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Abstract

A semigroup is totally commutative if each of its essentially binary polynomials is commutative,
or equivalently, if in every polynomial (word) every two essential variables commute. In the
present paper we describe all varieties (equational classes) of totally commutative semigroups,
lattices of subvarieties for any variety, and their free spectra.

1991 Mathematics subject classification (Amer. Math. Soc.) 20 M 07, 20 M 05, 08 B 15; Sec-
ondary 20 M 14, 08 B 05.

In [2, 7, 8] all varieties of idempotent semigroups are described. A semigroup
(S, xy) is idempotent, if xy is idempotent, that is the identity x2 = x
holds. Any idempotent semigroup is totally idempotent in the sense that each
of its binary polynomials is idempotent, as well. In this paper we consider
from this point of view the commutative law

(1) Ax, y) = f(y, x).

In contrast with idempotency, this identity is interesting only for operations
depending on both the variables (that is, essentially binary), since otherwise
(1) fails to hold, unless f(x, y) is a constant operation.

DEFINITION. A semigroup S is totally commutative (in short, a TC-semi-
group) if for every essentially binary polynomial f(x, y) of S the identity
(1) holds.

Boolean groups and semilattices are important and well-known examples
of TC-semigroups. Left and right zero semigroups are examples of improper
TC-semigroups (see [17] and Section 2 below).
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We show that the class of TC-semigroups is the union of four equational
classes. There are No distinct varieties of TC-semigroups and all the varieties
are finitely based. For each variety of TC-semigroups normal forms for words
are found, solutions for word problems are explicitly shown and the lattices of
subvarieties are completely described. For these kind of problems considered
for various classes of semigroups see [10, 11, 12, 15] and [19] for further
references. As in [9], we also describe pn -sequences of all the varieties, and
in consequence, cardinalities of free semigroups (free spectra). From this
point of view the class of TC-semigroups is especially interesting, providing
the most natural examples of free spectra with the slowest growth (for this
topic see also [5, 13, 16]). Finally, in the last section, a certain contribution
to the topic of hyperidentities is given (see [1, 3, 4, 18]).

For the terminology used in this paper the reader is referred to [19].

1. General remarks

A variable xt in a polynomial p — p{xx, ... , xn) is called essential if the
value of p does really depend on xt; for a more precise definition see [13]).

PROPOSITION 1.1. 4̂ semigroup S is a TC-semigroup if and only if every
polynomial p = p{xx, ... , xn) over S is symmetric in all essential variables.

PROOF. The " i f part is trivial. For the "only i f part let S=(X, xy) and
note that either xy is not essentially binary (then each polynomial in S de-
pends on at most one variable and the result is trivial) or xy depends on both
the variables, and in consequence S is commutative. Let p = xf'x"2 • • -x°",
be an arbitrary polynomial of S and assume that p depends on each of
the variables xt. It follows that xf'x"J is an essentially binary operation,
and by the assumption, x?'x°J = xfx? . Hence p = x^x^ •••xa

n"n for any
permutation n of indices 1, 2 , . . . , « , as required.

We note that the equivalence in Proposition 1.1 does not hold for nonas-
sociative groupoids. A counterexample is the class of groupoids considered
in [14].

PROPOSITION 1.2. A semigroup S = (S, xy) is a TC-semigroup if and only
if one of the following conditions holds identically:

(i) xy = x2;
(ii) xy = y2;
(iii) xy = yx and xy2 = x3;
(iv) xy = yx and xy = x y.
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PROOF. We prove the "only i f part. At first, note that if xy is not es-
sentially binary, then either xy = xz or xy = zy, and consequently the
condition (i) or (ii) holds. If xy is essentially binary, then by definition
xy = yx. Now, consider the polynomial xy . If it is also essentially binary,
then xy2 = x2y, and the condition (iv) holds. If xy2 is not essentially bi-
nary, then either xy2 = xz2 or xy2 = zy2 holds. In the former, xy2 = x3,
so (iii) holds. In the latter xy2 = y3 and consequently x2y2 = y3 and, by
commutativity, y3 = x3. Hence, again xy2 = x3, which proves the "only
i f part.

To prove the " i f part, note at first, that if the condition (i) or (ii) is sat-
isfied, then there is no essentially binary polynomial in S, and consequently
S is totally commutative ((i) and (ii) are thus trivial cases).

Assume that the condition (iv) holds. Then, it is easy to deduce by simple
induction, that xkym = xk~xym+l for any k > m > 0, and in consequence
xkym = xmyk . In particular, S is a TC-semigroup.

It remains to consider the condition (iii). First we note that xy =
x3 for any k > 0. Consequently, xmy2k and x2kym are not essentially
binary. On the other hand, substituting xy for x in xy2 = x3, we obtain
xy3 = {xy)3 = x3y, and consequently, as above, x ym = xmyk for any odd
k > m > 0. Hence, every polynomial xkym either does not depend on one
of the variables or is symmetric, thus completing the proof.

2. Improper semigroups

DEFINITION. A semigroup S = (S, xy) is proper if xy is essentially bi-
nary. Otherwise, it is called improper.

By the proof of Proposition 1.2, S is improper if and only if the con-
dition (i) or (ii) holds. In particular, every improper semigroup is totally
commutative. It is an easy exercise to find normal forms for words in im-
proper semigroups and describe the lattices of subvarieties. Figure 1 shows
both the lattices. The subvarieties given by xy — x , xy = z2 , xy - y are
known respectively as left zero semigroups, constant semigroups, right zero
semigroups, and trivial semigroups are at the bottom (see [17]).

PROPOSITION 2.1. Let S be an improper semigroup. Denote (p(x) = x2

and T = <p(S) C S. Then (p(x) = x for every x e T and either xy = <p{x)
or xy = q>{y). Conversely, given two sets SDT and a function q> of S onto
T satisfying q>{x) = JC for x e T, define xy = <p(x) (or xy = <p(y)). Then
(S, xy) is an improper semigroup.
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xy = x2

xy = z-

[4]

Moreover, S is a left (or right) zero semigroup if and only if T = S; S is
a constant semigroup if and only if the cardinality \T\ = 1; and S is trivial
if and only if \S\ = l.

PROOF. This is trivial to prove.

3. TC-semigroups vrithxy2 = x3

In this section we consider the variety G of semigroups denned by the laws
xy = yx and xy2 — x3 (the case (iii) in Proposition 1.2). All deductions are
carried out in Eq G (the equational theory of G). In particular, equivalent
identities means here equivalent in Eq G. Also x ,y, z stand for variables,
while a, x, 6 stand always for words (terms of semigroups).

At first, we observe that the word x6 induces a constant polynomial in
every member of G. Indeed, from xy2 = x3 we have x2y2 = x6 and by
commutativity x2 = y2x2 = y6, as required. Hence, in the sequel, we will
write C for x6.

In turn, we establish some simple laws holding in G. We have
2k

2k+\
= X

3
for every k > 1,

(i) xLK = C for every k > 1,

(ii)
(iii)
(iv)

Indeed, from

x 3y3 = x3y = y3x,

= x2y2 we have x6 = x4 and (i) follows by simple
induction. From (i) we have x

x3

2k+l = Cx for k > 1 which combined with
x5 = x(x2)2 = yields (ii) and (iii). Finally, x3y3 = x2y(xy2) = x5y
combined with (ii) yields (iv).

Now, we find normal forms for words in G.
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LEMMA 3.1. For every a , , . . . , an > 1, a = x"1 • • • x°n is equal to one and
only one of the following words:

(a) x { • • • x n whenever ax = • • • = an = 1 ;
(b) C whenever all a , , . . . , an are even and either n > 1 or a{ > 2;
(c) jcf whenever n = 1 and al = 2;
(d) x* xt • • • xt when a, , . . . , a, are all odd numbers among a , , . . . , an

( / , < • • • < ik) and k>\.

PROOF. We prove that a is equal to one of words given in (a) to (d).
At first, note that by (i), C2 = C. Now, using (i) it is easy to see that
(b) holds. Also (a) and (c) are trivial. In the remaining case, by (b), a =
CX:' • • • x> , where (b,, . . . , bt) = (a, , . . . , a, ) consists of all odd numbers

among a , , . . . , an , or a = x°' • • • x°n (if all a( are odd) and then one of
at > 3 (since otherwise, it would be case (a), not (d)). Using (iii), we see
that in any case we have a = xc

t' • • -x1k, where all c, are odd and at least

one c- > 3 . Applying (iv) we infer that a = x(
3 • • -xt , as asserted.

From rules of deduction applied in this section it is almost obvious that
words given in (a) to (d) are pairwise distinct. But the formal proof along this
line is rather tedious. An alternate proof is to construct the G-free semigroup
on No free generators using forms given in (a) to (d). More precisely, let S
be the set of all expressions of the form x, • • • xt , C, x2 and x,3 x, • • • x, ,
where il, i2,..., in e {1, 2, 3 , . . . } , i{ < ••• < in and n > 1. We define
a binary operation o on the set S assuming that the value of a o T is one of
elements of S which corresponds to the formal expression according to the
rules given in (a) to (d), commutativity and (iii). Now, it is easy to check
that S = (S, CTOT) is a semigroup satisfying xy = yx and xy2 = x 3 , that is,
belonging to the variety G. Since x t , x 2 , • • • e S, we see that words given
in (a) to (d) induce pairwise distinct polynomials in S, which completes the
proof.

Lemma 3.1 shows that each word in G can be reduced to the unique form
which we shall call normal. In particular, any identity (a = T') ^ Eq G is
equivalent to some {a = T) £ Eq G, where a and T are normal forms for
a and x .

Recall that a = T is regular if exactly the same variables appear on both
sides.

LEMMA 3.2. If {a = x) £ Eq G is nonregular and both a and x are given
in normal forms, then a = x is equivalent to the conjunction a = C and
x = C.
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PROOF. If a = x is of the form xk = y", then the result is immediate.
Otherwise, by Lemma 3.1 we can assume that a = x is of the form a = xd,
where x is a variable appearing neither in a nor in 5 (the empty word 3
is not excluded). Substituting x = S3 we get a = dA, and by (i), a = C,
proving the lemma.

In the sequel we use the following additional notation (for every n > 1):
in = xlx2---xn;
tn = xx x2 • • • xn ;

2 3

[/ , , . . . , / J = Mod(Z0U{/1, . . . , / „ } ) .
Of course, Zo is an equational base for the variety G, and [Ix,..., In]

is the subvariety of G defined by the additional laws / , , . . . , / „ .
We will use also the following equivalences, which are easy consequences

of (i) to (iv) (<-+ stands here for "is equivalent to • • • in Eq G "):

(v) x2 = x <-» x = C;
(vi) x3 = x2 «-• (x2 = C and x3 = C);

and for every n > 1,
(vii) tn = C <-> JC3 = C;

(viii) /„ = C <-> (x3 = C and iB = rB).

Indeed, x2 - x implies x3 = x2 and x4 = x3, which by (i) yields x = C.
The converse implication also holds, for C2 = C. Similarly we prove (vi).
Substituting x2 = •• • = xn = C in tn — C we get by (iii) and (ii), x3 = C.
Conversely, substituting x = xx • • • xn in x3 = C we get, by (iv), tn = C,

proving (vii). Finally, /„ = C implies JC3 = C (if n < 3 we apply an
appropriate substitution; otherwise in — C implies tn_2 — C and we use

(vii)). In turn, in — C and* 3 = C together imply, by (vii), tn = C and
consequently, in = tn . Conversely, x3 = C in view of (vii) yields tn = C,
which combined with in = tn yields in = C, thus proving (viii).

Now we prove

LEMMA 3.3. If X is a subvariety of G, then X = Mod(Z0 U Z), where
2 c {in = tn , x

2 = C, x3 = C) for some n>\.

PROOF. Let Z* = Eq X. By assumption 2* D Xo. Our aim is to show that
Z* can be reduced to Zo u Z . The first step is that in view of Lemmas 3.1 and
3.2 all identities in Z* other than those in Zo can be assumed to be of the
following forms (n > 1): in = tn ; x2 = x; x3 = x2 (these are all possible
regular identities assuming normal forms); in = C; tn = C; and x2 = C.
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Further, x2 = x and x3 = x2 can be omitted in view of (v) and (vi). In
turn, all tn = C can be replaced by x3 = C in view of (vii). Finally, using
(viii) we replace by x3 = C and in = tn all identities in = C. This shows
that I* can be reduced to I 0 U l , where X c {in = tn {n > 1), x2 = C,
JC3 = C} with n running over positive integers. To complete the proof it is
enough to observe that ik = tk implies obviously in = tn for all n>k, and
therefore any set of identities in = tn can be replaced by one with the least
index.

As a consequence of Lemma 3.3 we have the following description of all
subvarieties of G.

PROPOSITION 3.4. Each subvariety of G is finitely based and is equal to
one and only one of the following varieties:

Gk - [ik = tk] for some 3 < k < co;

G*k = [ik = tk, x2 = C] for some 1 < k < co;

G°k = [ik — tk, x 3 = C] for some 3 < k < co;

G*k° = [ik = tk, x2 = C, x3 = C] for some \<k<w,

where ia = t0} = x.

REMARK. The convention ia = tw = x is introduced here for the number
of cases distinguished to be as small as possible. The identity iw = tw reads
simply x = x, and as a matter of fact can be omitted. In particular, Gw = G.
We note also that G*° = [x = x3, x2 = C, x3 = C] = [x = C] = [x = y] is
the variety of trivial {one-element) semigroups, G*2 — [xy = x < 3y, x2 —
C, x3 = C] = [xy = C] is the variety of constant semigroups, while G* =
[x = x3, x2 = C] is equivalent to the variety of Boolean groups.

PROOF. Since iw = tm = x, we have taken into account all possible subsets
o f {'* = tk, x2 = C, x3 = C} for all k > 3. For k = 2, i2 = t2 is
xy = x3y and implies x2 = C. Also, for k = 1, /, = tx is x — x3 and
implies x2 = C. This means that for k = 1, 2 the bases [ik = tk] and
[ik = tk, x3 = C] need not be taken into account. Hence, the first part of
the proposition is a simple consequence of Lemma 3.3. In turn, the fact that
all listed varieties are pairwise distinct is an immediate consequence of the
following proposition.

PROPOSITION 3.5. If X is a subvariety of G, then EqAT is a decidable
theory and solutions for corresponding word problems are given by the following
list, where each of the equational bases given consists of all nontrivial identities
of X using normal forms:
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G k = [in = t n ( n > k ) ] ;
G*k = [in = tn, ( n > k ) , x 2 = C];
G l = Vn = tH (n > k ) , i n = C (n > k ) , tn = C ( n > 1 ) ] ;
G l ° = [ ' „ = t n ( n > k ) , in = C ( n > k ) , tn = C ( n > l ) , x 2 = C].

PROOF. It is of course enough in every case to construct the semigroup of
words, analogously, as in the proof of Lemma 3.1, using the identities given
in square brackets and then check that this is the ^T-free semigroup on the set
{x{, x2, x3,...}. This is rather long, but completely routine and therefore
is left to the reader.

Notice that the first part of the proposition is an immediate consequence
of the general result of Evans [6], combined, of course, with Proposition 3.4.

From Propositions 3.4 and 3.5 it is easy to describe the lattice of subvari-
eties of G.

COROLLARY 3.6. For every subvariety X of G, and for every k (as indi-
cated in Proposition 3.4):

(a) GkDX if and only if X = Gm or X = G*m or X = G°m or X = G*°
for some m < k;

(b) G*k D X if and only if X = G*m or X = G*° for some m<k;
(c) G°kDX if and only if X = G°m or X = G*° for some m<k;
(d) G*° D X if and only if X = G*J? for some m<k.

PROOF. We prove (b). By Proposition 3.4, G*k = [ik = tk, x2 = C]. If
X = G*m or X = G*£ for some m < k, then in view of Proposition 3.5
both ik = tk and x2 = C hold in X, which means obviously that G*k D X.
Otherwise, as it is easy to check, either im = tm or x2 = C does not hold in
X, and consequently, neither does G*k D X, proving (b). The proof in the
remaining cases is analogous.

By Corollary 3.6 the four families of subvarieties of G given in Propo-
sition 3.4 form infinite chains in the lattice of subvarieties of G (ordered
by the natural order of indices) which are connected by a diamond pattern:
Gn2G*n, G°n2G*n° (see Figure 2).

Another important corollary is that concerning free spectra of subvarieties
of G (sizes of free algebras). As often occurs, it is however more convenient
to describe pn-sequences of these subvarieties rather than free spectra. Recall
that if we denote by pn = pn(X) the number of essentially zt-ary polyno-
mials over the X-free semigroup on No free generators, then the cardinality
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FIGURE 2

sn = sn(X) of the X-free semigroup on n free generators is given by

(po(X) is here the number of constants, that is, constant unary polynomials;
see [5, 13, 16] and [9] for more details on this topic).

COROLLARY 3.7. For every subvariety X of G, po(X) = 1 and pn(X) for

n > 1 is given in Table 1. Moreover, pn{G*2) = Pn(G°J, pn{G\) = pn(G*®)

for all n>0, and Pn{G*^) = Pn(G*°) = 0 for n > 1, except for px(G*2
Q) = 1.

In particular,

for all « > 0.
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TABLE 1.

X

(for 3 < k < co)

Gk

Gl

Gl

G-:

PX{X)

3

2

2

1

PnW

(for 2<n<k)

2

2

1

1

PnW

(for k < n)

1

1

0

0

PROOF. This is immediate from Proposition 3.5.

Finally, it is also interesting to know which of these varieties is generated
(and in consequence, which of these /^-sequences is represented) by a finite
semigroup. We have

COROLLARY 3.8. If X is a subvariety of G, then X is generated by a finite
semigroup if and only if X^GW, ° j

y f
G*w, G°w or

PROOF. Assume that X is generated by a A>element semigroup S. Then,
we show that the identity i2k+2 = t2k+2 holds in S. Indeed, consider the

v a l u e v o f t2k+2 = x \ x 2 • • • x 2 k + 2 f o r s o m e e l e m e n t s s x , s 2 , ... , s 2 k + 2 o f
S. Clearly, since the cardinality |S| = k, we have s( — Sj = sm for some

i, j , m e {2, 3 , . . . , 2k + 2} . Hence, v = sjVr, where 5 = sf and r is the
product of the remaining elements sn . By Lemma 3.1, v = s*sr = j 3 j , r .
In tu rn , t he value w of i2k+2 = x{x2 • • • x2k+2 for st, s2, ... , s2k+2 is w =

s^r = s3s^ - v , p roving tha t i2k+2 = t2k+2 .
This shows, in view of Proposition 3.5, that the variety X generated by S

is different from Gw, G*w, G^ and G*®, since in these varieties no identity
in - tn holds.

Conversely, if for example, X — Gk for some k < co, then let Sk be the
Gk free semigroup on k free generators. By Corollary 3.7, Sk is finite. The
identities in n < k variables are the same in Sfc and in Gk . On the other
hand in = x{x2 • • • xn for n > k yields C if we substitute xy = ••• = xn =
C, and x3, if we substitute xi = x and x2 = • • • = xn = C (for Cx = x 3 ) .
This means that in is essentially n-ary in Sk, and in consequence that
identities in more than k variables are also the same in Sfc and in Gk . It
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follows that the semigroup Ŝ . generates the variety Gk . Similarly we prove

that any X ^ Gw, G*w, GQ
W or G*® is generated by a finite semigroup, which

completes the proof.

4. TC-semigroups with xy — x y

In this section we consider the variety H of commutative semigroups
defined by the law xy2 = x2y. Results and proofs are to a large extent
similar to those in Section 3. So some analogous details will be now omitted.
Also we use the same notation as in Section 3 except that now, of course

Zo = {xy = yx, x(yz) = (xy)z, xy2 = x2y}
and equivalent means equivalent in Eq H.

As previously, we start by finding normal forms for words in H.

LEMMA 4.1. The unary words x, x2, x3, x4 are pairwise distinct in H,
and xn = x4 for any n > 4.

If n > 2, then for every al,... , an > 1, a = x"1 • • • xa
n

n is equal to one
and only one of the following words:

(a) in = xxx2•••xn whenever al = • • • = an = 1;
(b) bn = x2x2 •xn whenever Za(. = n + 1;
(c) tn — x\x2•••xn, otherwise.

PROOF. At first, we have x2y2 = xAy, and on the other hand x2y2 =
x(xy2) = x3y. Hence, x3y = x4y, and by simple induction, xyy — x"y for
every n > 4 . In particular, x4 = x" for every n > 4 . Using x2y2 = x4y a
number of times, we find that xrys = x4y = x3y, provided r + s>4{r,s>
1). It follows easily that xf1 • • • x^" — x\x2 •••xn, whenever X)a, > n + 2 .

Condition (b) is immediate from the defining identity xy2 = x2y, and (a)
is trivial.

Now, analogously to the proof of Lemma 3.1, using words given in Lemma
4.1, we construct the if-free semigroup on the set {x{, x2,...}, which
proves that the listed words are pairwise distinct and can be used as nor-
mal forms, as asserted.

Note that in the present case the identities defining H are all regular.

LEMMA 4.2. Let S e H. Then S satisfies a nonregular identity a = x if
and only if S has a constant C. If so, the constant is unique, determined
by C = x4, and Cx — C holds. Moreover, a = r is equivalent to the
conjunction a = C and x = C.
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PROOF. If S has a constant C, then by definition some nonregular iden-
tity a = C holds. Substituting x4 for every variable occurring in a we
obtain, by Lemma 4.1, x4 = C. This implies x5 = Cx, and since x5 = x4,
we have C = Cx, which shows also that the constant is unique.

Conversely, if a nonregular identity holds in S, then by Lemma 4.1 we
can assume that either some identity 8z = x holds, where z is a variable not
occurring in T and 8, or xn =ym holds. From the latter, in any case, it is
easy to infer x4 = y4, as required. From the former, substituting x for all
variables in 8 and T (and multiplying both the sides by x4, if necessary) we
obtain, in view of Lemma 4.1, that x3z = x4. Since x3z = z3x, it follows
that x4 = z4, and consequently, x4 = C.

Finally, substituting z = C in 8z = T , we get C = T (for we have proved
already that Cx = C) , and in consequence, a = Sz — C too. Since in the
latter case obviously x" — ym = C, the proof is completed.

As an analogue of Lemma 3.3 we have

LEMMA 4.3. If X is a subvariety of H, then X = Mod(S0 U Z) , where

2 c {in = bn,bm = tm,x3 = x4,x4 = / } for some n,m>\.

PROOF. First we establish some equivalences we will use subsequently:
(i) x4 = x <-> x2 = x;
(ii) x4 = x2 <-> x3 = x2 for every n > 1;
(iii) in = tn~ in = bn .
Under the additional assumption, that there is a constant C = x4 (ac-

cording to Lemma 4.2), we have tn = C for every n > 2, and for every
n> 1

(iv) in = C~in=bn.
In order to prove (i) note that x4 = x yields x5 = x2 , that is, in view of

Lemma 4.1, x4 = x2 , and further x4 = x3, and in consequence, x2 = x.
Similarly, we prove the converse implication, and analogously (ii) and (iii).

Assume that x4 = C. Then, by Lemmas 4.1 and 4.2, tn = x\x2 •••xn =
x4x2 •xn — Cx2 •••xn = C , p r o v i d e d n > 2. If n o w in = C, t hen also
bn = C, that is in = bn. Conversely, in = bn implies bn = tn = C and
consequently, in = C, proving (iv).

Now Z* = Eq X is, of course, an equational base for X. We wish to show
that D* can be replaced by I o u Z with

where « and m run over positive integers. In view of Lemmas 4.1 and 4.2
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we can assume that Z* contains merely identities of the forms
4 4 2 4 3 . , . . ,

x =x, x =x , x =x , in = bn, in = tn, b

(which are regular identities), and if x4 = y4 e EqX,

and in addition those of Zo .
By (i) and (ii), x4 = x and x4 = x2 can be replaced by b1 = ix and

t{ = bx, respectively. In turn, by (iii), in = tn can be replaced by in = bn .
It follows that, if x4 = y4 £ EqX, that is, by Lemma 4.2, if all identities
in EqX are regular, then our assertion is true. Hence, assume that x =
y4 £ EqX. Then, as we have shown above, tn = x4 = C for every n>2.
Hence, x3 = C can be replaced by x3 = x4, and bn = C, by bn = tn, for
n > 2. But b\ = x2 = C is equivalent to x2 = x3 (see (iii)) and thus can
be replaced by bn = tn (for n = 1), too. Finally, by (iv), in = C can be
replaced by in = bn , which completes the first part of the proof.

Now, as in the proof of Lemma 3.3, we observe that ik = bk implies
in = bn for all n > k, and bm = tm implies bn = tn for all n > m, thus
proving Lemma 4.3.

Now we state our propositions and corollaries analogous to those in Section
3. We omit proofs for they are essentially the same as corresponding proofs
in Section 3.

PROPOSITION 4.4. Each subvariety of H is finitely based and is equal to
one and only one of the following varieties:

H/c m = I'* = ^k' ^m = *nj for some co > k > m > 3 or k = m = to;
Hk,m = I'fc = K' bm = tm, x3 = x4] for some co > k > m > 1 or

k = m = co or k = m= 1 ;

Hk.m = ^k - bk' bm = tm' x* = / ] for some co>k>m>3or
k = m = co;

H*k°m = Uk = bk> bm = tm> x% = x* = V^ fOr SOme CO > k > m > I OT
k = m = co or k = m = 1,

where iw = bw = x.

REMARK. In the sequel, k and m are assumed to run over the sets indi-
cated in Proposition 4.4.

PROPOSITION 4.5. If X is a subvariety of H, then EqA!" is a decidable
theory and solutions for corresponding word problems are given by the following
list of subvarieties of H, where each of equational bases given consists of all
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nontrivial identities of X using normal forms:

Hk,m = K = K i n > k ) , bn = t n ( n > m ) ] ;

K,m = iin = bn^>k), bn = tn(n>m), x3 = x4];

< « = Un = C(n>k), bn = C(n>m), tn = C(n>2), x* = C];

K°m = ^n = C{n>k), bn = C(n>m), tn = C(n>l), x* = C].

(For H® m and Hk*°m we have in addition identities in = bn, in = tn,
bn = tn which trivially follow from those given and therefore are omitted.)

COROLLARY 4.6. For every subvariety X of H and for every k and m
(as indicated in Proposition 4.4), we have

(a) Hk m D X if and only if X = Hr s or X = H* s or X = H? s or
T*oX = Hr s for some r <k and s <m,

(b) H*km2X if and only if X = H* s or X = H'°s for some r < k and
s < m,

(c) H l , m 2 ^ if and only if X = H ° s or X = H*°s for s o m e r < k and
s < m ,

( d ) Hk*°m D X if and only if H*°s for some r <k and s < m.

By Corollary 4.6, the four families of subvarieties given in Proposition
4.4 form infinite sublattices of the lattice of subvarieties of H, which are
connected, similarly as in the lattice of subvarieties of G Section 3, by a
diamond pattern: Hk m D Hk m , H® m D ffk*°m . These four sublattices are
isomorphic to the lattices of pairs of indices (k, m) ordered by (k,m)>
(r,s) if and only if k > r and m > s. One of them is the lattice of
subvarities of Hk°m given in Figure 3, and is isomorphic to the lattice formed
by the family Hk m (this, however, is not the lattice of subvarieties of H*m <a,

since H*k m D H*°s for all r , s). Two other sublattices are isomorphic to
that in Figure 3 without the two bottom elements. Hence, the lattice of
subvarieties of H can be presented schematically as in Figure 4.

Note that, H*o
{ = [x = x2 = x3 = x* = / ] = [x = y] = G*° is the variety

of trivial semigroups, H* 1 = [x — x2 = x3 = x4] = [JC = x2] is the variety
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. 9 (CO.CO)

(1,1)

FIGURE 3

of semilattices, and H^x = [xy = x2y, x2 = x3 = x4] = [xy = C] = Gl° is
the variety of constant semigroups.

COROLLARY 4.7. For every subvariety X of H the number pn(X) is given
in Table 2.

Moreover, for every 1 <k<co, P0(H^A) = 0, Pn{Hl<x) = 2 for 0 < n <

k, and pn(H£ ,) = 1, otherwise. Also, Pn{Hl°x) = 1 for 0 < n < k, and
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H°

TABLE 2.

X

(for m > 2)

Hk,m

Hk,m

W°"k,m

Hk,m

PoW

0

0

1

1

4

3

3

2

(1 < n < m)

3

3

2

2

/>„(*)
(m <«<<:)

2

2

1

1

*„(*)

(/c < n < w)

1

1

0

0

T*0Pn{Hk ,) = 0, otherwise. In particular,

sn(HaJ = 3-2n + n-3,

*,,tfCJ = 3-2"-3.
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sn(H*w°J = 2n+i-l,forall n>0.

COROLLARY 4.8. If X is a subvariety of H, then X is generated by a
finite semigroup if and only if X # Hw m, H*w m, H^m and H*^m for all
m.

Finally, combining Corollaries 3.6, 3.8, 4.6 and 4.8 (see Figures 2 and 4)
we have

COROLLARY 4.9. Let X be any variety of totally commutative semigroups.
Then the lattice of subvarieties of X is finite if and only if the variety X is
generated by a finite semigroup.

5. Hyperidentities

A hyperidentity is formally the same as an ordinary identity but we say
that an algebra A satisfies the hyperidentity a = x if and only if a = x
holds for every choice of polynomials of A to be substituted for operation
symbols appearing in a and x (only the arity, of course, has to coincide
(see [18]). For example, any idempotent algebra A satisfies the hyperidentity
F(x, x) = x, and more generally, G(x, x,... , x) = x . But if we consider
the hyperidentity

(2) F(x,y) = F(y,x)

(hypercommutativity), then according to this definition, no nontrivial algebra
satisfies it, since the binary projection e(x, y) = x (which is by definition a
polynomial for every nontrivial algebra) substituted for F yields x = y.

On the other hand, in [1 and 3] a weaker definition was considered, not
requiring a = x to hold for all polynomials. It is reasonable therefore to
consider hyperidentity with regard to certain predescribed sets of polynomi-
als; in particular, as suggested at the beginning of this paper, to take into
account only essential polynomials (depending on all the variables).

Consider from this point of view, the identities of commutative semi-
groups, (2) and

(3) F(F(x,y),z) = F(x,F(y,z)),

and let us call groupoids satisfying these two identities for all their essentially
binary polynomials hyper semigroups. Then we have the following character-
ization.
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PROPOSITION 5.1. A proper groupoid A is a hypersemigroup if and only if
A is a totally commutative semigroup. In particular, every essentially binary
polynomial in a TC-semigroup generates a TC-semigroup.

PROOF. At first, assume that A is a rC-semigroup. Then observe that
according to Lemmas 3.1 and 4.1, every essentially binary polynomials in
A is of the form f(x, y) — xky for some k < 3 , and satisfies f(x, y) -
xky = ykx = f(y, x). This yields also

f(f(x ,y),z) = (xky)zk = xkyzk

and
f(x, f(y, z)) = xk{yzk) = xkyzk

which shows that A is a hypersemigroup.
Conversely, if a groupoid A = (A, xy) is a hypersemigroup, then since

xy is essentially binary (A is proper), F(x, y) = xy satisfies (2) and (3),
and consequently A is a semigroup. In addition, since every essentially
binary polynomial of A satisfies (2), A is totally commutative, completing
the proof.

The assumption in Proposition 5.1 that A is proper, is essential, since
there are improper groupoids which are not associative. (These are all group-
oids defined by xy = f(x) for any f(x) with f(f{x)) ^ f{x))

In connection with the results of this paper, it would be interesting, but as it
seems, more difficult, to characterize all groupoids which for every essentially
binary polynomial satisfy (1) (or respectively (2)).
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