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A note on determining the number of cues used in judgment
analysis studies: The issue of type II error

Jason W. Beckstead∗
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Abstract

Many judgment analysis studies employ multiple regression procedures to estimate the importance of cues. Some
studies test the significance of regression coefficients in order to decide whether or not specific cues are attended to by
the judge or decision maker. This practice is dubious because it ignores type II error. The purposes of this note are (1) to
draw attention to this issue, specifically as it appears in studies of self-insight, (2) to illustrate the problem with examples
from the judgment literature, and (3) to provide a simple method for calculating post-hoc power in regression analyses
in order to facilitate the reporting of type II errors when regression models are used.
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1 Introduction
For decades judgment analysts have successfully used
multiple regression to model the organizing cognitive
principles underlying many types of judgments in a vari-
ety of contexts (see Brehmer & Brehmer, 1988; Cooksey,
1996; Dhami, et al., 2004, for reviews). Most often these
models depict the individual judge or decision maker as
combining multiple differentially weighted pieces of in-
formation (cues) in a compensatory manner to arrive at
a judgment. Further, these analyses portray those who
have acquired expertise on a judgment task as applying
their judgment model or “policy” with regular, although
less than perfect, consistency. The ability of linear regres-
sion models to accurately reproduce such expert judg-
ments under various conditions has been discussed in de-
tail (e.g., Dawes, 1979; Dawes & Corrigan, 1974; Ein-
horn & Hogarth, 1975). If one accepts the proposition
that people’s judgments can be modeled as though they
are multiple regression equations, questions arise such
as: 1) How many of the available cues does the individ-
ual use? and 2) How should the number of cues used be
determined?

Too many researchers blindly apply statistical signifi-
cance tests to inform them — in a kind of deterministic
manner — whether judges did or did not attend to spe-
cific cues. If the t-test calculated on a cue’s weight is
significant, then the cue is counted as being attended to
by the judge. Relying on p values in this way is a prob-
lem because these values are affected by the number of
cues and number of cases presented to the judge during
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the task and by how well the overall regression equation
fits the total set of responses.

This issue is discussed in this note which is organized
as follows: First, examples from the judgment litera-
ture are reviewed to illustrate the existence of the prob-
lem. Second, notation commonly used by judgment an-
alysts when describing regression procedures is intro-
duced. Third, using this notation, a method for calcu-
lating the post-hoc power of t-tests on regression coeffi-
cients based on the noncentral t distribution is described.
Fourth, this method is applied to estimate the number
of cases necessary for statistical significance in order
to illustrate how the investigator’s conclusions about the
number of cues attended to in a judgment task should
be informed by considerations of type II error. Finally,
an SPSS program for performing the calculations is de-
scribed and provided in the Appendix.

2 Some examples in the judgment
literature

Although it is reasonable to conclude that a “significant”
cue is important to the judge and reliably used as he or she
makes judgments, the converse does not follow. When a
cue’s weight (regression coefficient, standardized regres-
sion coefficient, or squared semipartial correlation) is not
significant, it does not necessarily mean that the cue is
unimportant; there may simply be insufficient statistical
power to produce a significant test result. Determining
the number of cues to which an individual attends is an
important issue from both practical and theoretical view-
points. In a practical sense, informing poorly performing
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judges that they should attend to more (or different) cues
than they apparently do can improve their accuracy (see
Balzer, et al., 1989, for review of cognitive feedback).
Theories of cognitive functioning have long considered
determining the amount of information we process to be
a relevant question (e.g., Gigerenzer & Goldstein, 1996;
Hammond, 1966; Miller 1956).

In the typical judgment analysis the problem of type
II error is overlooked. I know of no studies in the judg-
ment analysis literature that report the power of the sig-
nificance tests on cue weights when these tests are relied
upon to determine the number of cues being used by a
judge. While an exhaustive review of the empirical liter-
ature is beyond the scope of this note, a few examples are
presented to illustrate the problem.

Phelps and Shanteau’s (1978) purportedly determined
the number of cues used by expert livestock judges in
making decisions using two different experimental (“con-
trolled” and “naturalistic”) designs. The same seven live-
stock judges rated the breeding quality of gilts (female
breeding pigs) in two completely within-subject experi-
ments. The controlled design used a partial factorial de-
sign in which each judge made 128 judgments of gilts
described on 11 orthogonal cues. The naturalistic design
used eight photographs of gilts. In this experiment the
judges first rated the breeding quality of the gilt in each
photo and then rated each photo on the same 11 cues used
in controlled design. This procedure was repeated, result-
ing in a total of 16 judgments per judge. The authors then
used significance tests to determine whether specific cues
were being used by each judge in the two experiments.
An important finding was that the judges used far more
cues (mean = 10.1) in the controlled design than they did
in the naturalistic design (mean = 0.9). The relevant data
are summarized in Table 1. Using the F statistics reported
in their Tables 1 and 2 to calculate estimates of effect
sizes (η2) reveals some paradoxical results; many of the
cues showed stronger relationships to judgments in the
naturalistic design. Because of the lower statistical power
in the naturalistic design (the controlled design presented
128 cases whereas the naturalistic design presented only
16) fewer cues were counted as significant and it was con-
cluded that less information was being used by all judges
under the naturalistic design.

When comparing the results of the two experiments the
authors attributed the difference in the amount of infor-
mation used by the experts to the stimulus configuration,
“...the source of the discrepancy seems to be in the inter-
correlations among the characteristics and not in the sta-
tistical analysis” (Phelps & Shanteau, 1978, p.218). Al-
though Phelps and Shanteau pointed out that the F statis-
tics they report could easily be expressed as estimates of
effect size they did not do so. If they had, they may have
come to a different conclusion about the influences of nat-

uralistic and controlled cue configurations in their judg-
ment tasks.

One area of research particularly sensitive to the prob-
lem at hand is the study of self-insight into decisions. The
assessment of self-insight in social judgment studies has
traditionally compared statistical weights (derived via re-
gression equations) with subjective weights. A widely ac-
cepted finding is that people have relatively poor insight
into their judgment policies (see Brehmer & Brehmer,
1988; Harries, et al., 2000; Slovic & Lichtenstein, 1971,
for reviews). In most studies assessing insight, judges are
required to produce subjective weights (e.g., distributing
100 points among the cues). “It was the comparison of
statistical and subjective weights that produced the great-
est evidence for the general lack of self-insight” (Reilly,
1996, p. 214). Another robust finding from this literature
is that people report using more cues than are revealed by
regression models. “A cue is considered used if its stan-
dardized regression coefficient is significant” (Harries, et
al., 2000, p. 461).

Two influential studies on insight by Reilly and Do-
herty (1989, 1992) asked student judges to recognize their
judgment policies among those from several other judges.
In the first study seven of eleven judges were able to
identify their own policies. In contrasting this finding to
previous studies the authors noted “These data reflect an
astonishing degree of insight” (Reilly & Doherty, 1989,
p. 125). In the second study the number of cues and the
stimulus configuration were manipulated. Overall, 35 of
77 judges were able to identify their own policies. The
authors reconciled this encouraging finding with the pre-
vailing literature on methodologic grounds, arguing that
the lack of insight shown in previous studies might be
related to people’s inability to articulate their policies.
“There is the distinct possibility that while people have
reasonable self-insight on judgment tasks, they do not
know how to express that insight. Or pointing the fin-
ger the other way round, while people do have insight we
do not know how to measure it” (1992, p. 305).

In both these studies, when judges were presented with
policies, each judge’s set of cue weights (squared semi-
partial correlations in this case) was rescaled to sum to
100, and importantly, cues which did not account for sig-
nificant (p < .01) variance were represented as zeros.
The authors noted the majority of judges (in both studies)
indicated that they had relied on the presence or absence
of zeros as part of the search strategy used to recognize
their own policies. The use of significance tests to assign
specific cues a rescaled value of zero in these studies is
problematic for two reasons. First, the power of a signif-
icance test on a squared semipartial correlation in multi-
ple regression is affected by the value of the multiple R2.
As R2 increases, smaller weights are more likely to be
significant. Second, the power of these significance tests
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Table 1: Summary of results from Phelps and Shanteau (1978) with addition of effect size estimates.

No. of significant cues Median η2 No. cues with
larger η2 in
naturalisticJudge Controlled Naturalistic Controlled Naturalistic

1 10 2 0.205 0.365 5
2 9 0 0.321 0.310 7
3 10 0 0.158 0.024 3
4 9 3 0.264 0.333 8
5 11 1 0.177 0.200 5
6 11 0 0.376 0.167 2
7 11 0 0.162 0.184 5

is affected by the number of predictors in the regression
equation. The net result was that the criterion used to as-
sign zero to a specific cue was not constant across judges.
Only when all judges are presented with the same number
of cues and all have equal values of R2 for their resultant
policy equations could the criterion be consistently ap-
plied.

To illustrate, Reilly and Doherty (1989) presented 160
cases containing 19 cues to each judge. Consider two
judges with different values of R2 based on 18 of the
cues, say .90 and .50. The minimum detectable effect
(i.e., smallest weight that the 19th cue could take and still
be significant) for the first judge is .008 but .039 for the
second judge. The same problem exists in the 1992 study
that used 100 cases and is compounded by the fact that
the authors manipulated the number of cues presented to
the judges; half the sample rated cases described by six
cues and the other half rated cases described by twelve
cues. In the recognition portion of both studies the useful
pattern of zeros in the cue profiles was an artifact intro-
duced arbitrarily by the use of significance tests. Had the
authors used p < .05 rather than p < .01 to assign zeros,
their conclusions about insight might have been astonish-
ingly different.

Harries et al. (2000, Study 1), examining the prescrip-
tion decisions of a sample of 32 physicians, replicated
the finding that people are able to select (recognize) their
policies among those from several others. This study fol-
lowed up on the participants in a decision making task
(Evans, et al., 1995) in which 100 cases constructed from
13 cues were judged and regression analysis was used
to derive decision policies. Judges also provided sub-
jective cue weights, first indicating the direction (sign)
of influence, then rating how much (0–10 scale) the cue
had bearing on their decisions. When comparing tacit
to stated policies (i.e., regression weights to subjective
weights) Harries et al. (2000) described a “triangular pat-
tern of self-insight”: a) cues that had significant weights

were the ones that the judge indicated he or she used, b)
where the judge indicated that a cue was not important it
did not have a significant weight, and c) there were cues
that the judge indicated were important but which did not
have significant weights. The authors’ choice of p value
for determining whether a cue was attended to in the tacit
policies had influence on all three sides of this triangular
pattern.

Approximately 10 months following the decision-
making task, participants were presented with sets of de-
cision policies in the form of bar charts rather than tables
of numbers. Cues with statistically significant weights
were presented as darker bars. With only four cues hav-
ing significant effects on decisions (Harries et al., 2000,
p. 457), it is possible that physicians used the presence or
absence of lighter bars in the same way that Reilly and
Doherty’s students made use of zeros in their recogni-
tion strategies. Had more cues been classified and pre-
sented as significant, the policy recognition task might
have proved more difficult.

Other examples exist in the applied medical judgment
literature. Gillis et al. (1981) relied extensively on p val-
ues of beta weights for describing the judgment poli-
cies of 26 psychiatrists making decisions to prescribe
haloperidol based on 8 symptoms (see their Table 4).
Averaged across judges, the number of cues used was
2.4, 1.9, or 1.0 depending on the p value employed (.05,
.01, or .001, respectively). Had the investigators chosen
to compare the number of cues used with self-reported
usage, which of the three p values ought they have re-
lied upon? Had the investigators rescaled and presented
policies to participants for recognition (via Reilly & Do-
herty), their choice of p value could have affected the dif-
ficulty of the recognition task.

More recently, in a judgment analysis of 20 prescribing
decisions made by 40 physicians and four medical guide-
line experts, Smith et al. (2003) reported “The number of
significant cues . . . varied between doctors, ranging from
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0 to 5” (p. 57), and among the experts “The mean num-
ber of significant cues was 1.25” (p. 58). It is noteworthy
that this study presented doctors with a relatively small
number of cases thus leaving open the meaning of “sig-
nificant.” Had Smith et al. presented more than 20 cases,
they may have concluded (based on p values) that doctors
and guideline experts attended to more information when
making prescribing decisions.

Other models of judgment, known as “fast and frugal
heuristics” have recently been proposed as alternatives to
regression models (see Gigerenzer, 2004; Gigerenzer &
Kurzenhäuser, 2005; Gigerenzer, et al., 1999). A hall-
mark of fast and frugal models is that they are purported
to rely on far fewer cues than do judgment models de-
scribed by regression procedures. When comparing these
classes of models, the number of cues the judge uses is
one way of differentiating the psychological plausibility
of these models (see Gigerenzer, 2004). Studies compar-
ing regression models with fast and frugal models have
implied that significance testing is the method of deter-
mining the number of cues used despite the fact that the
developers of these methods (e.g., Stewart, 1988) made
no such claim and currently advise against it (Stewart,
personal communication, July 2, 2007).

In a study comparing regression with fast and frugal
heuristics, Dhami and Harries (2001) fitted both types of
models to 100 decisions made by medical practitioners.
They report that number of cues attended to was signif-
icantly greater when modeled by regression than by the
matching heuristic. According to the regression models
the average number of cues used was 3.13 and the average
for the fast and frugal models was 1.22. “In the regres-
sion model a cue was classified as being used if its Wald
statistic was significant (p < .05) . . . ” (Dhami & Harries,
2001, p. 19). In the heuristic model, the number of cues
used was determined by the percentage of cases correctly
predicted by the model; significance tests were not used.
At issue is not the fact that different criteria were used to
count the cues used under the two types of models (al-
though this is a problem when evaluating their results),
but rather, that the authors relied on a significance test
known for some time to be dubious1, and their choice of
p value for counting cues may have biased their data to
favor the psychological plausibility of the fast and frugal
model. Had they used p < .01 rather than p < .05, the
average number of cues used according to the regression
procedure would presumably have been lower, and per-
haps not different than the average found for the matching
heuristic.

In the last few paragraphs, examples from the literature

1Hauck and Donner (1977) found that the Wald test behaves in an
aberrant manner. Jennings (1986) has also questioned the adequacy of
the Wald test for making statistical inferences. Hosmer and Lemeshow
(2000) recommend using the likelihood-ratio test instead.

have been presented that highlight the problems associ-
ated with using significance tests to determine the number
of cues used in judgment tasks. Tests of significance on
regression coefficients or R2 are really not very enlight-
ening for distinguishing the “best” judgment model from
among a set of competing models. The true test of which
model (among a set of contenders) is the best is the abil-
ity of the equation to predict the judgments made in some
future sample of cases, the data from which were not used
to estimate the regression equation. The remaining sec-
tions of this note formally present the regression model
as used in judgment analysis and discuss a method for
assessing the power of significance tests so as to provide
more information to judgment analysts who use them.2

3 Notation
Following Cooksey (1996), let the k cues be denoted by
subscripted X’s (e.g., X1 to Xk). In a given judgment
analysis a series of m profiles or cases is constructed
where each case is comprised of k cues. The judge or
subject makes m responses Ys to these cases. The re-
sulting multiple regression equation representing the sub-
ject’s judgment policy is of the general form

Ys = b0 + b1X1 + b2X2 + ... + bkXk + e (1)

where b0 represents the regression constant and the re-
maining bi represent regression coefficients for each cue
where each coefficient indicates the amount by which the
prediction of Ys would change if its associated cue value
changed by one unit while holding all other cue values
constant, and e represents residual or unmodeled influ-
ences.

Tests of significance may be employed to assess the
null hypothesis that the value of bi in the population is
zero, thus H0: bi = 0 against the alternative H1: bi 6=
0. The ratio bi/SEbi is distributed as a t statistic with
degrees of freedom (df ) = m - k - 1. The SEbi is found
as

SEbi =
sdY s

sdXi

√
1−R2

Y s

m− k − 1
× 1

R2
Xi

(2)

where sdY s and sdXi are, respectively, the standard de-
viations for the judgments and for the ith cue’s values;
R2

Y s is the squared multiple correlation for the judgment
equation; and R2

Xi is the squared multiple correlation

2The utility of statistical significance and hypothesis testing as a
general approach has been questioned by researchers in the social sci-
ences (e.g., Armstrong, 2007; Nickerson, 2000; Rozeboom, 1960). I
believe that many of us are likely to continue to rely on this approach
for some time. It is therefore important that we fully understand the
assumptions, mechanics, and limitations of this approach.
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from a regression analysis predicting the ith cue’s values
from the values of the remaining k − 1 cues. In stan-
dard multiple regression it can be shown that the signif-
icance test of bi (t = bi/SEbi) is equivalent to testing
significance of the standardized regression coefficient βi

and the squared semipartial correlation associated with
Xi (see Pedhazur, 1997). This is fortunate because most
commercially available statistics packages routinely print
values for SEbi but not for SEβi.3

4 Post-hoc power analysis on t-test
of regression coefficients

Having analyzed data from a judgment analysis using
multiple regression it is rather simple to calculate the sta-
tistical power associated with the t-test of each regression
coefficient. All that is needed from the analysis is the ob-
served value of t, its df, and the a priori specified value
of α. To obtain the power of the t-test that H0: bi = 0 for
α = .05, one may employ the noncentral distribution of
the t statistic (see Winer et al., 1991, pp. 863–865), here
denoted t′, which is actually a family of distributions de-
fined by df and a noncentrality parameter δ, hence t′(df ;
δ). In the present context δ = bi / SEbi. The power of
the t-test on the regression coefficient may then be deter-
mined as

Prob(t′) > tdf, 1−α/2|δ = bi/SEbi) =
1− Prob(type II error) (3)

Thus the probability that the noncentral t′ will be greater
than the critical value of t, given the observed value of
t = bi / SEbi, is equal to the power of the test that H0:
bi = 0 for α = .05. For example, consider the following
result from an illustrative judgment analysis involving k
= 6 cues and m = 30 cases provided by Cooksey (1996,
p.175). The unstandardized regression coefficient for a
particular cue is b = 0.267, (β = .295) its standard error
is 0.146, thus t = 0.267/0.146 = 1.829. The critical value
for t with df = 30 - 6 - 1 = 23, and α = .05 for a two-
tailed test is 2.069; consequently the null hypothesis is
not rejected and it might be concluded that this cue is
unimportant to the judge. Using the information from this
significance test and the noncentral distribution of t′(df =
23; δ = 1.829) we find that the probability of type II error
= .582, and thus the power to reject the null is only .418.
To claim that this cue is “unimportant to the judge,” or
“is not being attended to by the judge” does not seem
justifiable in light of the rather high probability of type II
error.

3The method presented here is also directly applicable to standard-
ized regression coefficients when their corresponding standard errors
are available.

5 Estimating the number of cases
necessary for significant t-test of
regression coefficients

Faced with such a nonsignificant result, as in the example
presented above, the judgment analyst may wish to know
the extent to which this outcome was related to the study
design. In particular, how was the nonsignificant t-test of
the cue weight affected by his or her decision to present
m cases to the judge instead of some larger number m∗?
To address this question we must first clarify the types of
the stimuli used in judgment studies.

Brunswik (1955) argued for preserving the substantive
properties (content) of the environment to which the in-
vestigator wishes to generalize in the stimuli presented
during the experimental task. Hammond (1966), in at-
tempting to overcome the difficulties inherent in such
representative designs, distinguished between “substan-
tive” and “formal” sampling of stimuli. Formal stimulus
sampling concerns the relationships among environmen-
tal stimuli (with content ignored). The following discus-
sion is limited to studies employing formal stimulus sam-
pling. When taking the formal approach to stimulus sam-
pling, the investigator’s focus is on maintaining the statis-
tical characteristics of the task environment (e.g., k, sdXi

and R2
Xi) in the sample of stimuli presented to the par-

ticipant. These characteristics of the environment may be
summarized as a covariance matrix, Σ. If the investigator
obtains a sample of m stimuli from the environment, the
covariance matrix Sm, may be computed from the sam-
ple and compared with Σ. The basic assumption of for-
mal stimulus sampling may then be stated as Sm ≈ Σ.
Whether probability or nonprobability sampling is used,
it is possible for the investigator to construct an alterna-
tive set of m∗ cases such that Sm* = Sm. Under the condi-
tion that Sm* = Sm ≈ Σ, it is possible to estimate SEbi*,
the standard error of the regression coefficient based on
the larger sample of cases m∗. Inspection of Eq. (2) re-
veals that SEbi becomes smaller as the number of cases
m becomes larger. Holding all other terms in Eq. (2)
constant, SEbi* may be found as

SEb∗i =
SEbi√
m∗−k−1
m−k−1

(4)

Substituting SEbi* in place of SEbi when calculating
t-test on bi allows us to estimate the impact of increasing
m to m∗ on type I error in the same judgment analysis.
Making the same substitution in Eq. (3) allows us to esti-
mate the impact of this change on type II error and power.

Stewart (1988) has discussed the relationships among
k, R2

Xi, and m and recommends m = 50 as a minimum
for reliable estimates of cue weights when k ranges from
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4 — 10 and R2
Xi = 0. He points out that as the intercor-

relations among the cues increases the number of cases
will need to be increased in order to maintain reason-
ably small values of SEbi. Of course the investigator’s
choice of m should also influenced by his or her sense
of subject burden. Stewart notes from empirical evidence
that most judges can deal with making between “40 to
75 judgments in an hour, but the number varies with the
judge and the task” (Stewart, 1988, p.46). In discussing
the design of judgment analysis studies Cooksey (1996)
has suggested that the optimal number of cases may be
closer to 80 or 90. Reilly and Doherty (1992) reported
the average time for 77 judges to complete 100 12-cue
cases was 1.25 hours. In a recent study by Beckstead
and Stamp (2007) 15 judges took on average 32 minutes
(range 20–47) to respond to 80 cases constructed from 8
cues.

For the example given in the previous section, if the in-
vestigator had used m∗ = 40, rather than m = 30, Eq. (4)
indicates that SEbi* would have been 0.122 and the re-
sulting value for the t-test would have been 2.191 with p =
.036. The point here is that had the investigator presented
10 more cases (sampled from the same population), he or
she might have come to a different conclusion about the
number of cues attended to by this judge.

6 An SPSS program for calculat-
ing post-hoc power in regression
analysis

The calculations for determining post-hoc power for tests
of regression coefficients as used in judgment analysis
studies and estimating SEbi* are straightforward and
based on statistical theory, however detailed tables of
noncentral t distributions are hard to come by. The author
has written an SPSS program for performing these calcu-
lations that is provided in the Appendix. To illustrate the
program, consider another cue taken from the same ex-
ample found in Cooksey (1996, p.175) where b = -0.423,
SEb = 0.386, and k = 6 for m = 30. Inserting these values
into the program and specifying that the number of cases
increase to 90 by increments of 10, produces the result
shown in Table 2.

As m∗ increases, the estimated values of SEb∗ de-
crease and the values of the t-statistic increase. Accord-
ing to these estimates, the t-test on this cue would have
been significant had approximately 85 cases been used in
the judgment task. The program can be “rerun” specify-
ing a smaller increment in order to refine this estimate.
The results provided by such an analysis could also be
very useful in the planning of subsequent judgment stud-
ies.

Table 2: Illustration of the influence of the number of
cases m* on t-tests of regression coefficient

m∗ SEb∗ t-test p-value

40 0.322 1.313 .198
50 0.282 1.498 .141
60 0.254 1.664 .102
70 0.233 1.814 .074
80 0.217 1.952 .055
90 0.203 2.082 .040

Note: The regression coefficient b = -0.423 and SEb
= 0.386 for m = 30. The t-test of this coefficient
was t = -1.096, p = .284; post-hoc power of the t-
test is given by the Eq. (3) as .182. Due to negative
sign of regression coefficient, resulting t-test values
are negative; the sign has been omitted for clarity of
presentation.

7 Summary and recommendations
In this note the issue of type II error has been raised in
the context of determining whether or not a cue is impor-
tant to a judge in judgment analysis studies. Some of the
potential pitfalls of relying on significance tests to deter-
mine cue utilization have been pointed out and a simple
method for calculating post-hoc power of such tests has
been presented. A short computer program has been pro-
vided to facilitate these analyses and encourage the calcu-
lation (and reporting) of statistical power when judgment
analysts rely on significance tests to inform them as to the
number of cues attended to in judgment tasks.

As a tool for understanding the individual’s cognitive
functioning, regression analysis has proved to be quite
useful to judgment researchers for over 40 years. In this
role I believe that its true value lies in its descriptive, not
its inferential, facility. Like any good tool, if we are to
continue our reliance upon it we must insure that it is in
proper working order and not misuse it.

There are alternative models of judgment being advo-
cated (e.g., probabilistic models proposed by Gigerenzer
and colleagues) that do not fall prey to the problems as-
sociated with regression analysis. However, as judgment
researchers develop, test, and apply these models, ques-
tions about the amount of information (i.e., the number of
cues) individuals use when forming judgments and mak-
ing decisions are bound to arise. The strongest evidence
for the veracity of any judgment model is its ability to
predict the outcomes of future decisions.

The practice of post-hoc power calculations as an aid
in the interpretation of nonsignificant experimental re-
sults is not without its critics (e.g., Hoenig & Heisey,
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2001; Nakagawa & Foster, 2004). Hypothesis testing is
easily misunderstood but when applied with good judg-
ment it can be an effective aid to the interpretation of
experimental data (Nickerson, 2000). Higher observed
power does not imply stronger evidence for a null hy-
pothesis that is not rejected (see Hoenig & Heisey, 2001
for discussion of the power approach paradox). Some
researchers have argued for abandoning the use hypoth-
esis testing altogether and relying instead on the con-
fidence interval estimation approach (Armstrong, 2007;
Rozeboom, 1960). I tend to agree with Gigerenzer and
colleagues who put it succinctly, “As long as decisions
based on conventional levels of significance are given
top priority . . . theoretical conclusions based on signifi-
cance or nonsignificance remain unsatisfactory without
knowledge about power” (Sedlmeier & Gigerenzer, 1989,
p. 315).
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Appendix
The following is an SPSS program to calculate post-hoc power of t-test on regression coefficients and to estimate
sample size needed for significance of such tests. After typing the commands into a syntax window and supplying
information specific to your analysis, simply run the program to obtain results similar to those found in Table 2.

Color Key: commands, comments, information to be supplied by the user.

**------------------------------------------------------------------------------------.

**ENTER NECESSARY INFORMATION FROM MULTIPLE REGRESSION ANALYSIS HERE*.

DEFINE @STUFF ().

COMPUTE b = -0.423 /*unstandardized regression coefficient */.

COMPUTE SEb = 0.386 /*standard error of regression coefficient */.

COMPUTE k = 6 /*number of predictors in regression equation */.

COMPUTE N = 30 /*number of observations or cases */.

COMPUTE alpha = .05 /*type I error criterion */.

COMPUTE maxN = 90 /*maximum value of N for table of estimates */.

COMPUTE incN = 10 /*increment in N for table of estimates */.

!ENDDEFINE .

**------------------------------------------------------------------------------------.

**CALCULATING POST-HOC POWER for t-TEST of REGRESSION COEFFICIENT.

NEW FILE.

INPUT PROGRAM.

@STUFF.

COMPUTE t = ABS(b/SEb) /*confirming t-test on b found in reg output */.

COMPUTE df = N-k-1 /*degrees of freedom for t-test on b */.

COMPUTE tcrit = IDF.T(1-(alpha/2),df) /*critical value of t for desired α */.

COMPUTE t_prob = 2*(1-CDF.T(t,df)) /*this is obs p value for t-test on b */.

COMPUTE Power = 1-NCDF.T(tcrit,df,t) /*post-hoc power for obs t-test on b */.

END CASE.

END FILE.

END INPUT PROGRAM.

FORMAT N k DF (F3.0) t_prob t b SEb Power (F8.3).

LIST b SEb t k N t_prob power.

**ESTIMATING SAMPLE SIZE NECESSARY FOR t-TEST OF b TO BE SIGNIFICANT.

NEW FILE.

INPUT PROGRAM.

@STUFF.

LOOP newN = N+incN TO maxN BY incN.

COMPUTE SEbStar = SEb/SQRT((newN-k-1)/(N-k-1)) /*est of SEb under new N */.

COMPUTE tcritN = IDF.T(1-(alpha/2),newN-k-1) /*crit t value for desired α */.

COMPUTE tstar = ABS(b/SEbStar) /*est of t under new N */.

COMPUTE t_probN = 2*(1-CDF.T(tstar,newN-k-1)) /*est of p-value for tstar */.

COMPUTE powerN = 1-NCDF.T(tcritN,newN-k-1,tstar) /*estd power of test under new N */.

END CASE.

LEAVE b SEb k N alpha.

END LOOP.

END FILE.

END INPUT PROGRAM.

FORMAT newN (F5.0) SEbStar powerN tstar t_probN b (F5.3).

LIST newN b SEbStar tstar t_probN powerN.
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