ERGODIC PATH PROPERTIES OF PROCESSES WITH STATIONARY INCREMENTS

OFFER KELLA and WOLFGANG STADJE

(Received 14 July 1999; revised 7 January 2001)

Communicated by V. Stefanov

Abstract

For a real-valued ergodic process X with strictly stationary increments satisfying some measurability and continuity assumptions it is proved that the long-run 'average behaviour' of all its increments over finite intervals replicates the distribution of the corresponding increments of X in a strong sense. Moreover, every Lévy process has a version that possesses this ergodic path property.

2000 Mathematics subject classification: primary 60G17, 60G51, 60F15.

1. Introduction

Let $X=(X(t))_{t \geq 0}$ be a real-valued process with strictly stationary increments, that is, the distribution of $(X(s+t)-X(s))_{t \geq 0}$ is the same for every $s \geq 0$. All strictly stationary processes and all Lévy processes have this property. We assume that the underlying probability space is complete and that X is separable, measurable, and ergodic. For example, every separable centered Lévy process satisfies these conditions [3, pages 422 and 511-512]. We will show that under certain regularity conditions almost all sample paths are connected to the distribution of X in the following strong sense: Call a function $x:[0, \infty) \rightarrow \mathbb{R}$ an X-function if for every $n \in \mathbb{N}$, disjoint finite intervals $I_{1}, \ldots, I_{n} \subset[0, \infty)$ that are open from the left and closed from the right, and real numbers u_{1}, \ldots, u_{n} the following asymptotic relation holds:

$$
\begin{align*}
\lim _{T \rightarrow \infty} & T^{-1} \lambda\left\{t \in[0, T] \mid \Delta x\left(I_{j}+t\right) \leq u_{j} \text { for } j=1, \ldots, n\right\} \tag{1.1}\\
& =P\left(\Delta X\left(I_{j}\right) \leq u_{j} \text { for } j=1, \ldots, n\right),
\end{align*}
$$

(C) 2002 Australian Mathematical Society 1446-7887/2002 \$A2.00 +0.00
where λ denotes Lebesgue measure, $I+t=\{s+t \mid s \in I\}$ is the interval I shifted by t, and $\Delta x(I)=x(b)-x(a)$ is the increment of $x(\cdot)$ in $I=(a, b]$.

TheOrem 1. Assume that

$$
\begin{equation*}
\bar{X}(I)=\sup \left\{\left|\Delta X\left(I^{\prime}\right)\right| \mid I^{\prime} \subset I\right\} \xrightarrow{P} 0, \quad \text { as } \lambda(I) \rightarrow 0 \tag{1.2}
\end{equation*}
$$

and that

$$
\begin{equation*}
P(\Delta X(I)=u)=0 \text { for all intervals } I \subset[0, \infty) \text { and } u \in \mathbb{R} \tag{1.3}
\end{equation*}
$$

Then almost every sample path of X is an X-function.
This theorem is proved in Section 2. In Section 3, \dot{X} is taken to be an arbitrary Lévy process. In this case we show that there is always a version of X for which almost all sample paths are X-functions (even without the conditions (1.2) and (1.3)).

It is not difficult to prove that for any fixed $n \in \mathbb{N}$, any prespecified $u_{1}, \ldots, u_{n} \in \mathbb{N}$ and any intervals I_{1}, \ldots, I_{n} as above the limiting relation

$$
\begin{align*}
\lim _{T \rightarrow \infty} & T^{-1} \lambda\left\{t \in[0, T] \mid \Delta X\left(I_{j}+t\right) \leq u_{j} \text { for } j=1, \ldots, n\right\} \tag{1.4}\\
& =P\left(\Delta X\left(I_{j}\right) \leq u_{j} \text { for } j=1, \ldots, n\right)
\end{align*}
$$

holds almost surely; but the exceptional null set on which (1.4) is not valid depends on n, u_{1}, \ldots, u_{n} and I_{1}, \ldots, I_{n}. In order to show that there is a 'universal' null set on whose complement (1.4) holds for all n, u_{i} and I_{i}, we need that the increments of X are 'locally small' uniformly in probability (that is, assumption (1.2)) and pointwise convergence of the distribution function of the random vector $\left(\Delta X\left(J_{1}\right), \ldots, \Delta X\left(J_{n}\right)\right)$ to that of $\left(\Delta X\left(I_{1}\right), \ldots, \Delta X\left(I_{n}\right)\right)$, if the intervals J_{i} increase or decrease to the bounded intervals $I_{i}, i=1, \ldots, n$, which requires assumption (1.3).

For Lévy processes, there is always, after suitably centering, a version satisfying (1.2). Moreover, by a classical theorem due to Hartman and Wintner [5], $X(t)$ can have an atom for some $t>0$ only if X is a compound Poisson process with drift. Hence, (1.3) holds except for this special case. If X is compound Poisson with drift zero, the set of discontinuity points of the distribution function (d.f.) of $X(t)$ is the same for every $t>0$. Using this observation and the explicit form of the d.f. of $\Delta X(I)$ as a Poisson sum of convolutions, we will show in Section 3 that the assertion of Theorem 1 remains true for compound Poisson processes (also with nonzero drift) and thus for Lévy processes in general. We conclude the paper with a new short and elementary proof of the Hartman-Wintner theorem, which is seen to be an immediate consequence of a neat inequality, of independent interest, for sums of i.i.d. symmetric random variables.

An interesting consequence of our results is that there exist càdlàg functions $x:[0, \infty) \rightarrow \mathbb{R}$ for which

$$
\begin{gather*}
\lim _{T \rightarrow \infty} T^{-1} \lambda\left\{t \in[0, T] \mid \Delta x\left(I_{j}+t\right) \leq u_{j}, j=1, \ldots n\right\} \tag{1.5}\\
=\prod_{j=1}^{n} \lim _{T \rightarrow \infty} T^{-1} \lambda\left\{t \in[0, T] \mid \Delta x\left(I_{j}+t\right) \leq u_{j}\right\}
\end{gather*}
$$

for all $n \in \mathbb{N}$ and all $I_{1}, \ldots, I_{n}, u_{1}, \ldots, u_{n}$ as above, and these limits are strictly between 0 and 1 . Indeed, the set of these functions has probability 1 under any distribution on the space of càdlàg functions generated by some non-deterministic Lévy process. Constructing such a function seems to be quite difficult; we know no explicit example of a function with this property. Note that the limits on the right-hand side of (1.5) can be specified to be given by

$$
\lim _{T \rightarrow \infty} T^{-1} \lambda\{t \in[0, T] \mid \Delta x(I+t) \leq u\}=P(\Delta X(I) \leq u)=P(X(b-a) \leq u)
$$

for all $I=(a, b]$ and $u \in \mathbb{R}$, where X is an arbitrary Lévy process. By suitably choosing the underlying Lévy process we can also achieve various additional properties of $x(\cdot)$ besides (1.5), such as continuity, monotonicity, having only positive jumps, etc.

It is one of the fundamental ideas in probability theory that the average behaviour of a single realization of a stochastic process over a long time horizon should replicate the underlying distribution of the process. Property (1.1) is a strong version of this principle. For sample properties of Lévy processes see Fristedt [4] and Bertoin [1]. Recently, a sample path approach has been frequently used to analyze stochastic systems by studying a fixed 'typical' realization (see for example Stidham and ElTaha [7]). For the Poisson process, relation (1.1) and related questions were studied in [6].

2. Proof of Theorem 1

All intervals below are open from the left and closed from the right. Fix the intervals I, I_{1}, \ldots, I_{n} and the real numbers u, u_{1}, \ldots, u_{n}. Define the auxiliary processes

$$
Y_{t}=1_{\left(\Delta x\left(l_{j}+t\right) \leq u_{j}, j=1, \ldots, n\right\}}, \quad Z_{t}=1_{\mid \bar{X}(I+t) \leq u\}} .
$$

Obviously, Y_{t} and Z_{t} can be written in the form

$$
Y_{t}=f\left((X(s+t)-X(t))_{s \geq 0}\right), \quad Z_{t}=g\left((X(s+t)-X(t))_{s \geq 0}\right),
$$

so that the processes $\left(Y_{t}\right)_{t \geq 0}$ and $\left(Z_{t}\right)_{t \geq 0}$ are stationary and ergodic. They are also measurable and bounded. Thus, the ergodic theorem yields

$$
\begin{align*}
& T^{-1} \int_{0}^{T} Y_{t}(\omega) d t \xrightarrow{\text { a.s. }} E\left(Y_{0}\right)=P\left(\Delta X\left(I_{j}\right) \leq u_{j}, j=1, \ldots, n\right), \tag{2.1}\\
& T^{-1} \int_{0}^{T} Z_{t}(\omega) d t \xrightarrow{\text { a.s. }} E\left(Z_{0}\right)=P(\bar{X}(I) \leq u) \tag{2.2}
\end{align*}
$$

(see for example [8, pages 315-316]). The exceptional null sets on which convergence in (2.1) or in (2.2) does not hold depend on $n, I_{1}, \ldots, I_{n}, u_{1}, \ldots, u_{n}$ or on I, u, respectively. Taking the (denumerable) union of all these null sets over $n \in \mathbb{N}$, intervals $I, I_{1}, \ldots, I_{n} \subset[0, \infty)$ with rational endpoints and $u, u_{1}, \ldots, u_{n} \in \mathbb{Q}$ we get a set of probability 0 . On its complement C (a set of probability 1) relations (2.1) and (2.2) hold for all $n \in \mathbb{N}, u, u_{1}, \ldots, u_{n} \in \mathbb{Q}$ and $I, I_{1}, \ldots, I_{n} \subset[0, \infty)$ with rational endpoints. From now on we only consider sample paths corresponding to points in C.

Now let $I_{1}, \ldots, I_{n}, u_{1}, \ldots, u_{n}$ be arbitrary. Let $\left(u_{j}^{(m)}\right)_{m \in \mathbb{N}}, j=1, \ldots, n$, be sequences of rational numbers such that $u_{j}^{(m)} \uparrow u_{j}$, as $m \uparrow \infty$, and $u_{j}-u_{j}^{(m)} \geq 2 \varepsilon_{m}>0$, where ε_{m} is rational and $\varepsilon_{m} \rightarrow 0$. Furthermore, choose intervals $J_{j}^{(k)}, L_{j}^{(k)}, R_{j}^{(k)}$ with rational endpoints such that $J_{j}^{(k)} \subset I_{j}$ approximates I_{j} from inside and the $L_{j}^{(k)}\left(R_{j}^{(k)}\right)$ cover the left (right) endpoint of I_{j} and satisfy

$$
\begin{gathered}
I_{j} \subset J_{j}^{(k)} \cup L_{j}^{(k)} \cup R_{j}^{(k)}, \quad j=1, \ldots, n, \\
\lambda\left(L_{j}^{(k)}\right) \downarrow 0 \text { and } \lambda\left(R_{j}^{(k)}\right) \downarrow 0, \quad \text { as } k \uparrow \infty .
\end{gathered}
$$

Clearly, the following inclusion holds for every j, m, k and t :

$$
\begin{gathered}
\left\{\Delta X\left(J_{j}^{(k)}+t\right) \leq u_{j}^{(m)}\right\} \subset\left\{\Delta X\left(I_{j}+t\right) \leq u_{j} \text { or } \bar{X}\left(L_{j}^{(k)}+t\right) \geq\left(u_{j}-u_{j}^{(m)}\right) / 2\right. \\
\\
\text { or } \left.\bar{X}\left(R_{j}^{(k)}+t\right) \geq\left(u_{j}-u_{j}^{(m)}\right) / 2\right\} .
\end{gathered}
$$

Hence, for every sample path of X and for every $T>0$ we have

$$
\begin{aligned}
&\left\{t \in[0, T] \mid \Delta X\left(J_{j}^{(k)}+t\right) \leq u_{j}^{(m)}, j=1, \ldots, n\right\} \\
& \subset\left\{t \in[0, T] \mid \Delta X\left(I_{j}+t\right) \leq u_{j}, j=1, \ldots, n\right\} \\
& \cup \bigcup_{j=1}^{n}\left\{t \in[0, T] \mid \bar{X}\left(L_{j}^{(k)}+t\right) \geq\left(u_{j}-u_{j}^{(m)}\right) / 2, j=1, \ldots, n\right\} \\
& \cup \bigcup_{j=1}^{n}\left\{t \in[0, T] \mid \bar{X}\left(R_{j}^{(k)}+t\right) \geq\left(u_{j}-u_{j}^{(m)}\right) / 2, j=1, \ldots, n\right\} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \lambda\left\{t \in[0, T] \mid \Delta X\left(I_{j}+t\right) \leq u_{j}, j=1, \ldots, n\right\} \\
& \quad \geq \lambda\left\{t \in[0, T] \mid \Delta X\left(J_{j}^{(k)}+t\right) \leq u_{j}^{(m)}, j=1, \ldots, n\right\} \\
& \\
& \quad-\sum_{j=1}^{n} \lambda\left\{t \in[0, T] \mid \bar{X}\left(L_{j}^{(k)}+t\right)>\varepsilon_{m}\right\}-\sum_{j=1}^{n} \lambda\left\{t \in[0, T] \mid \bar{X}\left(R_{j}^{(k)}+t\right)>\varepsilon_{m}\right\} .
\end{aligned}
$$

From (2.1) and (2.2) we can now conclude that

$$
\begin{align*}
\liminf _{T \rightarrow \infty} & T^{-1} \lambda\left\{t \in[0, T] \mid \Delta X\left(I_{j}+t\right) \leq u_{j}, j=1, \ldots, n\right\} \tag{2.3}\\
\quad \geq & P\left(\Delta X\left(J_{j}^{(k)}\right) \leq u_{j}^{(m)}, j=1, \ldots, n\right)-\sum_{j=1}^{n} P\left(\bar{X}\left(L_{j}^{(k)}\right)>\varepsilon_{m}\right) \\
& -\sum_{j=1}^{n} P\left(\bar{X}\left(R_{j}^{(k)}\right)>\varepsilon_{m}\right)
\end{align*}
$$

Now let $k \rightarrow \infty$ in (2.3). Condition (1.2) clearly implies that X is stochastically continuous so that $\left(\Delta X\left(J_{1}^{(k)}\right), \ldots, \Delta X\left(J_{n}^{(k)}\right)\right) \xrightarrow{P}\left(\Delta X\left(I_{1}\right), \ldots, \Delta X\left(I_{n}\right)\right)$ with respect to the Euclidean metric. It follows that

$$
P\left(\left(\Delta X\left(J_{1}^{(k)}\right), \ldots, \Delta X\left(J_{n}^{(k)}\right)\right) \in B\right) \rightarrow P\left(\left(\Delta X\left(I_{1}\right), \ldots, \Delta X\left(I_{n}\right)\right) \in B\right)
$$

for all Borel sets in \mathbb{R}^{n} satisfying $P\left(\left(\Delta X\left(I_{1}\right), \ldots, \Delta X\left(I_{n}\right)\right) \in \partial B\right)=0$. We can take $B=\prod_{j=1}^{n}\left(-\infty, u_{j}^{(m)}\right]$ because $\partial B \subset\left\{y \in \mathbb{R}^{n} \mid y_{j}=u_{j}^{(m)}\right.$ for some $\left.j\right\}$ and the increments $\Delta X\left(I_{j}\right)$ have continuous distributions (by condition (1.3)). Therefore, we obtain

$$
\lim _{k \rightarrow \infty} P\left(\Delta X\left(J_{j}^{(k)}\right) \leq u_{j}^{(m)}, j=1, \ldots, n\right)=P\left(\Delta X\left(I_{j}\right) \leq u_{j}^{(m)}, j=1, \ldots, n\right)
$$

The other probabilities on the right-hand side of (2.3) all tend to zero because $\varepsilon_{m}>0$ and m is still fixed. Thus, letting first $k \rightarrow \infty$ and then $m \rightarrow \infty$, inequality (2.3) yields

$$
\begin{align*}
& \liminf _{T \rightarrow \infty} T^{-1} \lambda\left\{t \in[0, T] \mid \Delta X\left(I_{j}+t\right) \leq u_{j}, \quad j=1, \ldots, n\right\} \tag{2.4}\\
& \left.\quad \geq P\left(\Delta X\left(I_{j}\right)\right) \leq u_{j}, \quad j=1, \ldots, n\right)
\end{align*}
$$

For the reverse direction, take sequences $v_{j}^{(m)} \downarrow u_{j}$ as $m \rightarrow \infty, v_{j}^{(m)} \in \mathbb{Q}$ and $v_{j}^{(m)}-v_{j}>2 \varepsilon_{m}>0, \varepsilon_{m} \in \mathbb{Q}$. Then

$$
\begin{gathered}
\left\{\Delta X\left(I_{j}+t\right) \leq u_{j}\right\} \subset\left\{\Delta X\left(J_{j}^{(k)}+t\right) \leq v_{j}^{(m)} \text { or } \bar{X}\left(L_{j}^{(k)}+t\right)>\varepsilon_{m}\right. \\
\text { or } \left.\bar{X}\left(R_{j}^{(k)}+t\right)>\varepsilon_{m}\right\} .
\end{gathered}
$$

As above, (2.1) and (2.2) imply that

$$
\begin{aligned}
& \underset{T \rightarrow \infty}{\limsup } T^{-1} \lambda\left\{t \in[0, T] \mid \Delta X\left(I_{j}+t\right) \leq u_{j}, j=1, \ldots, n\right\} \\
& \quad \leq P\left(\Delta X\left(J_{j}^{(k)}\right) \leq v_{j}^{(m)}\right)+\sum_{j=1}^{n} P\left(\bar{X}\left(L_{j}^{(k)}\right)>\varepsilon_{m}\right)+\sum_{j=1}^{n} P\left(\bar{X}\left(R_{j}^{(k)}\right)>\varepsilon_{m}\right)
\end{aligned}
$$

Letting first $k \rightarrow \infty$, then $m \rightarrow \infty$ and reasoning as above we obtain

$$
\begin{align*}
& \underset{T \rightarrow \infty}{\limsup } T^{-1} \lambda\left\{t \in[0, T] \mid \Delta X\left(I_{j}+t\right) \leq u_{j}, j=1, \ldots, n\right\} \tag{2.5}\\
& \quad \leq P\left(\Delta X\left(I_{j}\right) \leq u_{j}, j=1, \ldots, n\right)
\end{align*}
$$

The assertion follows from (2.4) and (2.5).

3. Lévy processes

We now consider the result for Lévy processes. Every Lévy process has, after a suitable deterministic centering, a version with càdlàg paths, and we will take such a version X from now on. Furthermore, we assume that $X(0)=0$. Note that for this X we have $\bar{X}(I) \stackrel{D}{=} \sup _{0 \leq t \leq \lambda(t)}|X(t)| \xrightarrow{\text { a.s. }} 0$. Thus, Theorem 1 implies that almost every sample path of X is an X-function if the distribution of $X(t)$ is continuous for every $t>0$. What happens if (1.3) does not hold, that is, if $P(X(t)=u)>0$ for some $t>0$ and some $u \in \mathbb{R}$? Then a classical result by Hartman and Wintner [5] states that X must be a compound Poisson process with drift (see also [1, pages 30-31]). The next theorem covers this case.

THEOREM 2. If X is a compound Poisson process with drift, then almost all its paths are X-functions.

PROOF. If (1.1) holds for the function x and the process X, it is also valid for $(x(t)+\beta t)_{t \geq 0}$ and $(X(t)+\beta t)_{t \geq 0}$. Thus, we can assume that the drift of X is zero, so that X is piecewise constant between jumps distributed according to some d.f. F, and

$$
\begin{equation*}
P(\bar{X}(I)>0)=e^{-b \lambda(I)} \tag{3.1}
\end{equation*}
$$

where $b>0$ is the intensity of the underlying Poisson process. We have

$$
P(\Delta X(I) \leq u)=e^{-b \lambda(I)} \sum_{i=0}^{\infty} \frac{(b \lambda(I))^{i}}{i!} F^{* i}(u)
$$

where $F^{* i}$ is the i-fold convolution of F. Let D be the union of the sets of discontinuity points of $F^{* i}, i \in \mathbb{Z}_{+}$. Then D is denumerable and it is the set of atoms of $\Delta X(I)$ for any I.

Now we repeat the construction of Theorem 1 but take C to be the set of all points ω for which (2.1) and (2.2) hold for all $n \in \mathbb{N}$, all intervals $I, I_{1}, \ldots, I_{n} \subset[0, \infty)$ with rational endpoints and all $u, u_{1}, \ldots, u_{n} \in \mathbb{Q} \cup D$. Then $P(C)=1$ and it suffices to consider paths corresponding to points in C.

For arbitrary I_{1}, \ldots, I_{n} and u_{1}, \ldots, u_{n} take sequences $J_{j}^{(k)}, L_{j}^{(k)}, R_{j}^{(k)}$ as in Theorem 1, but set

$$
\tilde{u}_{j}^{(m)}= \begin{cases}u_{j}^{(m)} & \text { if } u_{j} \notin \mathbb{Q} \cup D \\ u_{j} & \text { if } u_{j} \in \mathbb{Q} \cup D\end{cases}
$$

Then for all j, k, m, t

$$
\left\{\Delta X\left(J_{j}^{(k)}+t\right) \leq \tilde{u}_{j}^{(m)}\right\} \subset\left\{\Delta X\left(I_{j}+t\right) \leq u_{j} \text { or } \bar{X}\left(L_{j}^{(k)}\right)>0 \text { or } \bar{X}\left(R_{j}^{(k)}\right)>0\right\}
$$

so that we obtain, for all k, m,

$$
\begin{align*}
\liminf _{T \rightarrow \infty} & T^{-1} \lambda\left\{t \in[0, T] \mid \Delta X\left(I_{j}+t\right) \leq u_{j}, j=1, \ldots, n\right\} \tag{3.2}\\
\geq & P\left(\Delta X\left(J_{j}^{(k)}\right) \leq \tilde{u}_{j}^{(m)}, j=1, \ldots, n\right) \\
& -\sum_{j=1}^{n} P\left(\bar{X}\left(L_{j}^{(k)}\right)>0\right)-\sum_{j=1}^{n} P\left(\bar{X}\left(R_{j}^{(k)}\right)>0\right)
\end{align*}
$$

Let $k \rightarrow \infty$. Then, by (3.1), the two sums in (3.2) converge to 0 . The first term on the right-hand side is equal to $\prod_{j=1}^{n} P\left(\Delta X\left(J_{j}^{(k)}\right) \leq \tilde{u}_{j}^{(m)}\right)$ and

$$
\begin{align*}
P\left(\Delta X\left(J_{j}^{(k)}\right) \leq \tilde{u}_{j}^{(m)}\right) & =e^{-b \lambda\left(J_{j}^{(k)}\right)} \sum_{i=0}^{\infty} \frac{\left[b \lambda\left(J_{j}^{(k)}\right)\right]^{i}}{i!} F^{* i}\left(\tilde{u}_{j}^{(m)}\right) \tag{3.3}\\
& \rightarrow e^{-b \lambda\left(I_{j}\right)} \sum_{i=0}^{\infty} \frac{\left[b \lambda\left(I_{j}\right)\right]^{i}}{i!} F^{* i}\left(\tilde{u}_{j}^{(m)}\right), \quad \text { as } k \rightarrow \infty
\end{align*}
$$

by bounded convergence, since $\lambda\left(J_{j}^{(k)}\right) \rightarrow \lambda\left(I_{j}\right)$ as $k \rightarrow \infty$, and the renewal function $\sum_{i=0}^{\infty} F^{* i}(t)$ is finite for all $t \geq 0$. Now let $m \rightarrow \infty$. If $u_{j} \notin \mathbb{Q} \cup D$, then $F^{* i}\left(\tilde{u}_{j}^{(m)}\right) \rightarrow F^{* i}\left(u_{j}\right)$ because every $F^{* i}$ is continuous in u_{j}. But if $u_{j} \in \mathbb{Q} \cup D$, then $F^{* i}\left(\tilde{u}_{j}^{(m)}\right)=F^{* i}\left(u_{j}\right)$ for all $i \in \mathbb{Z}_{+}$. Hence, the limit in (3.3) tends to

$$
e^{-b \lambda\left(I_{j}\right)} \sum_{i=0}^{\infty} \frac{\left[b \lambda\left(I_{j}\right)\right]^{i}}{i!} F^{* i}\left(u_{j}\right)=P\left(\Delta X\left(I_{j}\right) \leq u_{j}\right)
$$

We have proved that

$$
\begin{align*}
& \liminf _{T \rightarrow \infty} T^{-1} \lambda\left\{t \in[0, T] \mid \Delta X\left(I_{j}+t\right) \leq u_{j}, j=1, \ldots, n\right\} \tag{3.4}\\
& \quad \geq \prod_{j=1}^{n} P\left(\Delta X\left(I_{j}\right) \leq u_{j}\right)
\end{align*}
$$

For the other direction we follow the proof of Theorem 1 and obtain, for every k and m,

$$
\begin{align*}
& \underset{T \rightarrow \infty}{\limsup } T^{-1} \lambda\left\{t \in[0, T] \mid \Delta X\left(I_{j}+t\right) \leq u_{j}, j=1, \ldots, n\right\} \tag{3.5}\\
& \quad \leq \prod_{j=1}^{n} P\left(\Delta X\left(J_{j}^{(k)}\right) \leq v_{j}^{(m)}\right)+\sum_{j=1}^{n} P\left(\bar{X}\left(L_{j}^{(k)}\right)>0\right)+\sum_{j=1}^{n} P\left(\bar{X}\left(R_{j}^{(k)}\right)>0\right)
\end{align*}
$$

As $k \rightarrow \infty$, the two sums in (3.5) converge to zero by (3.1), while the product tends to $\prod_{j=1}^{n} P\left(\Delta X\left(I_{j}\right) \leq v_{j}^{(m)}\right)$. By right-continuity, this latter product converges to $\prod_{j=1}^{n} P\left(\Delta X\left(I_{j}\right) \leq u_{j}\right)$ as $m \rightarrow \infty$, since $v_{j}^{(m)} \downarrow u_{j}, j=1, \ldots, n$.

We have shown that for every centered Lévy process there is a version X for which almost all paths are X-functions. But the centering function, say f, can be chosen to be additive, that is, to satisfy the equation $f(t+s)=f(t)+f(s)$ for all $t, s \geq 0$. Now note that if a function $x:[0, \infty) \rightarrow \mathbb{R}$ satisfies (1.1) for some process X, then $x+f$ satisfies (1.1) for the process $X+f$. Hence, for every (not necessarily centered) Lévy process there is a version with almost all paths being X-functions.

Finally, we remark that the Hartman-Wintner theorem on which Theorem 2 relies is a straightforward consequence of the following interesting inequality.

THEOREM 3. Let U_{1}, U_{2}, \ldots be a sequence of i.i.d. symmetric random variables satisfying $P\left(U_{1}=0\right)=0$. Then for every $j \in \mathbb{N}$,

$$
\begin{equation*}
P\left(U_{1}+\cdots+U_{2 j}=0\right) \leq 2^{-2 j}\binom{2 j}{j} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(U_{1}+\cdots+U_{2 j+1}=0\right) \leq P\left(U_{1}+\cdots+U_{2 j}=0\right) \tag{3.7}
\end{equation*}
$$

Proof. Let $\rho(\alpha)=E\left(e^{i \alpha U_{1}}\right)$. By Fourier inversion ([2, pages 144-145]),

$$
\begin{align*}
& P\left(U_{1}+\cdots+U_{2 j}=0\right) \tag{3.8}\\
& \quad=\lim _{T \rightarrow \infty}(2 T)^{-1} \int_{-T}^{T} \rho(\alpha)^{2 j} d \alpha=\lim _{T \rightarrow \infty}(2 T)^{-1} \int_{-T}^{-T}\left[E\left(\cos \alpha U_{1}\right)\right]^{2 j} d \alpha
\end{align*}
$$

$$
\begin{aligned}
& \leq \limsup _{T \rightarrow \infty}(2 T)^{-1} \int_{-T}^{T} E\left(\cos ^{2 j} \alpha U_{1}\right) d \alpha \\
& =\limsup _{T \rightarrow \infty}(2 T)^{-1} E\left(\int_{-T}^{T} \cos ^{2 j}\left(\alpha U_{1}\right) d \alpha\right) \\
& =\limsup _{T \rightarrow \infty} E\left(\left(2 T U_{1}\right)^{-1} \int_{-T U_{1}}^{T U_{1}} \cos ^{2 j} x d x\right)=2^{-2 j}\binom{2 j}{j} .
\end{aligned}
$$

The inequality in (3.8) follows from $\left(E\left(\cos \alpha U_{1}\right)\right)^{2 j} \leq E\left(\cos ^{2 j}\left(\alpha U_{1}\right)\right)$, which is a consequence of Jensen's inequality, and for the second-last equality we have used the substitution $x=\alpha U_{1}$, which is possible as $P\left(U_{1}=0\right)=0$. Finally, since $\rho(\alpha) \in[-1,1]$ by symmetry, (3.7) follows from

$$
\begin{aligned}
P\left(U_{1}+\cdots+U_{2 j+1}=0\right) & =\lim _{T \rightarrow \infty} \int_{-T}^{T} \rho(\alpha)^{2 j+1} d \alpha \leq \lim _{T \rightarrow \infty} \int_{-T}^{T} \rho(\alpha)^{2 j} d \alpha \\
& =P\left(U_{1}+\cdots+U_{2 j}=0\right)
\end{aligned}
$$

REMARK. Inequality (3.6) states that in the considered class of random walks the probability $P\left(U_{1}+\cdots+U_{2 j}=0\right)$ is maximal for the simple ± 1-walk for which $P\left(U_{1}=1\right)=P\left(U_{1}=-1\right)=1 / 2$.

Now assume that Y is a Lévy process which is not a compound Poisson process with drift. Let Y^{\prime} be an independent copy of Y. Then $X=Y-Y^{\prime}$ is a symmetric Lévy process, and since $P(Y(t)=a)^{2} \leq P(X(t)=0)$ for all $a \in \mathbb{R}$ and $t>0$, we have to prove $P(X(t)=0)=0$. For arbitrary $\delta>0$ let X_{1}^{δ} be the process obtained from X by deleting all jumps that are smaller than δ in absolute value and set $X_{2}^{\delta}=X-X_{1}^{\delta}$. Then X_{1}^{δ} is a symmetric compound Poisson process of intensity ν_{δ}, say, and $\lim _{\delta \downarrow 0} \nu_{\delta}=\infty$. Let $\psi_{t, 1}^{\delta}\left(\psi_{t, 1}^{\delta}\right)$ be the characteristic function of $X_{1}^{\delta}(t)\left(X_{2}^{\delta}(t)\right)$. By Fourier inversion,

$$
\begin{align*}
P(X(t)=0) & =\lim _{T \rightarrow \infty}(2 T)^{-1} \int_{-T}^{T} \psi_{t, 1}^{\delta}(\alpha) \psi_{t, 2}^{\delta}(\alpha) d \alpha \tag{3.9}\\
& \leq \lim _{T \rightarrow \infty}(2 T)^{-1} \int_{-T}^{T} \psi_{t, 1}^{\delta}(\alpha) d \alpha \\
& =P\left(X_{1}^{\delta}(t)=0\right)=\sum_{j=0}^{\infty} e^{-v_{s} t} \frac{\left[v_{\delta} t\right]^{j}}{j!} P\left(U_{1}^{\delta}+\cdots+U_{j}^{\delta}=0\right) \\
& \leq e^{-v_{s} t} \sum_{j=0}^{\infty}\binom{2 j}{j} 2^{-2 j}\left(\frac{\left[v_{\delta} t\right]^{2 j}}{(2 j)!}+\frac{\left[v_{\delta} t\right]^{2 j+1}}{(2 j+1)!}\right)
\end{align*}
$$

where the U_{i}^{δ} are the jump sizes of X_{1}^{δ}, which are certain i.i.d. symmetric random variables satisfying $P\left(U_{i}^{\delta}=0\right)=0$. The first inequality in (3.9) follows from
$\psi_{t, 1}(\alpha) \geq 0$ and $\left|\psi_{t, 2}(\alpha)\right| \leq 1$ for all $\alpha \in \mathbb{R}$ and the second from the Lemma. But as $\delta \downarrow 0$, we have $\nu_{\delta} \rightarrow \infty$ and thus the right-hand side of (3.9) tends to zero. Hence, $P(X(t)=0)=0$.

References

[1] J. Bertoin, Lévy processes (Cambridge University Press, Cambridge, 1996).
[2] K. L. Chung, A course in probability theory (Harcourt, Brace \& World, New York, 1968).
[3] J. L. Doob, Stochastic processes (Wiley, New York, 1953).
[4] B. Fristedt, 'Sample functions of stochastic processes with stationary independent increments', in: Advances in probability and related topics, Vol. 3 (eds. P. Ney and S. Port) (Dekker, New York, 1974) pp. 241-396.
[5] P. Hartman and A. Wintner, 'On the infinitesimal generator of integral convolutions', Amer. J. Math. 64 (1942), 273-298.
[6] W. Stadje, 'Two ergodic sample-path properties of the Poisson process', J. Theor. Probab. 11 (1998), 197-208.
[7] S. Stidham and M. El-Taha, 'Sample-path techniques in queueing theory', in: Advances in queueing (ed. J. W. Dshalalow) (CRC Press, Boca Raton, 1998) pp. 119-166.
[8] D. W. Stroock, Probability theory: an analytic view (Cambridge University Press, Cambridge, 1992).

Department of Statistics
The Hebrew University of Jerusalem
Mount Scopus, Jerusalem 91905
Israel
e-mail: offer.kella@huji.ac.il

Department of Mathematics
and Computer Science
University of Osnabrück
49069 Osnabrück
Germany
e-mail: wolfgang@ mathematik.uni-osnabrueck.de

