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1. Introduction

For positive integers n, c the class of groups all of whose n-generator sub-
groups are nilpotent of class (at most) c is a variety, here denoted \n -> c]. Hanna
Neumann in her book ([15] pp. 93-98) reported on the first stage of the investiga-
tion of these varieties. The main result was that [n -*• c] is nilpotent if and only if
c g n ^ 2 ([15] 34.33 and 34.54).

Heineken ([7] Remark) has observed that [n -> 2n — 2] is soluble. Recently
Bachmuth and Mochizuki ([1] Theorem 2) have shown that [n -»• In — 1] is always
insoluble. This note is concerned with giving detailed information about the non-
nilpotent soluble varieties of type [n -+ c], that is those with n < c ^ 2n—2.

Heineken (ibid.) has also noted that [n -> In — 2] is contained in the product
of a variety of finite (2-power ?) exponent and a nilpotent variety. Rather more is
true.

The variety [n -> 2n — 2] is the join of a nilpotent variety and a variety of
locally finite 2-groups.

To see this observe first that for distinct primes p, q the product variety 9Ip2l,.
(all unexplained notation follows Hanna Neumanns book [15]) is not contained
in [n -> In - 2] because 2tp3I, contains 2-generator non-nilpotent groups. Since
[n -> In — 2] is soluble, it follows from a theorem of Groves ([4] Theorem A) that
[n -* In — 2] is the join of a nilpotent variety and a variety ty of locally finite
groups. A finite group in [n -»• In — 2] is nilpotent ([8] Satz III.6.3). Hence ^8 is
locally nilpotent and, therefore, the join of a finite number of soluble varieties of
p-groups for certain primes p. A soluble variety of p-groups either contains 3Ip5lp

or is nilpotent ([10] Theorem 5). Now the wreath product of a cyclic group of
order p by the direct product of n — 1 cyclic groups of order p is an «-gener-
ator group in 9Ip9tp and has class (n - l)(p - 1) + 1 ([12] Theorem 5.1.). So
[n -» 2n — 2] can contain 5tp3tp only if p is 2 and the result is proved. Since 9I22I2
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is a subvariety of [« -» n + 1] for all «([15] 34.53), the 2-groups are an essential
part of the scene.

In another direction Gupta ([5] Remark 3) has noted that [n -» 2n — 2] is
contained in the product of a nilpotent variety and the the variety of all abelian
groups.

A more precise version of these results can be obtained. Before doing so it will
be convenient to have another concept. Recall that a group is 2-torsion-free if it
has no element of order 2. The 2-torsion-free core of a variety 93 is the subvariety
of 33 generated by all the 2-torsion-free groups in 93. The 2-torsion-free core X of
93 has the property that, if 93 = U v $ where 3̂ is a variety of 2-groups, then 3;
is a subvariety of U (this is easy to see by considering the corresponding verbal
subgroups in a free group of 93 of infinite rank). A variety need not be the join of
its 2-torsion-free core and a variety of 2-gioups; for example tJI25I3 is not. A nil-
potent variety always has such a join decomposition (see 2.5). It follows from the
result proved earlier that [n -» 2n — 2] also has such a join decomposition. The
following more precise result is proved in section 2.

THEOREM A. For integers n,k such 0 < k 5£ n - 2 let 3l(n,k) be the 2-torsion-
free core of [n -* n + k]. There is a variety X of nilpotent 2-groups (possibly
depending on n and k) such that

[n -> n + k] = 9l(n, k) v ([« -> n + k] A X%).

Moreover 3l(n,k) is a subvariety of$ln+2k.

In particular a 2-torsion-free group in [n -> 2n — 2] is nilpotent of class at
most 2>n — 4 (cf.f7] Theorem). The last assertion of the theorem is sharp in the
sense that 5R(n,fc) is not a subvariety ofyin+2k-l for there is a torsion-free group
n [n -* n + k~\ which has class precisely n +2k (see 5.4).

Join-continuity of the lattice of varieties (equivalent to meet-continuity of the
lattice of fully-invariant subgroups of a free group of infinite rank—cf. [2] p. 187)
guarantees, via Zorn 's Lemma, that there is a subvariety 2B of £%2 which is minimal
with respect to 3l(n,k) v 9B containing [n -» n + fc]. Such a variety 9C cannot be
too small. It contains 9I2^2 because it is a soluble variety of 2-groups which is not
nilpotent. Examples, given in section 5, point to further limitations. Specifically-
2B is not a subvariety of 332x, nor of 2329ti9l2'-' for all positive integers i,r such
that 2(i + r)-l g.k, nor, when k ^ 2, of W.% for all i.

When k is 1 a more positive result can be obtained (proof in section 4).

THEOREM B. For every integer n greater than or equal to 3

[n -> n + 1] = %2%2 v ( 0 -» n + 1] A 5Rn+2).

This has as a consequence that [n + 1 -> n + 2] is the join of [n -* n + 1] and
a nilpotent variety. An important step (2.17) in the proof of Theorem A shows that
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[« -> n + k] is a subvariety of [n + 1 -*• n + k + 1]. These two facts encourage
the following hope.

CONJECTURE. For all integers n,k such that 0 < k ^ n — 2, the variety
[n + 1 -> n + k + 1] is the join of \n -> n + k] and a nilpotent variety.

Finally there is a quite different join decomposition for [«-+« + fc] (which
confirms a conjecture of N.D.Gupta—the case/c = l is essentially Theorem 6.1*
(ii) of [17]). A proof is given in section 3.

THEOREM C. For integers n,k such that 0 < k ^ n — 2

[n - n + k] = $ln+k v ( 0 - n + k] A 5R,9l2).

Some of the ideas and techniques reported in this paper had their origins in
the work which lead to the original version of [6]. I am indebted to Professor N.
D. Gupta for keeping me informed about his progress with this circle of ideas. I
am also indebted to Dr L. G. Kovacs for helpful and stimulating discussions.

2. Proof of Theorem A

Throughout this section n,k are integers such that 0 < k ^ n — 2.
Commutator calculations later in this section will establish

2.1 [n - n + k] s 3U2*2I2

2.2 [«-»« + *] sUt3i.,+2 t

where Uk = A f - o ® ^ - ! -

From these two results Lemma A of Groves' paper [4] yie.ds

2.3 [n -> n + k] = 5t v £

w/iere 9t is o z;arieO> which is nilpotent of class n + 2k and S. is a locally finite
variety.

Groves' Lemma A hinges on his Lemma 4. It is straightforward to check
that the proof of the latter will adapt to prove:

2.4 Let N be a nilpotent group whose Sylow 2-subgroup has finite exponent,
then there is a positive integer s such that 232*(N) contains no element of order 2.

Modifying the proof of Groves' Lemma A then yields that £ in 2.3 may be
taken to consist of 2-groups.

From 2.1 and 2.3

[n -> n + AQ = (91 v £) A %+2k%2.

Since 91 is a subvariety of 9ln+2k, the modular law gives
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Hence r ,-. „.
[n->n + fc] = 9tv<p

with *$ a subvariety of (£ A 9tn+2fc)2I2.
Theorem A will then be proved once the next result is established.

2.5 A nilpotent variety is the join of its 2-torsion-free core and a variety of
2-groups.

PROOF. Let 93 be a nilpotent variety and % its 2-torsion-free core. Let F be a
free group of 93 of infinite rank. Let T = X(F). Clearly T is the Sylow 2-subgroup
of F. Let Tj be the subgroup T generated by all elements of order dividing 2\
then Tj ^ T2 ^ ••• is an ascending chain of fully-invariant subgroups of F whose
union is T. Since the finite basis theorem holds for nilpotent varieties ([15] 34.14),
the chain breaks off and T = Tj for some j . Hence T has finite exponent and the
result follows from 2.4.

This argument is "known" but has not, as far as I know, appeared in print.
Some preparation is needed for the proofs of 2.1 and 2.2 The simpler com-

mutator identities ([15] 33.34) are often used without explicit reference. If r is
positive integer, then [u,rv~\ = [u,(r - l)v,v\.

Clearly [xu---,xn_k_l,2xn_k,••• ,2xn~] is a law of \n -+ n + fc]. This makes

it useful to have information about elements b of a group G such that [b,2g] = e
(the identity element) for all g in G. Such elements are called right Engel elements
of length 2 in G; the set of them will be denoted L(G). Kappe ([9] section 2) has
proved

2.6 L(G) is a characteristic subgroup of G;

for b in L{G) and f,g,h in G

2.7 [b,g,f] = e;

2.8 \b,g,K\ = \b,h,gYi;

2.9 [b,[g,hj] = \_b,g,hY.

Macdonald and Neumann ([13] proof of Theorem 3) deduced

2.10 \bJ,g,K\2 = e.

It follows from 2.6 that [b,f] e L(G) and thus from 2.9 and 2.10 that

2.11 lb,f,[g,hj] = e.

Hence, using 2.8 and 2.9,

2.12 lb,[f,g,hf\ = e.

These last two facts were drawn to my attention by N. D. Gupta; cf. Lemma 5.4.
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of [17].)* Clearly \b,g2~\ = {b,gf and [b*,g~] = [ M ] 2 by 2.7. Repeated use of
these and 2.10 gives

2.13 [b,f\g,K\ = e.

Since [x,,2x2)---,2xn] is a law of [n -> In — 2]. An easy induction using
2.11 gives that [xl,x2,[x3,x4],x5, •••, x3n_4) [x3n_3, x3 n_2]] is a law of
[n -» 2n — 2]. Replacing x5, •••,x3n_4 by commutators of weight 2 yields that
[n -> 2« - 2] is nilpotent-(of class In - 3)-by-abelian (cf. [5] Remark 3).

A similar argument applying 2.13 to [x1,---,xn_k_1,2xn_t, •••,2xn~] yields that

L*l> "•> xn-k- 1> Xn-k> xn-k+ 1> " "' •*n + 2fc> - ^ + 2* + 1> Xn + 2k + 2i

is a law of [« ->• n + k~\ and hence that [n -» n + fe] is a subvariety of 9ln

This combined with 2.2 would already yield a proof of Theorem A along the lines
of that given at the beginning of this section. It will cost no more to prove 2.1 be-
cause the arguments involved are also used in the proof of 2.2.

One of the fundamental commutator identities ([15] 33.34(3)) can be written

2.14 [Xl,*2,X3] = [Xl>X3,*2][Xl,[X

where u is a product of commutators in {x1)x2,x3} of weight at least 4.

Two variations of this will be needed. The first is obtained by replacing x t by
[x1; •••,x,_1], x2 by Xj and x3 by x i + 1 in 2.14 and commuting the result with
x i + 2 , •••,xs in turn.

9 1 5 L*l> '">Xi>Xi+l> '">Xsj =

\_xi, •••,Xi+i,Xi, •••,XS\_X1, •••, L X j , X j + 1 J , •",Xsj U

where i jg 2, s ^ 3 and u is a product of commutators in {xt, •••,xs} of weight
at least s + 1.

In what follows each Uj is a product of commutators in {x1 )x2,x3 )x4} of weight
at least 5. Taking 2.15 with i = 3, s = 4 and rewriting gives

[XJJX2, X3,X4.J[Xi,X2,X4,X3J~ L-!Cl>-'c2> Lx3>*4jj = ul-
Hence r _

LX 1 ,X 2 ,X 3 ,X 4 JLX 2 ,X 1 ,X 4 ,X 3 JLX 3 ,X 4 , |_x1)x2jj — u2-

Using 2.15 again gives

2.16 [x1; ^ 2 , X 3 , X 4 J L X 2 , X 1 , X 4 , X 3 ] [ X 3 , X 4 , X 1 , X 2 J L X 4 , X 3 , X 2 , X 1 J = u3.
The next result provides information which makes it possible to dispose of

commutators of 'higher' weight in some of the later calculations. The case
n ^ 3fc + 2 has been proved by Gupta, Levin and Rhemtulla ([17], Theorem 7.1).

2.17 [n -* n + fc] £ [n + 1 -> n + fc + 1].

* (Added February 1973.) The above results are collected as Theorem 7.13 in [18].
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PROOF. Let G be a group in [n -*• n + k~] which can be generated by n + 1
elements. Since [n -> n + fc] is soluble and therefore, by the argument used in
the introduction, locally nilpotent, G is nilpotent. There is no harm in assuming
G has class at most n + k + 2. Let {au •••,an+,} be a set of generators of G. It
suffices to show [_aX{1), ••-,aX(n+k+2)'] = e for all A(l), •••, A(n + k + 2) in
{l,---,n + 1}. This is clearly so if for some j in {1, •••, n + 1} none of
A(l), •••, A(n + k + 2) is j . If each of {1, •••, n + 1} occurs among
1(1), •••, 1(« + fc + 2), then at least two of {1, •••, n + 1} occur exactly once
among 1(1), •••, A(n + fc + 2). Hence associated with each (n + k + 2)- tuplet
(A(l),---^(n + fc+ 2)) which contains each of {l,---,n + l} there is a posi-
tive integer 5 such that A(s) is different from all the other entries but each of
k(s + 1), ••-, X(n + k + 2) occurs at least twice. If s = n + k + 2, then
clearly [«^(1), •••, aX(n+k+2)2 = e. If s < n + k + 2, assume inductively that
Ca/.(i)»"-.a//(n+t+2)] = e whenever aMs+1) differs from all other entries. Let r be
an element of{l,---,s— 1} such that aX(r) is different from all the other aXil). Be-
cause G is nilpotent of class n + k + 2, using the inductive assumption and 2.15
gives

Because G is in [n -> n + k~\

L'">aX(,r)LaHs)'aHs+l)i> •••>aA(r)[aA(s))a^(s+l)J' "'J = e

which on expansion gives

L'">aA(r)> • • • > L a A ( s ) j a A ( s + l ) ] > • • " ] = [ ' • • ) L f l A ( s ) > a A ( s + l ) ] ' • " > f l A ( r ) > " " J

The inductive hypothesis and 2.15 yield that thh last commutator is trivial. There-
fore [axa),-,aX(n+k+2)~] = e as required.

It is now possible to prove the refinement which leads to 2.1 (cf. [17],
Lemma 5.7).

2.18 For A(4), - , A(n + it + 1) in {4, - , n + 1},

/s a law of [n -» « + fe].

PROOF. The argument is exhibited by the case n = 3, k = 1. Since [3 -» 4] is
a subvariety of [4 -> 5], all commutators in {xls •••,x4] of weight at least 6 are
laws of [3 -y 4]. Hence, commuting 2.16 with x4 gives

> Xl> XAi X3> ^ 4 j L ^ 3 ) X4> XU X2> X4JL.X4> X3t X2> XU X\\

is a law of [3 -* 4]. Now [x2
x
3,

xJxi,x2x3,x4] is a law of [3 -* 4] which on ex-
panding gives [X2,x4,x1,x3,x4][x3,x4,x1,x2,x4] is a law of [3 -> 4]. Similarly
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[x4, x1 )x2 ,x3 ,x4][x4 , x3 ,x2 ,x1 ,x4] is a law of [3 -> 4]. Commuting a suitably

rewritten version of 2.14 with x3 and x4 gives

is a law of [3 -> 4]. Combining these four laws of [3 -> 4] gives that
[x1 )x2 ,x3 ,x4 ,x4] is a law of [3 -* 4] as required.

In particular [x1,---,xn_k+1,2xn_k + 2, ••-,2xn + 1] is a law of [n -*• n + fc].The
earlier inductive proof using 2.13 now yields 2.1.

Equation 2.2 can be proved in a conceptually similar, but technically more
unpleasent, manner. One more preliminary is needed.

2A9 If a group H has a generating set B such that J[bl,---,bi+l]
2k' = e for all i

in {0, •••,k} and all bu •••,bi+1 in B, then H is in VLk.

PROOF. Certainly H is in yik because [bu"'>bk+i] — e f ° r all i>x, • • •,i>t +1 in
B. Suppose, inductively, H is in $B2i-i9fJt-.i+1 A ••• A 9lk. Every element of
9tt_i(H) can be written J ] ; = i nj where each hj is a commutator of weight at least
k — i + 1 with entries from B. It follows from a result of P. Hall (see [8] Satz
III.9.4) that

= n h2t. n «;(r)

j = 1 r = 2

where ur is a product of commutators of weight at least r with entries from
{hu---,hs} and »/(r) = ( , ' ) . It follows that ur is in 5Rr(fc_,+ i)-i(H) and so, by the
inductive hypothesis, ufr) = e. By assumption each h]' = e. Therefore H is in
SB2i9tfc_j. The case j = k gives the required result.

PROOF OF 2.2. Let G belong to [n -> n + k~\. For j in [0,---,k] let V{ be the

verbal subgroup of G corresponding to the variety [« — k + i -> n — k + 2i~\;
except that if n = k + 2, then Vo is to be 9t2(G). Observe that VJVi+l is generated
by right Engel elements of length 2 of G/F i + 1 ; in the exceptional case this relies
on 2.18. It follows from 2.6 that \b, 2g~] is in Vi+1 for all b in Vt and all g in G. To
proceed further it will be convenient to have some more notation. Let vm

= [*i>-»*»]- For i in {0,-,fc} put w(i,0) = vtt-k+1 + 3i. For j in {1, -,i} put

The next step is to prove for i in {0, •••,fc} that for j in {0, •••, i} w(i,j)2'~J is a law
in G/Fj. For i = 0 this is trivial. For i ^ 1, it can be assumed, inductively, that
w(i - l,j)2"l'J is a law in G\Vt_^ for all ; in {0, •••, i - 1}, Hence

It follows from 2.12 that [w(i - l,j)2i~1~J,[xn_k+3i-1,xn_k+3i,xn_k+3i+1J] is a
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law in G/Fj. Since w(i — 1,;) involves n — k + 3i — 2 x's and, by 2.17,
[n - k + i -»• n - k + 2i] is a subvariety of [n - k + 3i - 1 -> 2(n - fc + 3i - 2)]

2.21 [w(i - l,j),x,(_i+3i_lJw(i - 1J)] is a law in G/V,.

Hence [w(i - l,j),[xB_t+3i_1,x(I_i+3j,xII_ik+3i+1]]2i"1"-' is a law in G/Kj for; in
{0, •••, i - 1}. That is, w(i,j + 1 ) 2 ' - U + 1 ) is a law in G/7j. The remaining case, that
of w(i, 0)2', is similar. It follows from 2.20 with j = 0, using 2.10, that
I X i - 1 , 0 ) 2 ' " 1 , x._t + 3,_1,x1 1_j k +3b x n _ , + 3 j + 1 ] 2 is a law in GI V,. Hence by
repeated use of 2.21, w(i,0)2' is a law in G/Vt. Since Vk = E (the identity
subgroup), the case i = k gives that w(k,j)2"~J is a law in G for j in {0, ••-,&}.
It follows that 9ln+2ic(G) has a generating set B (all commutators of weight at
least n + 2k + 1) such that [bu--,bJ+l']

2k'J = e for all j in {0,••-,&} and all
&!,••-, bj+1 in 5 . Therefore, by 2.19,5Rn+2ji(G) is in Uk and the proof is complete.

3. Proof of Theorem C

The core of the argument is a continuation of the calculations in section 2 to
derive further laws of [n -*• n + k~\.

Observe first that it suffices to deal with the case n ^ 2fc + 2. When
n ^ 2k + 2 Theorem C claims [n -> n + fc] is a subvariety of 5l^9l2 >

so once it is
established that [2k + 2 -»• 3fc + 2] is a subvariety of 9lt9l2 the rest follow from
2.17.

For the rest of this section n k 2k + 2.

3.1 (cf. [17], Theorem 7.2) For i in { l , - , f e + 1} and 2.(3i + l ) , - ,A(n + k + 1)
in {3i+ !,•••,n + i}, if yt = [xi,x2,x3] and y2,---,yn+k+i-2i are \*\,xs,x^\,
•••,[*3<-2»X3i-i,X3i].*A<3i+i)>"->*A(n+*+i) in some order, then[yu—,yn+k+l-2^
is a law of [n -*• n + k~\.

PROOF. The case i = 1 has been established in 2.18. For i ^ 1 suppose

[*3i-2>*3i-i»*3i] is yj- A commutator which has y1,---,yJ-1,yj+i,---,yn+k+i-2i
as entries and at least four entries from x3i_2,X3J_1,x3i is, by the inductive hy-
pothesis (for i - 1), a law of [n + 1 -»• n + k + 1] and hence, by 2.17, of
[n -> n + k]. Therefore by repeated use of the obvious variation of 2.14

[•" J ' : X ; ' c ; ) C > ' ' " J "

where u is a law of [n -> n + fc]. Now, by the inductive hypothesis followed by a
suitable substitution, [•••,yj-i,x3i_2x3i,x3i-ux3i^2x3i,yj+1,---] is a law of
[« -» n + k~\. Hence
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["•> J;j-l>;>C3i-2j;'C3i-l>X3i>3;j + l5 ''" ] [ '" "> J j - 1> *3i> X3i- 1> x3>-2> )*j+ 1) ""]

is a law of [n -> n + /c]. The result now follows easily.

The case i = k + 1 is the starting point for the next lemma.

3.2 Let //(I),••-,n(k + 1) fee integers which are at least 3 and SUC/J f/iaf
v = /*(l) + ••• + fi(k + 1) ^ n + k + 1; /ei A(v + 1), •••, A(n + k + 1) foe in

{v + l , - , n + fc+l}; and let v(j) = n(i) + — + n(j) for j in {0,-,fc + 1}.
If yi = [*i> • • • . x v ( i ) ] «"<* 3;2»---, ^ n +2 t+2 -v «^e [x v ( 1 ) + 1 > - " , x v ( 2 ) ] , •••,

[ ^ ) + i ' ' " ' 4 xA(v+i),--->xA(n+)c+i) ' « some order , t/ien b i , - - - , y n + 2 t + 2 - v ]

is a /aw o/ [n -• n + /c].

PROOF. Induction on v. The case v = 3/c + 3 has been proved in 3.1.
For v > 3/c + 3 there is a ;' such that n(j) > 3. Suppose ym = [ J C X ^ J , then

[••-.Jm."-] = ["- .bm.^o-)] '""] can> by 2-14> b e w r i«en as a product of com-
mutators with entries •••,ym-i,y!n,ym+i,---,yn+2k-i-2-v,xllU) which are, by the
inductive hypothesis, laws of [n -> n + fc].

The case v = n + k + 1 gives

3.3 / / / i ( l ) , - , ju(fc+l) ^ 3 and /i(l) + ••• + n(k + 1) = n + k + 1, f/ien

Comparing Theorem 16.2 and 17.1 of Ward's paper [16] using for K any
sequence beginning 3,fc + 2 and the function <f> given by </>(0) = n + fe + 1,

= k + 1 and $(j) = 0 otherwise, gives

3.4 A [!R,,(i,-i,-,

where the intersection is taken over all (fi(l),---,fi(k +1)) such that
(i(l),—,n(Jc+l) ^ 3 and /i(l) + ••• + [i(k + 1) = n + k + 1.

Combining 3.3 and 3.4 and using modularity completes the proof of
Theorem C.

4. Proof of Theorem B

In this section k = 1 and n 2: 3.
Since 9I25I2 is a subvariety of [n -> « + 1] the result follows by modularity

once it is established that [n -> n + 1] is a subvariety of 512?C2 v 9ln+2- To this
end it is enough to show that a basis for the laws of 9I29I2

 v 9l«+2 consists of
laws of [n -> n + 1]. It is well-known that {xf, [xj.x^]} is a basis for the laws of
5t29t2 ([15] p. 92). A result of Bryant ([3] Proposition 1) guarantees that 3I2^2
v 5Rn+2 has a finite basis for its laws and in theory enables a finite basis to be
computed. In practice ad hoc methods seem easier.

Before stating the key lemma some notation is needed. Call a commutator
simple if it has weight 1 or is the commutator of a simple commutator and a
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commutator of weight 1, and complex otherwise. Following Lamberth [11] the
complex commutator [[xl 5 • • •, xr] , [x r + 1 ; • • •, xmj] will be abbreviated to

[Xj, •••,Xr,,Xr+i, '",Xmj.

4.1 A basis for the laws o/9l29t2 v 3lm is Bm where

B2 = {[x1;X2,X3] >[Xl,X2,X3],

and for m 2: 3

[x 1 ," - ,x r , ,x r + 1 , - - - ,x m + 1 ] /br r in {2,---,m- 1}}.

Theorem B will follow easily from this using earlier results. All the complex
commutators in Bn + 2 except those with r in {2, n + 1} are laws of [n -» n + 1] by
3.3. The two exceptions (which are equivalent) follow by 2.18 and 2.11. The third
word is clearly a law of [n -> n + 1]; the second is by 2.18; and the first by 2.18
and 2.10.

PROOF OF 4.1. It is clear that the words listed are laws of SRm.With perhaps the
two following exceptions, it is equally clear that they are laws of 9l22l2.
Since [x1,---,xm_1,xm)xm] = [x1, ••• ,xm_1 ,xj~2[x1 , • • • , * * ] , it is a law of 2I29l2.
Expanding [x2,X2,x3,•••,xm_1] gives first that [x1,x2

2,x1,---] and then that
[x1 ,x2 ,x2 ,x1 ,x3 , •••,xm_1] is a law of 3I2?I2. Thus Bm consists of laws of

The proof that Bm is a basis for the laws of 9I2Ql2 v 9tm is by induction on
m. The case m = 0 has already been mentioned. For m > 0,

and the inductive hypothesis gives Bm_t as a basis for the laws of 3t23I2 v 5lm_1.
Let bu ••-, bs be the distinct (left-no rmed) simple basic commutators of weight

m in some prescribed order. The key to the proof is the following statement:

4.2 for w in Bm_1 and 8 an endomorphism of the word group, wQ is equivalent
modulo consequences of Bm to Y[Sj = i b^ v where the n(J)are integers and v is a
product of complex commutators of weight m.

Let ! „ , denote the word group. Since every law of ?I23I2 v 9tm_! can be
written n(w;0;)£(I) where w; is in Bm_ u 0t is an endomorphism of ! „ , and e(i) is — 1
or 1, it follows from 4.2 that every law of 9I29l2 v 9tm_x is equivalent modulo
consequences of Bm toY[j = ibfJ)v' where the £(_/) are integers and v' is a product of
complex commutators of weight m. If this is also a law of 9tm, then by 36.32 of [15]
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eachC0)=0and»'isaIawof9lI1I,thatis,»'eSR1B(XJ A ^ ( X J . By Theorem 17.2
of [16] it follows that v' e Yl?=?[%(Xao),%n_t_l(Xx)'] and so is a consequence
ofBm.

PROOF OF 4.2. The result is clear if w is complex. For the remaining w three
sample proofs will be given. The other proofs are similar in spirit and will be
omitted. In each case it will be convenient to have certain consequences of Bm

available.
(i) m ^ 2, w = [ x j , - - - , x j 2

If u is in <$lm(Xa^), then u is a product of values of [xj , --- ,xm + 1] , and so u2 is
a product of squares of values of [xj, ••• ,xm + 1] . Therefore u2 is a consequence of
Bm.

If 0 is an endomorphism of Xx, then [x t , ••-,xm]0 can be w r i t t e n ^ = 1 f t / 0 )

I / ' M " where the £(j) are integers, v" is a product of complex commutators of weight
m, and u" is in ^ ( I , , ) . It follows readily that w has the claimed form.

(ii) m = 4, w = [xj.X2.X3.X3]
First note that in 2.14 and 2.15 u is a product of complex commutators. It

follows that B4 has a consequences [Xj,x2,x4, x3 ,x4] and [xj.X2.X4,x4,x3].
The aim is to prove for every endomorphism 0 of Xx that [xj ,x2,x3,x3]0 is

equivalent modulo consequences of B4 to Y[j = \b]U)v where bu---,bs are the dis-
tinct simple basic commutators of weight 4, the t](j) are integers, and v is a product
of complex commutators of weight 4. The proof is by induction on the sum of the
lengths (as worc's in X^) of xx0, x20,x30. If any one of Xj0,x20, x30 has length 0,
there is nothing to prove. If Xj0 has length exceeding 1, then x t0 = Xji/^.Xj^ with
\p, <j> endomorphisms o fX^ and Xji/r, Xj</> of shorter length. Hence

(here and in what follows = denotes equivalence modulo consequences of B4).
By the inductive hypothesis both commutators on the right are equivalent modulo
consequences of B4 to an expression of the required type, and then, clearly, so is
their product. The case x29 has length exceeding 1 goes similarly. If both x±6 and
x20 have length 1, it is enough to consider [xA(1),xA(2),x30,x30]; because, for
example, [x7(

1
1),xA(2),x30,x30] = [^( 1 ) ,xA ( 2 ) ,x30,x30]"1. If x30 has length ex-

ceeding 1, then x30 = x3ij/.x3(j) and

L^A(l)> XA(2)> X3U, X 3 t7j = L-^Afl)) XX(2)> X3\j/,

•[^(1). yX(2), X3\l/, X3f\[xX(1), XX(2),

By the inductive hypothesis the first two commutators on the right are equivalent
to expressions of the required kind. The other pair are equivalent, using 2.15, to
{.xX(.i),xX(2),x3\l/,x3(t)']

2[_xH1),xM2),x3il/,x3<l)]; both of these have been shown
earlier to be equivalent to expressions of the required kind; so this case follows.
If x30 also has length 1, then as before it can be taken as xA(3).
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If [XAU)» *A(2)> XA(3);XA(3)] is basic, the proof is complete. If not, repeated use of
2.15 gives the required result.

(iii) m = 2, w = [x2,x2]

Since [x2, x2] = [ x ^ x ^ x ^ x ^ x ^ x ^ x 2 ] , it is equivalent modulo B3 to
[xj .x^]2 and the result follows from (i).

5. Examples

The various examples promised in the introduction are described here. The
minor examples are disposed of first.

5.1 The wreath product W of a cyclic group of order 2k by a countably infinite
elementary abelian 2-group B is in [n -> n + lc].

To see this observe that every n-generator subgroup of W can be regarded as
a subgroup of Wx = A wr B t where A is the direct product of n cyclic groups
of order 2* and B1 is the direct product of n cyclic groups of order 2. Since Wx

has class n + k ([12] Theorem 5.1.), it follows that W is in [n -> n + k~\.
Since [xu •••,xs+1]

2k'1 is a law of 232lt-i9ts but is not a law in W, it follows
that [n -> n + fe] is not a subvariety of 232k-i9ts for all s. Similarly consideration
of the word [(x1x2)2kx^2l'x1~2l',X3,---,xs+1] shows that [n -» n + fc] is not a
subvariety of 5ls v 932k for all s.

Essentially the same argument as after 5.1 justifies the next claim.

5.2 Let D be the direct product of i cyclic groups of order 4 and B (of 5.1). The
wreath product of a cyclic group of order 2r by D is in[n -> n + 2(r + i) — 1].

Hence, by considering the word [x1 ,x2 ,x2 , --- ,x2
+ 2 ,x ; +3,--- ,xs + 1]2 r - 1

)

[n -> n + 2(r + i) - 1] is not a subvariety of % v 932I._ i%%2
 f o r a11 s-

5.3 The (standard restricted) crown product (see [14] section 8) of a dihedral
group of order 8 by B is in [n -> n + 2].

To see this it suffices to observe that the central factor group is in 5l22t2 and
hence in [n -> n + 1].

This example shows that [n -> n + 2] is not a subvariety of WHi for all i.
The final example is more intricate.

5.4 For each positive integer m there is a torsion-free nilpotent group of class
precisely m which belongs to [m — 2r -» m — r\for each non-negative integer r
(less than m/2).

PROOF. Nothing interesting is claimed unless m exceeds 3, so assume this to
avoid degenerate cases. Put M = {1, •••, m — 1}. Let A be a free abelian group of
rank 2m~l freely generated by {as : S z M). For i,j in M, let
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r 0 when i = j
s(i,j) = -I 1 when i < j

L — 1 when i > j .

For every subset S of M, put s(S,j) = Ylies£(hj)- Let Pi,-",Pm-i be the auto-
morphisms of A denned by asfii = asaf^ . Let B be the subgroup of the auto-
morphism group of A generated by {pt, • • •, pm _ i}. Let G be the splitting extension of
A by B. It will be fairly easy to see that G has the required properties after certain
information about the relevant part of the endomorphism ring, end A, of A has
been obtained. Let i be the identity of end A and R the subring of end A generated
by all P - i with /? in B. Let f}*= pt - i. It is easy to check from the definition of
the Pi that pfpf = 0 and /? *P* + pfp* = 0 for all ij in Af. The rest of the (somewhat
sketchy) discussion depends only on these relations. It is straightforward to check
that every element of R is an integral linear combination of products of the p* It
follows that Rm = 0. Let R' be the subring of end A generated by R and i, then
PfpP*= 0 and P*pP*+ P*pPt= 0 for all i,j in M and all p in R1. Hence

5.5 ypy = 0

for all integral linear combinations y of the j8* and all p in / ? . Let A(l),- ",A(m — r)
be elements of {1, •••, m - 2r}. The next step is to show

m —r

5.6 n PMJ) = ° fo r a11 P>-U) i n K-

Now pX(J) can be written yXU) + 5X(}) where ykU) is an integral linear combination
of the jSfand 5MJ) is in R2. Since the left-hand-side of 5.6 can be written as a sum
of products X]2=iQ>x(h) where co is y or 8, it suffices to show such products are 0.
If at least r of the co's are 8's, this follows from Rm = 0; while if less than r of the
(o's are <5's, the product contains the same y twice and the result follows from 5.5.

Every element of G can be written ab with a in A and b in B. Since 4̂ is abelian
it follows that every commutator of weight m — r + 1 in elements gt, •••,gm-2r of
G can be written as a product of commutators of the form [a,bu{l),---,b)l(s)]
where a is in A, the bu are in B, the /i(j) belong to {1, •••, m — 2r} and s is at least
m — r. By 5.6 each such commutator is trivial. Therefore G belongs to
[m — 2r -*• m — r\ for all non-negative r. In particular G has class m. Since
[0*>0i» •••,&,-1] = «M, the class of G is precisely m.

It is routine to check that [/?;, /?,] = t + ip*P* and hence that B is nilpotent
of class 2. Every element of -B can therefore be written in the form
Y[T^iPKiWU.i>j [Pi>PjY(i'J)- fiy considering the image of a^ under this mapping,
it is straightforward to see that the expression is unique. Hence B is free nil-
potent of class 2 of rank m — 1. In particular B is torsion-free. Therefore G is
torsion-free and the proof is complete.
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