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Abstract

Let X, Y be two Banach spaces and BX the closed unit ball of X. We prove that if there is an isometry
f : BX → Y with f (0) = 0, then there exists an isometry F : X → Y∗∗. If, in addition, Y is weakly nearly
strictly convex, then there is an isometry F : X → Y . Making use of these results, we show that if Y is
weakly nearly strictly convex and there is an isometry f : BX → Y with f (0) = 0, then there exists a linear
isometry S : X → Y .
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1. Introduction

Let (M1, d1) and (M2, d2) be two metric spaces. A mapping f : M1 → M2 is called
an isometry if, for any u, v ∈ M1, d2( f (u), f (v)) = d1(u, v). Suppose that X and Y are
two Banach spaces with 0 ∈ M1 ⊂ X and 0 ∈ M2 ⊂ Y . We call f : M1 → M2 a standard
isometry if f is an isometry with f (0) = 0. We investigate the following two problems.

Problem 1.1. Does the existence of a standard isometry f : BX → Y imply the
existence of an isometry F : X → Y?

Problem 1.2. Does the existence of a standard isometry f : BX → Y imply the
existence of a linear isometry S : X → Y?

Mazur and Ulam [9] proved that a surjective standard isometry between two
Banach spaces is a linear isometry. Benyamini and Lindenstrauss [1] pointed out
that this celebrated result demonstrates that the linear structure of a Banach space is
completely determined by its structure as a metric space. There are many remarkable
results concerning the properties of isometries and perturbations of isometries between
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Banach spaces. Figiel [6] showed the following remarkable result, which guarantees
the existence and uniqueness of a continuous linear left inverse for any standard
isometric embedding.

Theorem 1.3 [6]. If X,Y are two Banach spaces and F : X→ Y is a standard isometry,
then there exists a unique bounded linear operator T : span(F(X))→ X with ‖T‖ = 1
such that

T ◦ F = IdX . (1.1)

Whether there exists a linear isometric right inverse of the operator T mentioned
in Theorem 1.3 has also attracted attention. Godefroy and Kalton [8] showed the
following deep theorem, which resolved a long-standing open problem of whether
the existence of an isometry implies the existence of a linear isometry.

Theorem 1.4 (Godefroy–Kalton [8]). Let X,Y be two Banach spaces and F : X → Y a
standard isometry. Suppose that T is the linear left inverse operator of F with ‖T‖ = 1.

(I) [8, Proposition 2.9 and Theorem 3.1] If X is a separable Banach space, then
there is a linear isometry S : X → span(F(X)) such that T ◦ S = IdX .

(II) [8, page 133] If X is a nonseparable weakly compact generated space, then
there exist a Banach space Y and a nonlinear isometric embedding F : X → Y.
However, X is not linear isomorphic to any subspace of Y.

By making use of these results of Godefroy and Kalton, Dutrieux and Lancien [5]
investigated the compact representation subset of isometric embedding between
Banach spaces. Let K0 = { f ∈ C([0, 1], | · |) : ‖ f ‖∞ ≤ 1 and ‖ f ‖Lip ≤ 1}. From [5], if
a Banach space Y contains an isometric copy of K0, then Y contains an isometric copy
of any separable metric space and any separable Banach space is linearly isometric to
a subspace of Y .

Dutrieux and Lancien introduced the notion of an isometrically representing subset
of a Banach space X. A nonempty subset M ⊂ X is called an isometrically representing
subset of the Banach space X if any Banach space Y containing an isometric copy of
M contains a subset which is isometric to X. Dutrieux and Lancien proved that the
unit ball of a Banach space X is an isometrically representing subset of X if X is
a finite-dimensional polyhedral Banach space (or X = c0). Consequently, in view of
Theorem 1.4, if X is a finite-dimensional polyhedral Banach space (or X = c0) and
there exists a standard isometry f : BX → Y , then X is linearly isometric to a subspace
of Y . Dutrieux and Lancien [5, page 500] also proposed the following problem: is
a Banach space always isometrically represented by its unit ball? We refer also
to [3, 4, 11] and references therein for recent contributions to the study of perturbations
of isometries.

In this paper, we first show that if there is a standard isometry f : BX → Y , then
there is a standard isometry F : X → Y∗∗ for all Banach spaces X and Y . Moreover, if
Y is weakly nearly strictly convex (see Definition 2.9) and f : BX → Y is a standard
isometry, then there is a standard isometry F : X → Y . Finally, if Y is weakly nearly
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strictly convex and f : BX → Y is a standard isometry, then there is a linear isometry
S : X → Y .

All symbols and notation are standard. All Banach spaces are real and we use X
to denote a real Banach space and X∗ its dual. The closed unit ball (respectively
sphere) in X is BX (respectively S X) and B(x, λ) (respectively S (x, λ)) is the closed
ball (respectively sphere) with centre x and radius λ. For any set G, `∞(G,R) denotes
the Banach space comprising all uniformly bounded functions m : G→ R, endowed
with the supnorm. Given a bounded linear operator T : X → Y , T ∗ : Y∗ → X∗ is its
conjugate operator. For a subset A ⊂ X, co(A) (respectively co(A), span(A)) stands for
the convex hull of A (respectively closed convex hull of A, closed subspace linearly
generated by A).

2. Isometric embedding

In this section, we study Problem 1.1. We first show that there is an isometry
F : X→ Y∗∗ if there exists a standard isometry f : BX → Y . If, in addition, Y is weakly
nearly strictly convex, then the isometry F : X→ Y∗∗ is actually from X into Y . Before
describing our main results, we first recall some preliminaries (see, for example, [10]
and [3, page 718]).

Recall that a Banach space X is said to be a Gâteaux differentiability space
(GDS) provided every continuous convex function on X is densely Gâteaux
differentiable. Typical Gâteaux differentiability spaces are separable Banach
spaces [10, Theorem 1.20]. A point x∗ in a w∗-closed convex set C of a dual space
X∗ is said to be a w∗-exposed point of C provided there exists a point x ∈ X such
that 〈x∗, x〉 > 〈y∗, x〉 for all y∗ ∈ C with y∗ , x∗. In this case, the point x is called a
w∗-exposing functional of C exposing C at x∗. We denote by w∗-exp C the set of all
w∗-exposed points of C.

The following proposition is classical and easy to prove (see [3, 10]).

Proposition 2.1 [3, Proposition 2.2]. Suppose that X is a Banach space and C ⊂ X∗ is
a nonempty w∗-compact convex set. Then x∗ ∈ C is w∗-exposed by x ∈ X if and only
if σC : X → R, σC(·) ≡ supx∗∈C〈x

∗, ·〉 is Gâteaux differentiable at x and the Gâteaux
derivative dσC(x) = x∗.

Lemma 2.2. Let X,Y be two Banach spaces and f : BX → Y a standard isometry. Then,
for any x∗ ∈ w∗-exp BX∗ , there exists a φx∗ ∈ Y∗ with ‖φx∗‖ = ‖x∗‖ = 1 such that

〈x∗, x〉 = lim
n→∞
〈φx∗ , n f (n−1x)〉 (2.1)

for any x ∈ X and n ∈ N when n is so large that n−1x ∈ BX .

Proof. Given any x∗ ∈ w∗-exp BX∗ , by Proposition 2.1, there exists a Gâteaux
differentiability point x0 ∈ S X such that x∗ = d‖ · ‖(x0), and this shows that 〈x∗,±x0〉 =

±1. Since f : BX → Y is a standard isometry, by the Hahn–Banach theorem, we can
choose a φx∗ ∈ S Y∗ with

φx∗( f (x0) − f (−x0)) = ‖ f (x0) − f (−x0)‖ = ‖x0 − (−x0)‖ = 2. (2.2)
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Equation (2.2) implies that

1 ≥ φx∗( f (x0)) = φx∗( f (x0) − f (−x0)) + φx∗( f (−x0)) ≥ 2 − ‖ f (−x0)‖ ≥ 1 (2.3)

and (2.3) further implies that

−1 ≤ φx∗( f (−x0)) = φx∗( f (−x0) − f (x0)) + φx∗( f (x0)) = −1.

Therefore, φx∗( f (x0)) = 1 and φx∗( f (−x0)) = −1. For any x ∈ X and n ∈ N when n is so
large that n−1x ∈ BX ,

‖x0‖ − φx∗( f (n−1x)) = 1 − φx∗( f (n−1x)) = φx∗( f (x0)) − φx∗( f (n−1x))
≤ ‖ f (x0) − f (n−1x)‖ = ‖x0 − n−1x‖.

Consequently,
−(‖x0 − n−1x‖ − ‖x0‖) ≤ φx∗( f (n−1x)).

Dividing this inequality by n−1,

−

(
‖x0 − n−1x‖ − ‖x0‖

n−1

)
≤ φx∗(n f (n−1x));

therefore, since x∗ = d‖ · ‖(x0),

−〈x∗,−x〉 ≤ lim inf
n→∞

φx∗(n f (n−1x)). (2.4)

Conversely,

‖x0‖ + φx∗( f (n−1x)) = 1 + φx∗( f (n−1x)) = −φx∗( f (−x0)) + φx∗( f (n−1x))
≤ ‖ f (n−1x) − f (−x0)‖ = ‖n−1x + x0‖.

Thus,
φx∗( f (n−1x)) ≤ ‖n−1x + x0‖ − ‖x0‖.

Dividing by n−1,

φx∗(n f (n−1x)) ≤
‖x0 + n−1x‖ − ‖x0‖

n−1 .

Again, since x∗ = d‖ · ‖(x0),

lim sup
n→∞

φx∗(n f (n−1x)) ≤ 〈x∗, x〉. (2.5)

Combining (2.4) and (2.5) yields

〈x∗, x〉 = lim
n→∞
〈φx∗ , n f (n−1x)〉. �

For any x ∈ X, let nx = inf{n ∈ N, n−1x ∈ BX}. We give the following definition.

Definition 2.3. For any x ∈ X, we define

αn(x) = nx f (n−1
x x) if n < nx; otherwise, αn(x) = n f (n−1x).
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Since f : BX → Y is a standard isometry, we choose y∗ ∈ S (Y∗) such that
y∗( f (nx

−1x)) = ‖ f (nx
−1x)‖ = ‖nx

−1x‖. Then, for all n ≥ nx,∥∥∥∥∥ x
n

∥∥∥∥∥ ≥ y∗
(

f
( x
n

))
= y∗

(
f
( x
nx

))
−

(
y∗

(
f
( x
nx

)
− f

( x
n

)))
≥

∥∥∥∥∥ f
( x
nx

)∥∥∥∥∥ − ( 1
nx
−

1
n

)
‖x‖ =

∥∥∥∥∥ x
n

∥∥∥∥∥.
This means that y∗(n f (n−1x)) = ‖x‖ for any n ≥ nx. Therefore,

{αn(x)}∞n=1 ⊂ {y
∗∗ ∈ S Y∗∗(0, ‖x‖), y∗(y∗∗) = ‖x‖} ⊂ BY∗∗(0, ‖x‖).

Let U be a free ultrafilter of N. By the w∗-compactness of BY∗∗(0, ‖x‖), the limit
limU αn(x) with respect to the ultrafilterU onN and with respect to the w∗-topology on
Y∗∗ exists for any x ∈ X, and limU αn(x) ∈ {y∗∗ ∈ S Y∗∗(0, ‖x‖), y∗(y∗∗) = ‖x‖}. Therefore,
F : X→ Y∗∗,F(x) = limU αn(x) is a well-defined mapping for all x ∈ X. Obviously, we
have the following proposition.

Proposition 2.4. For any x ∈ X, ‖F(x)‖ = ‖x‖, where F : X → Y∗∗, F(x) = limU αn(x)
for any x ∈ X.

Proposition 2.5 [10, Theorem 6.2]. A Banach space X is a Gâteaux differentiability
space if and only if every nonempty w∗-compact convex set of its dual is the w∗-closed
convex hull of its w∗-exposed points.

Now we are ready to state and prove our main results in this section.

Lemma 2.6. Let X, Y be two Banach spaces and f : BX → Y a standard isometry.
Suppose that F : X → Y∗∗, F(x) = limU αn(x). Then, for any x∗ ∈ X∗, there exists a
φx∗ ∈ Y∗∗∗ with ‖φx∗‖ = ‖x∗‖ ≡ γ such that

〈x∗, x〉 = 〈φx∗ , F(x)〉 for any x ∈ X. (2.6)

Proof. The proof is inspired by [3, Lemma 2.4]. We will complete the proof in
several steps. Firstly, we show that (2.6) is true if X is finite dimensional. Then we
prove that (2.6) holds for any Banach space X and any norm-attaining functional
x∗ ∈ X∗. Finally, making use of these results and the Bishop–Phelps theorem, we prove
that (2.6) holds for any Banach space X and any bounded linear functional x∗ ∈ X∗.

Without loss of generality, we assume that γ = 1. Let X be finite dimensional, so that
X is a GDS [10, Theorem 1.20]. We first show that (2.6) is true if x∗ is a w∗-exposed
functional of BX∗ . Indeed, for any x∗ ∈ w∗-expBX∗ , by (2.1) of Lemma 2.2, there exists
a φx∗ ∈ Y∗ with ‖φx∗‖ = ‖x∗‖ = 1 such that

〈x∗, x〉 = lim
n→∞
〈φx∗ , n f (n−1x)〉

for all x ∈ X and n−1x ∈ BX . Consequently, Definition 2.3 implies that

〈x∗, x〉 = lim
n→∞
〈φx∗ , n f (n−1x)〉 = lim

n→∞
〈φx∗ , αn(x)〉.

Then, since F(x) = limU αn(x) andU is free,

〈x∗, x〉 = lim
n→∞
〈φx∗ , αn(x)〉 = 〈φx∗ , F(x)〉. (2.7)

This means that (2.6) is true.
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Next, we show that for arbitrary x∗ ∈ S (X∗), there exists a linear functional φx∗ ∈

S (Y∗∗∗) with ‖φx∗‖ = ‖x∗‖ = 1 such that (2.6) holds. By Proposition 2.5, since dim X <
∞, we see that co(w∗-expBX∗) is dense in BX∗ . Therefore, there is a sequence {x∗n}

∞
n=1 ⊂

co(w∗-expBX∗) such that x∗n → x∗. Equivalently, for any n ∈ N, there are m(n) elements
{x∗n,i}

m(n)
i=1 ⊂ w∗-expBX∗ and m(n) positive real numbers {λn,i}

m(n)
i=1 ⊂ R with

∑m(n)
i=1 λn,i = 1

for some m(n) ∈ N such that

x∗n =

m(n)∑
i=1

λn,ix∗n,i → x∗.

By (2.7), there exists a linear functional φx∗n,i ∈ S (Y∗) such that

〈x∗n,i, x〉 = 〈φx∗n,i , F(x)〉

for all x ∈ X and x∗n,i ⊂ w∗-expBX∗ . Let ψn =
∑m(n)

i=1 λn,i φx∗n,i . Then ‖ψn‖ ≤ 1 and

〈x∗n, x〉 = 〈ψn, F(x)〉 for all x ∈ X. (2.8)

Since {ψn}
∞
n=1 ⊂ BY∗(0, 1) ⊂ BY∗∗∗(0, 1), {ψn}

∞
n=1 is a relatively w∗-compact subset of

BY∗∗∗(0, 1). Therefore, there exists a subnet of {ψn}
∞
n=1 w∗-converging to some φx∗ in

BY∗∗∗(0, 1). This and (2.8) together imply that

〈x∗, x〉 = 〈φx∗ , F(x)〉 for all x ∈ X. (2.9)

Further, by Proposition 2.4, ‖F(x)‖ = ‖x‖ for any x ∈ X and (2.9) shows that ‖φx∗‖ = 1.
Therefore, we have shown (2.6) for any finite-dimensional space. (For a simpler proof,
see Remark 2.7.)

Now we will show that (2.6) is true for any Banach space X and any norm-attaining
functional x∗ ∈ S X∗ . Given any norm-attaining functional x∗ ∈ S X∗ , choose x0 ∈ S X

such that 〈x∗, x0〉 = 1, and let E be the collection of all finite-dimensional subspaces
of X containing x0. Since any such E ∈ E is a GDS, by (2.9) there is a φE ∈ S Y∗∗∗ such
that

〈x∗, x〉 = 〈φE , F(x)〉 for all x ∈ E.

Let
ΦE = {φ ∈ BY∗∗∗ , 〈φ, F(x)〉 = 〈x∗, x〉 for all x ∈ E}

and Φ = {ΦE , E ∈ E}. It is clear that for every E ∈ E, ΦE is a nonempty w∗-compact
convex subset of Y∗. Since, for any G,H ∈ E, ΦG ∩ ΦH ⊃ ΦK , where K = span{G,H},
Φ = {ΦE , E ∈ E} has the finite intersection property. This, together with the fact that
any element ΦE of Φ = {ΦE , E ∈ E} is a w∗-compact subset, shows that⋂

E∈E

ΦE , ∅.

Now any element of
⋂

E∈EΦE satisfies (2.6).
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Finally, by using the Bishop–Phelps theorem, we will show that (2.6) holds for a
general Banach space X and any functional u∗ ∈ S X∗ . For any u∗ ∈ S X∗ , by the Bishop–
Phelps theorem, we can choose a sequence of norm-attaining functionals {x∗n}

∞
n=1 ⊂ S X∗

such that x∗n → u∗. For any norm-attaining functional x∗n ∈ S X∗ , there exists a linear
functional φx∗n ∈ Y∗∗∗ with ‖φx∗n‖ = 1 such that 〈x∗n, x〉 = 〈φx∗n , F(x)〉 for any x ∈ X and
n ∈ N. By the relative w∗-compactness of {φx∗n}, there is a w∗-cluster point φu∗ ∈ BY∗∗∗ .
Therefore,

〈u∗, x〉 = 〈φu∗ , F(x)〉 (2.10)

for any x ∈ X. Note that ‖F(x)‖ = ‖x‖ for all x ∈ X by Proposition 2.4. Therefore, (2.10)
further implies that ‖φu∗‖ = ‖u∗‖, that is, (2.6) holds. �

Remark 2.7. We thank the referee for providing a simpler proof of Equation (2.6) in
the case of a finite-dimensional space. This alternative approach only uses the simple
fact that convex functions defined on a finite-dimensional space are differentiable on a
dense subset. The notion of Gâteaux differentiability space and Proposition 2.5 are not
needed. Details can be found in [7]. Also, as the referee points out, it is not necessary
to apply the Bishop–Phelps theorem in the proof of Lemma 2.6. Instead, we can use
the easy fact that the norm-attaining functionals are w∗-dense.

Theorem 2.8. Let X, Y be two Banach spaces and f : BX → Y a standard isometry. If
F : X → Y∗∗, F(x) = limU αn(x), then F is a standard isometric embedding.

Proof. First, note that F(0) = 0. From the w∗-lower semi-continuity of the norm on
Y∗∗,

‖F(u) − F(v)‖ ≤ ‖u − v‖. (2.11)

Conversely, let x∗ ∈ S X∗ be such that 〈x∗, u − v〉 = ‖u − v‖. By (2.6), there is a linear
functional φx∗ ∈ S Y∗∗∗ such that 〈x∗, x〉 = 〈φx∗ , F(x)〉 for any x ∈ X. Thus,

‖F(u) − F(v)‖ ≥ 〈φx∗ , F(u) − F(v)〉 = 〈x∗, u − v〉 = ‖u − v‖. (2.12)

Combining (2.11) and (2.12) gives ‖F(u) − F(v)‖ = ‖u − v‖. �

The following definition of weakly nearly strictly convex space is taken from [2].

Definition 2.9. A Banach space Y is called weakly nearly strictly convex (for short,
WNSC) if {y ∈ S Y , y∗(y) = 1} is weakly compact for any norm-attaining functional
y∗ ∈ S Y∗ .

Clearly, strictly convex spaces are WNSC. Typical examples of WNSC spaces are
the reflexive Banach spaces. The next Corollary 2.10 shows that if the range space
Y of the isometric embedding f : BX → Y is weakly nearly strictly convex, then the
isometry F : X→ Y∗∗ derived in Theorem 2.8 is actually an isometric embedding from
X into Y .

Corollary 2.10. Let X, Y be Banach spaces and Y be weakly nearly strictly convex.
Let f : BX → Y be a standard isometry. Then there is a standard isometry F : X → Y.
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Proof. It is trivial that the desired standard isometry F : X → Y is provided, with the
same notation, by Theorem 2.8. �

Remark 2.11. Let X, Y be Banach spaces. It follows from Corollary 2.10 that there is
a standard isometry F : X → Y if there exists a standard isometry f : BX → Y and Y is
weakly nearly strictly convex. Furthermore, Theorem 1.4 implies that there is a linear
isometry S : X → Y if X is separable. Therefore, if f : BX → Y is a standard isometry
from the unit ball of a separable Banach space X into another weakly nearly strictly
convex Banach space Y , then there is a linear isometry S : X → Y . In the next section,
we will show that the separability assumption of X can be dropped (Theorem 3.4).

3. Linear isometric embedding
Suppose that f : BX → Y is a standard isometric embedding. In this section, we

consider Problem 1.2. Note that, for a general Banach space Y , we cannot derive a
linear isometry S : X→ Y from the existence of a standard isometry f : BX → Y , even
though X is a nonseparable Hilbert space. For example, let H be a nonseparable Hilbert
space; then H is a nonseparable weakly compact generated space. By the Godefroy–
Kalton theorem 1.4, there exist a Banach space Y and a standard nonlinear isometry
f : H→ Y . However, H is not linear isomorphic to any subspace of Y . Therefore, there
is no linear isometry S : X → Y .

Our main result, Theorem 3.4, shows that if Y is weakly nearly strictly convex, then
Problem 1.2 admits an affirmative answer. The following Lemma 3.3 is established
in our paper (‘Linearization of isometric embedding on Banach spaces’, submitted for
publication), but, since it plays an essential role in the proof of our main result, we give
its proof here. To prove Lemma 3.3, we need the following definition of an invariant
mean on a semigroup and some related results from Benyamini and Lindenstrauss [1,
pages 417–418].

Definition 3.1. Let G be a semigroup. A left-invariant mean on G is a linear functional
µ on `∞(G,R) such that:

(I) µ(1) = 1;
(II) µ( f ) ≥ 0 for every f ≥ 0;
(III) for all f ∈ `∞(G,R) and g ∈ G, µ( fg) = µ( f ), where fg is the left translation of f

by g, that is, fg(h) = f (gh), for all h ∈ G.

Analogously, we can define a right-invariant mean of G. An invariant mean is a linear
functional on `∞(G,R) which is both left-invariant and right-invariant. Note that (I)
and (II) are equivalent to (I) and ‖µ‖ = 1.

Proposition 3.2. Every Abelian semigroup G (in particular, every linear space) has an
invariant mean.

Lemma 3.3. Let X, Y be two Banach spaces, F : X → Y be a standard isometry and
T : span(F(X))→ X be the operator defined in (1.1) such that ‖T‖ = 1 and T ◦ F = IdX .
If span(F(X)) is a WNSC space, then there exists a linear isometry S : X→ span(F(X))
such that T ◦ S = IdX .
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Proof. Note that X is an Abelian group with respect to the vector addition of X. By
Proposition 3.2, there exists an invariant mean µ on X. We also denote the invariant
mean by µz or µz(·), to emphasise that the mean is taken with respect to the variable z.
Since F : X → Y is an isometry, for any fixed x ∈ X and y∗ ∈ span(F(X))∗ and for any
z ∈ X,

|〈F(x + z) − F(z), y∗〉| ≤ ‖F(x + z) − F(z)‖ · ‖y∗‖ = ‖x‖ · ‖y∗‖.

Therefore, (〈F(x + z) − F(z), y∗〉)z∈X ∈ `∞(X,R). For the sake of simplicity, we denote
(〈F(x + z) − F(z), y∗〉)z∈X by 〈F(x + z) − F(z), y∗〉z∈X . Making use of the invariant mean
µz ∈ `∞(X,R)∗, we define the desired linear isometry S : X → span(F(X)) as follows:
for any z∗ ∈ span(F(X))∗ and x ∈ X,

〈z∗, S (x)〉 = 〈µz, 〈F(x + z) − F(z), z∗〉z∈X〉. (3.1)

Indeed, it is obvious that S (x) is a bounded linear functional on span(F(X))∗ with
‖S (x)‖ ≤ ‖x‖. We assert that S (x) ∈ span(F(X)). Without loss of generality, we assume
that ‖x‖ = 1. Since ‖x‖ = 1, there exists an x∗ ∈ S (X∗) such that 〈x∗, x〉 = 1. Since T ∗ is
a w∗-to-w∗ continuous linear isometry, ‖T ∗(x∗)‖ = 1. For any z ∈ X,

T ∗(x∗)(F(x + z) − F(z)) = 〈x∗, x + z − z〉 = 〈x∗, x〉 = 1. (3.2)

Equation (3.2) together with the fact that ‖F(x + z) − F(z)‖ = ‖x + z − z‖ = 1 imply that

{F(x + z) − F(z) : z ∈ X} ⊆ {y ∈ span(F(X)) : ‖y‖ = 1,T ∗(x∗)(y) = 1}. (3.3)

Since span(F(X)) is weakly nearly strictly convex,

C = {y ∈ span(F(X)) : ‖y‖ = 1,T ∗(x∗)(y) = 1}

is a weakly compact set. Let (span(F(X))∗,m) be the locally convex space span(F(X))∗

endowed with the Mackey topology (that is, the topology of uniform convergence
on weakly compact subsets of span(F(X))). Then (span(F(X))∗,m)∗ = span(F(X)).
Suppose that {z∗α}α∈D ⊂ span(F(X))∗ is a Mackey convergent net with z∗α

m
−→ z∗0 for some

z∗0 ∈ span(F(X))∗. Since C is a weakly compact set, {z∗α}α∈D is uniformly convergent
to z∗0 on C and so {z∗α}α∈D is uniformly convergent to z∗0 on {F(x + z) − F(z) : z ∈ X}
by (3.3). According to (3.1), 〈z∗α, S (x)〉 → 〈z∗0, S (x)〉. This means that S (x) is a Mackey
continuous bounded linear functional on span(F(X))∗. Consequently, we see that
S (X) ∈ span(F(X)).

By (III) in Definition 3.1, for any u, v ∈ X,

〈z∗, S (u + v)〉 = 〈µz, 〈F(u + v + z) − F(z), z∗〉z∈X〉

= 〈µz, 〈F(u + v + z) − F(u + z), z∗〉z∈X〉 + 〈µz, 〈F(u + z) − F(z), z∗〉z∈X〉

= 〈µz, 〈F(v + z) − F(z), z∗〉z∈X〉 + 〈µz, 〈F(u + z) − F(z), z∗〉z∈X〉

= 〈z∗, S (v)〉 + 〈z∗, S (u)〉. (3.4)
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This establishes the additivity of S . Furthermore,

|〈z∗, S (u)〉 − 〈z∗, S (v)〉|
= 〈µz, 〈F(u + z) − F(z), z∗〉z∈X〉 − 〈µz, 〈F(v + z) − F(z), z∗〉z∈X〉

= 〈µz, 〈F(u + z) − F(v + z), z∗〉z∈X〉 ≤ ‖u − v‖ · ‖z∗‖, (3.5)

which shows that S is 1-Lipschitz. Together, (3.4) and (3.5) imply that S is a bounded
linear operator on X with ‖S ‖ ≤ 1.

Finally, for any x∗ ∈ X∗, x ∈ X,

〈x∗,T ◦ S (x)〉 = 〈T ∗(x∗), S (x)〉
= 〈µz, 〈F(x + z) − F(z),T ∗(x∗)〉z∈X〉

= 〈µz, 〈T (F(x + z) − F(z)), x∗〉z∈X〉 = 〈µz, 〈x, x∗〉z∈X〉 = 〈x, x∗〉,

that is, T ◦ S = IdX . Therefore, S is a linear isometry. This completes the proof. �

Theorem 3.4. Let X, Y be two Banach spaces and f : BX → Y a standard isometry. If
Y is WNSC, then there is a linear isometry S : X → Y.

Proof. It follows from Corollary 2.10 that there is a standard isometry F : X → Y if
there is a standard isometry f : BX → Y and Y is WNSC. Note that span(F(X)) ⊂ Y
is WNSC since Y is WNSC. Therefore, by Lemma 3.3, we obtain a linear isometry
S : X → span(F(X)) ⊂ Y . �
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