, ..., typen} that are used by the program, e.g.
list_node and tree_node defined above. We treat each type ∈ Types as a set of fields,
e.g. tree node = {elem, left, right}. W.l.o.g., we shall assume all fields are renamed
apart. Given Types, we define set Fields as all fields, and PtrFields ⊆ Fields as all fields with
a pointer-to-node type. We also treat Fields and PtrFields as sequences by choosing an
arbitrary field ordering. The sets Types, Fields and PtrFields are derived from all struct
declarations in scope.

Suppose heap H is a valid data-structure, then H is composed of a set of disjoint node
heaps. Given a node pointer p of type (T ∗), then a heap Np ∈ Heaps is a node heap for
pointer p if it spans the contiguous range of addresses p, p + 1, .., p + |T | − 1.1

An alternative (and unconventional) way to decompose a data-structure is based on
fields. Given a valid data-structure H and a field field ∈ Fields, then we define the field
heap Ffield to be the sub-heap of H containing all address-value pairs associated with the
given field . For example, suppose H is a 3-node linked-list of type list_node (defined
above), and encodes the sequence 1, 2, 3. We assume the nodes have addresses p, q, and
r respectively. Heap H is therefore representable in Separation Logic (Reynolds 2002)
notation as follows:

p �→ 1 ∗ (p+1) �→ q ∗ q �→ 2 ∗ (q+1) �→ r ∗ r �→ 3 ∗ (r+1) �→ 0

Heap H contains three node sub-heaps Np, Nq, Nr ⊂ H and two field sub-heaps Fval,

Fnext ⊂ H defined in Figure 3b and illustrated in Figure 3a. The heap H is essentially
the disjoint-union of all the field heaps, i.e., H � Fval∗Fnext. Given a set of field heaps,
then we can define a valid node-pointer p as follows:

Definition 1 (Node Pointers)
Let type ∈ Types be a node type, then value p ∈ Values is a type-node-pointer if

- p = 0 (null pointer) ; or
- p + i ∈ dom(Ffield) for each field ∈ type, where field is the ith field of type. �

1 As a simplification, we assume that the ith field is stored in address p + i, and that sizeof (int) =
sizeof (void ∗).

https://doi.org/10.1017/S147106841800025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800025X

476 G. J. Duck et al.

(Fval)

(Fnext)

(H)

(Np)

(Nq)

(Nr)

(a) Sub-heap illustrations

p �→ 1 ∗ (p+1) �→ q (Np)

q �→ 2 ∗ (q+1) �→ r (Nq)

r �→ 3 ∗ (r+1) �→ 0 (Nr)

p �→ 1 ∗ q �→ 2 ∗ r �→ 3 (Fval)

(p+1) �→ q ∗ (q+1) �→ r ∗ (r+1) �→ 0 (Fnext)

(b) Sub-heap expressions

Fig. 3. A list example.

Essentially, a non-null value p is a valid node-pointer for type ∈ Types if the contiguous
addresses p, p + 1, .., p + |type| − 1 are allocated in the corresponding field heaps. For
example, q from Figure 3b is valid since q ∈ dom(Fval) and q + 1 ∈ dom(Fnext).

In order for a data-structure H to be valid, all non-null values p stored in any field ∈
PtrField must be valid node-pointers of the corresponding type. Thus, the graph structure
represented by H is closed, i.e., no invalid (uninitialized, wild, or dangling) links.

Definition 2 (Closed)
Field heaps Ffield1

, .., Ffield|Fields| are closed if for all field ∈ PtrFields and for all p, v such
that (p, v) ∈ Ffield , then v is a valid T -node-pointer (Definition 1) where typeof (field) =
(T ∗). �

We define:

• nodetype(p, F1, .., Fm) to be the relation satisfying Definition 1 for field heaps
{F1, .., Fm};

• closed(F1, .., Fm) to be the relation satisfying Definition 2.

Our DSIC D(H) is defined as follows: Given the set Types, we derive the sets Fields and
PtrFields. The heap H must be partitionable into field heaps, and the field heaps must
be closed under Definition 2:

H � F1∗ · · · ∗Fm ∧ closed(F1, · · · , Fm) (Closed)

At a given program point, there may be zero or more variables p1, .., pn pointing to nodes
of types T1, ..,Tn ∈ Types. These pointers must be valid under Definition 1, i.e.:

nodeT1(p1, F1, .., Fm) ∧ · · · ∧ nodeTn
(pn, F1, .., Fm) (Ptrs)

We can now define the integrity constraint D:

Definition 3 (Data-structure Integrity Constraint)
The data-structure integrity constraint D is defined by combining the above components
(via textual substitution) as follows:

D(H, p1, .., pn) def= ∃F1, · · · , Fm : (Closed) ∧ (Ptrs) �

Spatial Memory Safety. The basic analysis of Section 3 assumes that all memory
outside the data-structure is unmapped, which is unrealistic in practice. We extend our
memory model to account for some arbitrary context of mapped memory by splitting the

https://doi.org/10.1017/S147106841800025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800025X

Shape neutral data-structure analysis 477

global heap H into a footprint heap Fp and a context heap Cxt as follows: H � Fp ∗ Cxt .
The data-structure resides in the footprint heap Fp, and the context heap Cxt represents
any other mapped memory, such as the stack, globals, free-lists, etc. Buggy code may
access Cxt via a spatial memory error, such as an object bounds overflow, thus violating
memory safety. To detect such errors, we extend the DSIC as follows:

Definition 4 (Data-structure Integrity Constraint II)
Let D be the basic data-structure integrity constraint from Definition 3, then:

DM (H,Cxt , p1, .., pn) def= ∃Fp : H � Fp∗Cxt ∧ D(Fp, p1, .., pn) �

Finally, to prove spatial memory safety, it must be shown that

{DM (H,Cxt)} P ; (x := ∗p) {p �∈ dom(Cxt)} (Spatial Memory Safety)

for all reads of pointer p. Likewise, we similarly must verify all writes (∗p := x).

4 Solving for Data-Structures

The DM -analysis depends on determining the validity of the Verification Conditions
(VCs) generated by symbolic execution, which are of the form:

path(H,Cxt , F1, .., Fm) |= ∃Fp′, F ′
1, .., F

′
m : post(H,Cxt , F ′

1, .., F
′
m) (VC)

where path is the path constraint, post is the post-condition, H is the global heap, Cxt is
the context heap, F1, .., Fm are the initial field heaps, Fp′ is the modified footprint and
F ′

1, .., F
′
m are the modified field heaps. Validity can be established by a two-step process:

(1) generating witnesses W for Fp′, F ′
1, .., F

′
m; and (2) proving that (W ∧ path ∧ ¬post)

is unsatisfiable using a solver. Witnesses W are built using the following schema:

W
def
= (Fp′ = H− Cxt) ∧Xf∈Fields ∧ Yp∈Allocs Yp

def
= Zp

f∈typeof(∗p)

Xf
def
= F ′

f ⊆ Fp′ ∧ dom(Ff) ⊆ dom(F ′
f) Zp

f

def
= p + offsetof(typeof(∗p), f) ∈ dom(F ′

f)

Here Tx∈{a,..,z} is shorthand for (Ta ∧ .. ∧ Tz), and Allocs is defined to be all allocated
pointers (i.e. p = malloc(..))) in path. Intuitively, Fp′ is the heap difference H−Cxt , and
F ′

field is the heap that is (1) a sub-heap of Fp′, and (2) has the same domain as Ffield

save for any new addresses created by allocations.
The next step is to prove that the quantifier-free formula (W ∧ path ∧ ¬post) is

unsatisfiable. For this we use a combination of an integer solver, an extension of the heap
solver from (Duck et al. 2013) (a.k.a., the H-solver) and a specialized solver for data-
structure constraints defined below (a.k.a., the D-solver). The D-solver is implemented
using the Constraint Handling Rules (CHR) solver language (Frühwirth 2009) using the
following basic solver schema customized for the types declared by the program:

closed(F0, .., Fm) ∧ (p, v) ∈ Ff =⇒ nodetype(v, F0, .., Fm) where f ∈ PtrFields and f ∈ type

nodetype(p, F0, .., Fm) =⇒ p = 0 ∨
(∧

f∈type

p + offsetof(type, f) ∈ dom(Ff)
)

The rules encode the greatest relations satisfying Definitions 2 and 1 respectively.
Given a set of types, the schema is automatically instantiated to generate a specialized

CHR solver (the D-solver) for the corresponding D-constraints. The D-solver can then be

https://doi.org/10.1017/S147106841800025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800025X

478 G. J. Duck et al.

Fig. 4. Solver steps for an example memory safety VC.

used to solve VCs using the Satisfiability Modulo Constraint Handling Rules (SMCHR)
system (Duck 2012; Duck 2013) in combination with existing heap, integer, and equality
built-in solvers. For example, assuming Types = {list node}, the corresponding D-solver
is:

closed(Fval, Fnext) ∧ (p, v) ∈ Fnext =⇒ node(v, Fval, Fnext)

node(p, Fval, Fnext) =⇒ p = 0 ∨
(
p ∈ dom(Fval) ∧ p+1 ∈ dom(Fnext)

)

Consider the statement S = (xs=xs->next). Assuming that the DM property (Defini-
tion 4) holds before S, we can prove S to be memory safe using the VC:

H � Fp∗Cxt ∧ Fp � Fval∗Fnext ∧ node(xs, Fval, Fnext) |= xs+1 �∈ dom(Cxt)

This VC is valid iff the constraints in Figure 4 1) are unsatisfiable. The solver steps are
shown in Figure 4. Here (H), (D), and (I) represent inferences made by the H-solver,
D-solver, and integer solver respectively. The constraints used by each inference step are
underlined. Step 2) introduces a disjunction which leads to two branches 3a) and 3b).
Since all branches lead to false the original goal is unsatisfiable, hence proving the VC
is valid.

One of the main features of the SMCHR system is the ability to extend existing
built-in solvers with new constraints implemented using CHR. For example, the built-
in H-solver works by propagating heap element constraints of the form ((p, v) ∈ H) or
(p ∈ dom(H)) (Duck et al. 2013). The D-solver extends the H-solver with new rules
that interact with these constraints. Solver communication is two-way, e.g., the D-solver
may propagate new element constraints (e.g., the node rule), or may match element
constraints propagated by the H-solver (e.g., the closed rule).

It is also possible to instantiate the D-solver schema with multiple types. For example,
assuming Types = {list node, tree node}, the following D-solver rules will be gener-
ated:

closed(Fval, Fnext, Felem, Fleft, Fright) ∧ (p, v) ∈ Fnext =⇒ nodelist node(v, Fval, Fnext)

closed(Fval, Fnext, Felem, Fleft, Fright) ∧ (p, v) ∈ Fleft =⇒ nodetree node(v, Felem, Fleft, Fright)

closed(Fval, Fnext, Felem, Fleft, Fright) ∧ (p, v) ∈ Fright =⇒ nodetree node(v, Felem, Fleft, Fright)

nodelist node(p, Fval, Fnext) =⇒ p = 0 ∨
(
p ∈ dom(Fval) ∧ p+1 ∈ dom(Fnext)

)

nodetree node(p, Felem, Fleft, Fright) =⇒
p = 0 ∨

(
p ∈ dom(Felem) ∧ p+1 ∈ dom(Fleft) ∧ p+2 ∈ dom(Fright)

)

Handling Negation. Some VCs may contain negated D-constraints node and closed.
We can eliminate all negated D-constraints by applying the following rewrite rules:

https://doi.org/10.1017/S147106841800025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800025X

Shape neutral data-structure analysis 479

Fig. 5. DM -analysis benchmarks for safe library code.

¬closed(F1, .., Fm)

−→∨
field∈PtrFields

(
(s, t) ∈ Ffield ∧

¬nodetype(t, F1, .., Fm)

)
¬nodetype(p, F1, .., Fm)

−→
p �= 0 ∧

(∨
field∈type

p + i �∈ dom(Ffield)
)

where typeof (field) = (type ∗), index i = offsetof (field , type), and variables s, t are
assumed fresh. These rules implement the negations of Definitions 1 and 2 respectively.
For example, ¬closed(Fval, Fnext) can be rewritten to

(s, t) ∈ Fnext ∧ t �= 0 ∧
(
t �∈ dom(Fval) ∨ t+1 �∈ dom(Fnext)

)

That is, in order for closed(Fval, Fnext) to be violated, there must exist a heap cell
(s, t) ∈ Fnext such that (1) t is non-null, and (2) t does not point to a valid node,
i.e. (t �∈ dom(Fval)) or (t+1 �∈ dom(Fnext)). As with the CHR rules, the rewrite rules are
generated automatically.

5 Experiments

We have implemented a prototype DM -analysis tool (called D-tool) as a (LLVM 2018)
plug-in. The tool takes as input a C program that is first converted into the LLVM
Intermediate Representation (IR) using the clang front-end. The plug-in implements the
DM -analysis as described in Section 3, and automatically generates a specialized solver as
described in Section 4. The VCs are solved using a constraint solver back-end, namely the
Satisfiability Modulo Constraint Handling Rules (SMCHR) (Duck 2012) system, using the
generated solver in combination with existing built-in heap, integer and equality solvers.
The SMCHR system also supports goal transformation using rewrite rules, which is used
to implement negation. The result is either SAFE if all generated VCs are proved valid,
or (possibly) UNSAFE otherwise. The entire process (i.e. compilation, VC generation,
solver generation, and solving) is automatic. All experiments were run on an Intel i7-4770
CPU clocked at 3.4GHz.

D-tool Verification on Safe Modules. As the D-tool can analyze partial programs—
one important use case is to analyze libraries (or modules). Figure 5 tests the D-tool
against several memory safe functions that manipulate data-structures sourced from the
following C libraries: the GNU GLib library (version 2.38.0) representative of real library

https://doi.org/10.1017/S147106841800025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800025X

480 G. J. Duck et al.

Fig. 6. Summary of related tools and trade-offs.

code used by a large number of programs, Verifast (abbr. VF) (Jacobs et al. 2011)
distribution (manually verified safe modules), and the libf library2. These benchmarks
test a wide variety of data-structure types and shapes, including: singly-linked-lists,
doubly-linked-lists, red-black-trees, binary-trees, binary-graphs, 234-trees, and 23-finger-
trees (Hinze and Paterson 2006). In Figure 5, #Nd is the pair nodes+fields where nodes
is the number of node types and fields is the number of fields used by the data-structure,
(Sh?) indicates whether the data-structure is designed for sharing (i.e., each node may
have multiple parent nodes), LOC is the total source-lines-of-code, Time is the total
time (in seconds), and D/M is the number of functions proven D-safe/memory-safe
(see (Spatial Memory Safety)) respectively. Ideal results are highlighted in bold.
We test two versions of the analysis: uninitializing malloc and zero-initializing zmalloc,
such as that used by (Boehm and Weiser 1988).

The GLib benchmarks represent standard C data-structures, namely linked-lists (singly
or doubly) and trees (red-black balanced binary trees). The typical usage of GLib assumes
no data-structure sharing, so each node has at most one parent node. The Verifast
benchmarks contain an alternative tree implementation, and binary graphs. For the
graph benchmark, we verify the DM -safety of the Schorr Waite algorithm.3 The libf

library implements 234-trees (for immutable maps and sets) and 23-finger-trees (Hinze
and Paterson 2006) (for immutable sequences). Finger trees are a relatively complex
data-structure, with 3 node types and an intricate shape. Furthermore, the libf library
employs automatic memory management via garbage collection, and is specifically de-
signed to allow data-structure sharing.

Figure 5 shows that the DM -analysis performs well on library data structures, with
all functions automatically verified to be safe under zmalloc. This result is sufficient for
programs using allocators such as (Boehm and Weiser 1988). For malloc the results were
less precise, with some D VCs failing because of partially initialized data-structures. As
future work, the D-analysis could be improved by considering weaker forms of the DSIC
to account for uninitialized fields.

Comparing Memory Safety Tools. We also compare against several existing memory
safety analysis tools, summarized in Figure 6, which are classified into four main types:
(1) our DM -analysis tool; (2) Separation Logic-based analysis tools such as Small-

Foot (Berdine et al. 2005), SpaceInvader (Distefano et al. 2006), SLAyer (Berdine
et al. 2011), Predator (Dudka et al. 2011; Dudka et al. 2013) and Verifast (Jacobs et al.
2011); (3) Bounded Model Checking (BMC) based analysis tools such as LLBMC (Merz
et al. 2012) and CBMC (Kroening and Tautschnig 2014); and (4) Bounds Checking

2 https://github.com/GJDuck/libf
3 Verifast verifies the Schorr Waite algorithm for trees and not general graphs.

https://doi.org/10.1017/S147106841800025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800025X

Shape neutral data-structure analysis 481

Fig. 7. Comparison versus various tools. Key: S/s=safe, U/u=unsafe, B/b=bug-detected,
N/n=no-bug-detected, C/c=crash, t.o.=time-out, b.r.=bound-reached, uppercase/bold=
positive-result, lowercase=negative-result.

(BC) instrumentation tools such as LowFat (Duck and Yap 2016; Duck et al. 2017).
Different approaches have different trade-offs: (Static?) whether the tool is based on
static program analysis; (Auto?) whether the tool is fully automatic, or requires user
intervention (e.g., annotations); (Modular?) whether the tool can be used to analyze
individual functions (i.e., suitable for libraries), or requires a complete program including
an entry point (e.g., the main function); (Mem. Safety?) whether the tool checks for all
types of classical memory errors (including null-pointers), otherwise the tool is limited to
some specific subset; (Data. Structs?) lists the types of graph-based data-structure that
are compatible with the tool. Clearly there are different trade-offs between the different
classes of tools. Separation Logic-based tools can be used to prove “full” memory safety,
including null-pointer and temporal memory errors (use-after-free), but are either (1)
limited to narrow classes of data-structures, such as lists, or (2) are not automatic and
require user annotations. In contrast, the D-tool targets specific memory errors (spatial),
but is not limited to specific types of data-structures. The D-tool does not target use-
after-free errors which typically depend on the data-structure shape—i.e., that the freed
node is not shared thereby creating a dangling pointer. Only 3 tools (SmallFoot,
Verifast, D-tool) are modular. In contrast, the other tools require the whole program
for analysis. BMC-based tools are automatic but check for weaker notions of memory
safety. Bounded model checking may also fail to detect errors that are beyond the search
horizon of the tool. Dynamic bounds checking differs from static analysis-based methods
in that it cannot be used to prove that the whole program is error free. At best, dynamic
analysis tools can only prove that specific paths are error free.

For our experiments, we compare variants of a simple safe program consisting of the
following basic template:

list_node *xs = make_list(n); set(xs, m, v);

Here the set function is defined in Section 3, and make_list constructs a linked-list of
length n. We also evaluate several unsafe variants of the basic template, including:

- overlap_node: list with overlapping nodes, e.g., Figure 2(g);
- wrong_node: using the wrong node type, e.g. list_node for a tree_node function;
- wrong_size: passing the wrong size to malloc;
- not_array: attempt to access a list element via an array subscript, e.g. xs[1].next;

https://doi.org/10.1017/S147106841800025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800025X

482 G. J. Duck et al.

- cast_int: manufacture an invalid pointer from an integer, e.g. (list node ∗)i for
integer i;

- uninit_ptr: neglecting to initialize a pointer, e.g. Figure 2(f);
- uninit_ptr_stk: neglecting to initialize a pointer on the stack; and
- arith_ptr: arbitrary pointer arithmetic, e.g. (xs-3)->next.

Each unsafe variant is exploitable in that it demonstrably (by compiling and running the
program) overwrites memory outside of the footprint. In addition to bounded linked-lists
(List), we also test a variant that uses parameterized DAG and a parameterized graph
Graph in place of lists.

The experimental results are shown in Figure 7 with the result key summarized by
the caption. In the ideal case, we expect the following: static analysis tools should report
{S,U}; BMC-tools should report {B,N}; and dynamic bounds checking tools should re-
port {B,C,N}. All tools were fast (<10s) provided no timeout/bounds-reached condition
occurred. Our experimental comparison excludes SmallFoot (no C support), SLAyer
(crashed with error), Verifast (requires manual proofs), and LowFat for DAG and Graph
(bug not reachable). The D-tool performs as expected (total score 27/27) for all data-
structure shapes. The results for SpaceInvader were mixed, even for lists. In contrast,
Predator performed flawlessly for list data-structures but less well in the DAG and Graph
tests. For the latter, Predator appears to resort to (infinite) unfolding leading to timeouts.
The results for the BMC-based tools are also generally positive. CBMC and LLBMC de-
tect most memory errors for the unsafe test cases, demonstrating that the BMC approach
is effective at detecting bugs. The total scores are LLBMC (22/27) and CMBC (21/27).
There are also some anomalous results, e.g., SpaceInvader reports unsafe programs as
safe. CBMC reports a false null-pointer error for the DAG/overlap_node test case.
LowFat, as a bounds checker, primarily detects errors relating to bad pointer arithmetic,
and may not detect memory errors relating to bad casts (type confusion) or uninitialized
pointers. We highlight that, while different tools embody different tradeoffs (Figure 6),
the D-tool focuses on general data structures, modularity and (limited) memory safety.

6 Conclusion

This paper presented a shape neutral data-structure analysis for low-level heap manip-
ulating programs. The analysis validates several key properties of graph-based data-
structures including the validity of nodes, pointers, and the separation between nodes.
Such properties are standard for graph-based data-structures implemented in idiomatic
C. Our approach therefore caters for a broad range of heap-manipulating code.

Our analysis methodology is based on using symbolic execution to generate Verification
Conditions (VCs) which are then solved using a specialized data-structure property solver
(a.k.a., the D-solver) in combination with built-in heap, integer and equality solvers.
The D-solver itself is implemented using Constraint Handling Rules (CHR), and is
automatically generated from the type declarations contained within the target program.
For solving VCs, our D-tool employs the Satisfiability Modulo Constraint Handling Rules
(SMCHR) system. The SMCHR system is well suited for this task, as it can handle VCs
with a rich Boolean structure, rewrite rules (for negation), CHR solvers (for the D-solver),
and allows for the integration of different kinds of solvers (i.e., integer, heap and the D-
solver). Our experimental results are promising, with the D-tool able to detect memory
errors that are missed by other tools.

https://doi.org/10.1017/S147106841800025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800025X

Shape neutral data-structure analysis 483

Acknowledgements

This research was partially supported by MOE2015-T2-1-117 and R-252-000-598-592.

References

Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., and Yang,

H. 2007. Shape Analysis for Composite Data Structures. In Computer Aided Verification.
Springer.

Berdine, J., Calcagno, C., and O’Hearn, P. 2005. SmallFoot: Modular Automatic Assertion
Checking with Separation Logic. In Formal Methods for Components and Objects. Springer.

Berdine, J., Cook, B., and Ishtiaq, S. 2011. SLAyer: Memory Safety for Systems-level Code.
In Computer Aided Verification. Springer.

Boehm, H. and Weiser, M. 1988. Garbage Collection in an Uncooperative Environment.
Software Practice and Experience 18, 9.

Distefano, D., O’Hearn, P., and Yang, H. 2006. A Local Shape Analysis Based on Separation
Logic. In Tools and Algorithms for the Construction and Analysis of Systems. Springer.

Duck, G. 2012. SMCHR: Satisfiability Modulo Constraint Handling Rules. Theory and Practice
of Logic Programming 12, 4-5, 601–618.

Duck, G. 2013. Satisfiability Modulo Constraint Handling Rules (Extended Abstract). In
International Joint Conference on Artificial Intelligence. AAAI.

Duck, G., Jaffar, J., and Koh, N. 2013. Constraint-based Program Reasoning with Heaps
and Separation. In Constraint Programming. Springer.

Duck, G. and Yap, R. 2016. Heap Bounds Protection with Low Fat Pointers. In Compiler
Construction. ACM.

Duck, G., Yap, R., and Cavallaro, L. 2017. Stack Bounds Protection with Low Fat Pointers.
In Network and Distributed System Security Symposium. The Internet Society.

Dudka, K., Peringer, P., and Vojnar, T. 2011. Predator: A Practical Tool for Checking
Manipulation of Dynamic Data Structures Using Separation Logic. In Computer Aided
Verification. Springer.

Dudka, K., Peringer, P., and Vojnar, T. 2013. Byte-Precise Verification of Low-Level List
Manipulation. In Static Analysis. Springer.

Frühwirth, T. 1998. Theory and Practice of Constraint Handling Rules. Journal of Logic
Programming 37.

Frühwirth, T. 2009. Constraint Handling Rules. Cambridge University Press.

Hinze, R. and Paterson, R. 2006. Finger Trees: A Simple General-purpose Data Structure.
Journal of Functional Programming 16, 2.

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., and Piessens, F.

2011. VeriFast: a Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal
methods. Springer.

Kroening, D. and Tautschnig, M. 2014. CBMC: C Bounded Model Checker. In Tools and
Algorithms for the Construction and Analysis of Systems. Springer.

LLVM 2018. http://llvm.org.

Matthews, J., Moore, J., Ray, S., and Vroon, D. 2006. Verification Condition Generation
Via Theorem Proving. In Logic for Programming, Artificial Intelligence, and Reasoning.
Springer.

Merz, F., Falke, S., and Sinz, C. 2012. LLBMC: Bounded Model Checking of C and C++
Programs Using a Compiler IR. In Verified Software: Theories, Tools, Experiments. Springer.

Reynolds, J. 2002. Separation Logic: A Logic for Shared Mutable Data Objects. In Logic in
Computer Science. IEEE.

https://doi.org/10.1017/S147106841800025X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800025X

