k-GON PARTITIONS

Michael D. Hirschhorn

The object of this note is to present a brief derivation of the main result of Andrews, Paule and Riese (2001).

We obtain a multivariable generating function associated with $t_{k}(n)$, the number of k-gon partitions of n, that is, those partitions of n,

$$
n=a_{1}+a_{2}+\cdots+a_{k}
$$

in which

$$
1 \leqslant a_{1} \leqslant a_{2} \cdots \leqslant a_{k} \text { and } a_{1}+a_{2}+\cdots+a_{k-1}>a_{k}
$$

(The case $k=3$ gives the number of triangles with integer sides and perimeter n.) Andrews, Paule and Riese did this with MacMahon's Partition Analysis (Ω-Calculus), but we do without.

Thus, let

$$
a_{1}=1+\delta_{1}, \quad a_{2}=1+\delta_{1}+\delta_{2}, \ldots, a_{k}=1+\delta_{1}+\delta_{2}+\cdots+\delta_{k},
$$

with $\delta_{i} \geqslant 0$. Then

$$
(k-1)+(k-1) \delta_{1}+(k-2) \delta_{2}+\cdots+1 \delta_{k-1}>1+\delta_{1}+\delta_{2}+\cdots+\delta_{k}
$$

or,

$$
\delta_{k}<(k-2)+(k-2) \delta_{1}+(k-3) \delta_{2}+\cdots+1 \delta_{k-2}
$$

It follows that if S denotes the set of all k-gon partitions,

$$
G=\sum_{S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{k}^{a_{k}}=\sum x_{1}^{1+\delta_{1}} x_{2}^{1+\delta_{1}+\delta_{2}} \cdots x_{k}^{1+\delta_{1}+\delta_{2}+\cdots+\delta_{k}}
$$

where the sum is taken over all $\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{k}\right\}$ with $\delta_{i} \geqslant 0$ and $\delta_{k}<(k-2)$ $+(k-2) \delta_{1}+(k-3) \delta_{2}+\cdots+1 \delta_{k-2}$.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 SA2.00+0.00.

Thus, if we set

$$
X_{i}=x_{i} x_{i+1} \ldots x_{k}, \quad i=1, \ldots, k
$$

we find that

$$
\begin{aligned}
G= & \sum X_{1}^{1+\delta_{1}} X_{2}^{\delta_{2}} X_{3}^{\delta_{3}} \cdots X_{k}^{\delta_{k}} \\
= & \sum X_{1}^{1+\delta_{1}} X_{2}^{\delta_{2}} \cdots X_{k-1}^{\delta_{k-1}}\left(\frac{1-X_{k}^{(k-2)+(k-2) \delta_{1}+(k-3) \delta_{2}+\cdots+1 \delta_{k-2}}}{1-X_{k}}\right) \\
= & \frac{X_{1}}{1-X_{k}} \sum X_{1}^{\delta_{1}} X_{2}^{\delta_{2}} \cdots X_{k-1}^{\delta_{k-1}} \\
& \quad-\frac{X_{1} X_{k}^{k-2}}{1-X_{k}} \sum\left(X_{1} X_{k}^{k-2}\right)^{\delta_{1}}\left(X_{2} X_{k}^{k-3}\right)^{\delta_{2}} \cdots\left(X_{k-2} X_{k}\right)^{\delta_{k-2}} X_{k-1}^{\delta_{k-1}} \\
= & \frac{X_{1}}{\left(1-X_{1}\right)\left(1-X_{2}\right) \cdots\left(1-X_{k}\right)} \\
& \quad-\frac{X_{1} X_{k}^{k-2}}{1-X_{k}} \frac{1}{\left(1-X_{k-1}\right)\left(1-X_{k-2} X_{k}\right)\left(1-X_{k-3} X_{k}^{2}\right) \cdots\left(1-X_{1} X_{k}^{k-2}\right)}
\end{aligned}
$$

which is [1 , Theorem 1].
Of course, if we put $x_{i}=q$ for all i, we obtain [1, Corollary 1],

$$
\sum_{n \geqslant 0} t_{k}(n) q^{n}=\frac{q^{k}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{k}\right)}-\frac{q^{2 k-2}}{1-q} \frac{1}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 k-2}\right)}
$$

References

[1] G.E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis IX: k-gon partitions, Bull. Austral. Math. Soc. 64 (2001), 321-329..

School of Mathematics UNSW
Sydney NSW 2052
Australia

[^0]: Received 14th March, 2002

