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Abstract

For a real-valued ergodic process X with strictly stationary increments satisfying some measurability and
continuity assumptions it is proved that the long-run 'average behaviour' of all its increments over finite
intervals replicates the distribution of the corresponding increments of X in a strong sense. Moreover,
every Ixvy process has a version that possesses this ergodic path property.

2000 Mathematics subject classification: primary 60G17, 60G51, 60F15.

1. Introduction

Let X = (X(t)),>0 be a real-valued process with strictly stationary increments, that
is, the distribution of (X(s + t) — X(s))t>0 is the same for every s > 0. All strictly
stationary processes and all Levy processes have this property. We assume that
the underlying probability space is complete and that X is separable, measurable, and
ergodic. For example, every separable centered Levy process satisfies these conditions
[3, pages 422 and 511-512]. We will show that under certain regularity conditions
almost all sample paths are connected to the distribution of X in the following strong
sense: Call a function x : [0, oo) -^ Kan X-function if for every n e N, disjoint
finite intervals 1\ , . . . , / „ c [0, oo) that are open from the left and closed from the
right, and real numbers ui,... ,un the following asymptotic relation holds:

(1.1) lim T~lk[t € [0, T] | Ax(Ij + i) < itj for; = 1,... , n]
T-+oc

= P(AX(Ij) < uj for; = 1 , . . . . n),
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where A. denotes Lebesgue measure, / + t = [s + t \ s e /} is the interval / shifted
by t, and Ax(I) = x(b) — x(a) is the increment of x ( ) in / = (a, b].

THEOREM 1. Assume that

(1.2) X(I) = sup{|AX(/')| | / ' C /} - A 0, as k(l) -• 0

and that

(1.3) P ( A X ( / ) = u)= 0 for all intervals I C [0, oo) and u € R.

77ie/i almost every sample path ofX is an X-function.

This theorem is proved in Section 2. In Section 3, X is taken to be an arbitrary
Levy process. In this case we show that there is always a version of X for which
almost all sample paths are X-functions (even without the conditions (1.2) and (1.3)).

It is not difficult to prove that for any fixed n e N , any prespecified u\ , . . . , « „ € N
and any intervals h,... , /„ as above the limiting relation

(1.4) lim T~lk{t e [0, T] | AX(/, + t) < Uj foij = 1 «}
T—•oo

= P(AX(Ij)<Uj for j = l,...,n)

holds almost surely; but the exceptional null set on which (1.4) is not valid depends
on n, « i , . . . , un and I\,... , /„. In order to show that there is a 'universal' null set on
whose complement (1.4) holds for all n, M, and /,, we need that the increments of X
are 'locally small' uniformly in probability (that is, assumption (1.2)) and pointwise
convergence of the distribution function of the random vector (AX (70 , . . . , AX(Jn))
tothatof(AX(/!),... , AX(/n)),if the intervals 7, increase or decrease to the bounded
intervals /,, i = 1 , . . . , n, which requires assumption (1.3).

For Levy processes, there is always, after suitably centering, a version satisfying
(1.2). Moreover, by a classical theorem due to Hartman and Wintner [5], X(t) can
have an atom for some t > 0 only if X is a compound Poisson process with drift.
Hence, (1.3) holds except for this special case. If X is compound Poisson with drift
zero, the set of discontinuity points of the distribution function (d.f.) of X (t) is the
same for every t > 0. Using this observation and the explicit form of the d.f. of
AX(/) as a Poisson sum of convolutions, we will show in Section 3 that the assertion
of Theorem 1 remains true for compound Poisson processes (also with nonzero drift)
and thus for Levy processes in general. We conclude the paper with a new short and
elementary proof of the Hartman-Wintner theorem, which is seen to be an immediate
consequence of a neat inequality, of independent interest, for sums of i.i.d. symmetric
random variables.
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An interesting consequence of our results is that there exist cadlag functions
x : [0, oo) -+ R for which

(1.5) l i m r - ' A . { * e [ 0 , T] \ Ax(Ij + t ) < u J t j = l , . . . n ]
7"—•oo

n

= F T l im r - ' A { / € [0, F ] | A J C ( 7 , +t)< uj]
1 A r-<-oo

for all n 6 N a/u/ all It,... , In, U\,... , un as above, and these limits are strictly
between 0 and 1. Indeed, the set of these functions has probability 1 under any
distribution on the space of cadlag functions generated by some non-deterministic
Levy process. Constructing such a function seems to be quite difficult; we know no
explicit example of a function with this property. Note that the limits on the right-hand
side of (1.5) can be specified to be given by

lim T~lk{t € [0, T] | Ax(I +1) < u] = P(AX(I) < u) = P(X(b - a) < u)

for all / = (a, b] and u e R , where X is an arbitrary Levy process. By suitably choos-
ing the underlying Le"vy process we can also achieve various additional properties of
*(•) besides (1.5), such as continuity, monotonicity, having only positive jumps, etc.

It is one of the fundamental ideas in probability theory that the average behaviour
of a single realization of a stochastic process over a long time horizon should replicate
the underlying distribution of the process. Property (1.1) is a strong version of this
principle. For sample properties of Levy processes see Fristedt [4] and Bertoin [1].
Recently, a sample path approach has been frequently used to analyze stochastic
systems by studying a fixed 'typical' realization (see for example Stidham and El-
Taha [7]). For the Poisson process, relation (1.1) and related questions were studied
in [6].

2. Proof of Theorem 1

All intervals below are open from the left and closed from the right. Fix the intervals
I, I\,... , /„ and the real numbers «, u\,... , «„. Define the auxiliary processes

Obviously, Y, and Z, can be written in the form

Y,=f ((X(s + t)-X(/)),>„) , Z, = g((X(s

https://doi.org/10.1017/S1446788700003840 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003840


202 Offer Kella and Wolfgang Stadje [4]

so that the processes (Y,),>0 and (Z,),>0 are stationary and ergodic. They are also
measurable and bounded. Thus, the ergodic theorem yields

T~{ f Y,(co)dt - ^ E(Y0) = P(AX(Ij) < uj, j = 1 , . . . , « ) ,
Jo

T~x / Z,(a>)dt - ^ £(Z0) = P(X(I) < u)
Jo

(2.1)

(2.2)

(see for example [8, pages 315-316]). The exceptional null sets on which convergence
in (2.1) or in (2.2) does not hold depend on n, Iu ... , In, uu ... ,un or on / , u,
respectively. Taking the (denumerable) union of all these null sets over n € N,
intervals / , U, . . . , / „ C [0, oo) with rational endpoints and u,u\,... ,un e Q we
get a set of probability 0. On its complement C (a set of probability 1) relations (2.1)
and (2.2) hold for all n € N, u,uu...,un e Q and /, / , , . . . , / „ C [0, oo) with
rational endpoints. From now on we only consider sample paths corresponding to
points in C.

Now let /i /„, «i un be arbitrary. Let («;-
m))m€N, ; = 1 , . . . . n, be

sequences of rational numbers such that «]m) f K,, asm f oo, and My— H]"0 > 2em > 0,
where em is rational and em ->• 0. Furthermore, choose intervals jfk\ L,f\ Rjk) with
rational endpoints such that jjk) c /, approximates /, from inside and the L{k) (Rjk))
cover the left (right) endpoint of /, and satisfy

Ij C Jj U Lj U Kj , j = 1 , . . . ,n,

k(Lf) | 0 and A.(/?jt)) | 0, as k t oo.

Clearly, the following inclusion holds for every j ,m,k and t:

t ) + t) < M]m)} C {AX(Ij +t)< uj or X{Lf + t) > {Uj - u)m))/2

or

Hence, for every sample path of X and for every T > 0 we have

{t € [0, T] | AX(JJk) + t)< uf, j = 1 , . . . , n)

C { r e [0, T] | AX(Ij +t)<Uj,j=l n)

U U {t e [0, T] f (j f ) ]

n

u ( J { r e [0, T] | x(R<k) + 0 > («> - « r ) / 2 - y = l, . . . , » } •
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It follows that

k {t € [0, T] | AX(/, +t)<Uj, j =\,...,n)

>k{te [0, T] | AX(JJk) + t)< uf\ j = 1 n)

- £ A. [t e [0, 7] | X{Lf + t) >£m}-J2^ {' e [0, H
;=i 7=i

From (2.1) and (2.2) we can now conclude that

(2.3) liminf T~lk{t € [0, T] \ AX(Ij + t) < Uj, j = 1 n)
T-*oo

> P(AX(JJk)) < «<">, ; = 1,... , n) - £ P{X(L?) > em)
y=i

-±P(X(R?)>em).
7 = 1

Now let k -*• oo in (2.3). Condition (1.2) clearly implies that X is stochastically con-
tinuous so that (AX(7,W), . . . , AX(/n

(*>)) - ^ - (AX( / , ) , . . . , AX(/n)) with respect
to the Euclidean metric. It follows that

P((AX(y, ( t ) ) , . . . . AX(7n
w)) € B) -> P ( (AX( / , ) , . . . , AX(/n)) 6 B)

for all Borel sets in IR" satisfying P ( ( A X ( / , ) , . . . . AX(/n)) 6 3B) = 0. We can
take B = n " = i ( - ° ° ' " T ^ because dB c {y € R" \ yj = «]m) for some j} and the
increments AX(/ /) have continuous distributions (by condition (1.3)). Therefore, we
obtain

Urn P(AX(JJk)) < uf \ j = 1,... , n) = P(AX(/,) < uf\ j = 1,... , n).

The other probabilities on the right-hand side of (2.3) all tend to zero because em > 0
and m is still fixed. Thus, letting first k -*• oo and then m —> oo, inequality (2.3)
yields

(2.4) liminf T^kU e [0, T]\ AX(Ij + t) < Uj, j = 1 , . . . , n]
r->oo

For the reverse direction, take sequences u]m) 4- "; as m -> oo, u]m) € Q and
v)m) - vj > 2em > 0, em € Q. Then

{AX(/ , + t) < uj} C {AX(JJk) + t)< v]m) or X ( L ? ' + 0 > en
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As above, (2.1) and (2.2) imply that

l i m s u p T~lk{t € [0, T] \ AX(Ij +t)<Uj, j = 1 n]
r->oo

) .

Letting first k —*• oo, then m —>• oo and reasoning as above we obtain

(2.5) limsup T-'M' € [0, T] | AX(/;, + t) < uJt j = 1, . . . , n]
r-»oo

The assertion follows from (2.4) and (2.5). •

3. Levy processes

We now consider the result for Levy processes. Every Levy process has, after a
suitable deterministic centering, a version with cadlag paths, and we will take such a
version X from now on. Furthermore, we assume that X(0) = 0. Note that for this X
we have X(/) = supo<,<A(/) |X(f)| —*• 0. Thus, Theorem 1 implies that almost every
sample path of X is an X-function if the distribution of X(t) is continuous for every
t > 0. What happens if (1.3) does not hold, that is, if P(X(t) = u) > 0 for some
t > 0 and some u € R? Then a classical result by Hartman and Wintner [5] states
that X must be a compound Poisson process with drift (see also [1, pages 30-31]).
The next theorem covers this case.

THEOREM 2. If X is a compound Poisson process with drift, then almost all its
paths are X-functions.

PROOF. If (1.1) holds for the function x and the process X, it is also valid for
(x (t) + pt),>0 and (X (f) + f}t)t>0. Thus, we can assume that the drift of X is zero, so
that X is piecewise constant between jumps distributed according to some d.f. F, and

(3.1) P(X(I) > 0) = e-
bW\

where b > 0 is the intensity of the underlying Poisson process. We have

P(AX(I) <u) = t

1 = 0
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where F*' is the /-fold convolution of F. Let D be the union of the sets of discontinuity
points of F*\ i e 1+. Then D is denumerable and it is the set of atoms of AX (I) for
any / .

Now we repeat the construction of Theorem 1 but take C to be the set of all points
co for which (2.1) and (2.2) hold for all n e N, all intervals I,IU-- ,h C [0, oo)
with rational endpoints and all u, U\ , . . . , « „ e Q U D. Then P(C) = 1 and it suffices
to consider paths corresponding to points in C.

For arbitrary 7, /„ and « , , . . . , un take sequences jjk\ L,f\ Rjk) as in Theo-
rem 1, but set

' ~ \uj if uj eQUD.

Then for all j ,k,m,t

{AX{jf + t)< Ujm)] C {AX( / , +t)< Uj or XXLJ*') > 0 o r X( /?f ' ) > 0}

so that we obtain, for all k, m,

(3.2) liminf T~lk{t e [0, T] \ AX(7, +t)<uJt j =1 n]

>P(AX(j}k))<u]m\j = 1 n)

) >0)-Y]P(X (Rf) >0).

Let it - • oo. Then, by (3.1), the two sums in (3.2) converge to 0. The first term on
the right-hand side is equal to n " - i P (AX (//*') < fi]m)) and

(3.3) P(AX(7/
W) < 5j"J) = e-"^"1' ^ L M . [ " F*'(g}w))

0 '"

F ' ^ S ^ ) , as k •+ oo
j

.=o

by bounded convergence, since A.(7/
<*)) —• >.(/,-) as k ->• oo, and the renewal function

S ^ o ^ * ' ( ' ) is fimte f° r all r > 0. Now let m -*• oo. If «; ^ Q U D, then
F*'(«]m)) -> F* ' (M ; ) because every F*1 is continuous in Uj. But if «y e Q U D, then
F*'(5,(m)) = F* ' (M ; ) for all / e Z+. Hence, the limit in (3.3) tends to

-F*'(UJ) = P(AX(Ij) <uj).
i=o i:
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We have proved that

(3.4) l i m i n f T ^ X i t 6 [ 0 , T] | A X ( / ; + t ) < u , J = l , . . . , n )
r»oo

For the other direction we follow the proof of Theorem 1 and obtain, for every k
and m,

(3.5) lira sup T~lX{t e [0, T] \ AX(Ij + 0 < «,, j = 1 , . . . , n)
T-*oo

< f\ P{AX(JJk)) < v)m)) + J2 P(X(Lfy) >0) + J2 P(*(flf) > 0).
;=i ; = i J=i

As k -*• oo, the two sums in (3.5) converge to zero by (3.1), while the product tends
to I~["=i P{&X(Ij) < Vjm)). By right-continuity, this latter product converges to
n"=i P(AX(Ij) < uj) as m - • oo, since u]m) I ujj = 1 n. D

We have shown that for every centered Levy process there is a version X for which
almost all paths are X-functions. But the centering function, say / , can be chosen to
be additive, that is, to satisfy the equation f (t + s) = f (t) + f (s) for all t, s > 0.
Now note that if a function x : [0, oo) -> K satisfies (1.1) for some process X, then
x +f satisfies (1.1) for the process X +f. Hence, for every (not necessarily centered)
Levy process there is a version with almost all paths being X-functions.

Finally, we remark that the Hartman-Wintner theorem on which Theorem 2 relies
is a straightforward consequence of the following interesting inequality.

THEOREM 3. Let U\, £/2» • • • be a sequence of i.i.d. symmetric random variables
satisfying P(Ui = 0) = 0. Then for every j e N,

p (i/, + ... + u2j = 0) < 2~2j (2j j(3.6)

and

(3.7) p(tf, + . . . + U2j+l = 0) < P(Ui + • • • + Uv = 0).

PROOF. Let p(a) = E(eiaU'). By Fourier inversion ([2, pages 144-145]),

(3.8) P(Ul + ---+Uy=0)

= lim (2T)-1 / p(a)2jda= lim (2T)-1 / [E(cosa U:)f
j da

T^oo J_T r-oo J_T
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<limsup(2r)- ' / E(cos2j

J-TT-*oo

= limsup(2r)-'£ ( / cos2j(aU{)da )
r-oo \J-T )

= limsup E [O-TUi)'1 I ' cos2; x dx] = 2~2j (2j \

The inequality in (3.8) follows from (£(cosai/,))2j < E(cos2J(aU{)), which is a
consequence of Jensen's inequality, and for the second-last equality we have used
the substitution x =• otU\, which is possible as P((/i = 0 ) = 0 . Finally, since
p(a) € [—1, 1] by symmetry, (3.7) follows from

fT CT

P(UX + ••• + U2j+1 = 0) = lim / p(a)2j+1 da < lim / p{a)v da

REMARK. Inequality (3.6) states that in the considered class of random walks the
probability P(U\ + • • • + Uij = 0) is maximal for the simple ±l-walk for which
P(U, = 1) = P{UX = -1) = 1/2.

Now assume that Y is a Levy process which is not a compound Poisson process
with drift. Let Y' be an independent copy of Y. Then X = Y — Y' is a symmetric Levy
process, and since P(Y(t) = a) < P(X(t) = 0) for all a € IR and t > 0, we have to
prove P (X (t) = 0) = 0. For arbitrary 8 > 0 let XJ be the process obtained from X by
deleting all jumps that are smaller than 8 in absolute value and set Xs

2 = X — X\. Then
X\ is a symmetric compound Poisson process of intensity vs, say, and lim^o vs = oo.
Let f*tl (^r*,) be the characteristic function of X\(t) (Xs

2(t)). By Fourier inversion,

(3.9) P(X(t) = 0) = lim (27T1 f tf ^0)+', 2(a) da
T->°o J_T •

fT
< lim (27)"' / \jr*(a)da

r-oo J_T '•'

= P(X\(t) =0) =
j=o

where the Uf are the jump sizes of X\, which are certain i.i.d. symmetric random
variables satisfying P(Uf = 0) = 0. The first inequality in (3.9) follows from
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Vo.iCa) > 0 and |Vo,2(a)l < 1 for all a e R and the second from the Lemma. But as
S I 0, we have vs —*• oo and thus the right-hand side of (3.9) tends to zero. Hence,
P(X(t) = 0) = 0.
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