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Summary

It is known that genetic polymorphisms can be maintained in populations without superiority of

the heterozygote subject to constant but non-linear selection through periodic and higher-order

behaviour. In this paper we explore evolutionary paths from single equilibria to higher-order

attractors and the existence of polymorphisms that do not arise from equilibria. We explore

whether there is a continuous range of allelic types that can create such polymorphisms. We use a

single-locus genetic model with exponential density-dependent fitness functions and show that there

are large parameter ranges in regions of both overdominance and partial dominance where

polymorphic attractors exist.

1. Introduction

The maintenance of genetic polymorphisms in popu-

lations subject to constant but non-linear selection has

been studied and complex dynamics have been

revealed (Hastings, 1981). With density- and fre-

quency-dependent selection, non-linearities are known

to produce irregular dynamics without random pertur-

bations (Auslander et al., 1978). Single-locus genetic

models have shown that a wide range of polymorphic

behaviours can be generated that do not depend on

heterozygote superiority in carrying capacity (Asmus-

sen & Feldman, 1977; Asmussen, 1979).

Recently, Ferriere & Fox (1995) have speculated

that genotypes with lower fitness than any resident

genotypes may be able to invade populations due to

the existence of regions of attraction that are

sufficiently complex that ‘ less fit ’ mutants may

succeed. Analyses of plant growth models have shown

that the effects of density on individual survival and

reproduction can lead to optimum fitness strategies

that can cause population densities to behave with

periodic fluctuations (Bishir & Namkoong, 1992). In

these analyses, the optimum allocation of energy

among seed and vegetative plant parts is density

dependent and population growth is dependent on

seed production such that the replacement rates of the

seedling generation lead to such non-linear dynamics

that periodic population behaviour results. Appar-

* Corresponding author.

ently the population growth rate potential can become

so high that the carrying capacity equilibrium is

destabilized. If genotypes differ in either energy

gathering efficiency or the efficiency of energy al-

location among plant parts, then periodic behaviour

can be generated jointly in population sizes and allele

frequency polymorphisms (Namkoong et al., 1993)

without heterozygote superiority in carrying capacity

fitness.

While it may be clear that genetic polymorphisms

can exist in the form of periodic and higher-order

behaviour with and without heterozygote superiority,

the purpose of this paper is to explore whether there

are simple evolutionary paths from single, attracting

equilibria to such higher-order behaviour. We consider

that mutations of alleles affecting density-dependent

fitness can be favoured by selection if they increase

either the population growth rate or the carrying

capacity. Then if stepwise mutations generate small

increments in those population parameters, is it also

feasible to suspect that selection can lead populations

from single stable equilibria into periodic behaviour?

We investigate models of density-dependent selection

in which a continuous series of allelic effects on

population parameters may exist (but for which no

heterozygosity superiority exists in the parameter

effects). While previous investigations have shown

that period behaviour can be generated, no studies

have explained how such behaviour may evolve from

single stable equilibria into periodicity. Similarly, no

previous studies have examined whether the parameter
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levels and hence the types of allelic effects must lie

within very small ranges for periodic behaviour to

exist. We wish to determine whether a range of

parameters exists that can create such polymorphisms,

and whether there is a continuous set of parameters

within that range such that there can be a continuous

evolution into that set. We use single-locus genetic

models of non-frequency-dependent density re-

sponses.

2. Model equations

Suppose we have a single population and two alleles,

A
"
and A

#
. At time t the population size is denoted by

N
t
and the frequency of allele A

"
is denoted by p

t
. We

assume discrete generation intervals for diploid,

random mating organisms with viability selection

occurring after zygote formation but before repro-

duction and with the population censused before

density-dependent selection and reproduction. The

fitness of genotype A
i
A

j
(i, j¯1, 2) at time t is denoted

by wt

ij
. The marginal fitness of A

i
is thus

wt

i
¯ p

t
wt

i"
(1®p

t
)wt

i#
(i¯1, 2)

and the mean population fitness is

wa t ¯ p
t
wt

"
(1®p

t
)wt

#
.

Differences in fitness among genotypes may be

interpreted as the result of different responses to

ecological pressures. Following Asmussen (1979) and

Namkoong et al. (1993), exponential density-depen-

dent fitness functions of the form

wt

ij
¯ exp (a

ij
®b

ij
N

t
) a

ij
, b

ij
" 0, (i¯1, 2) (1)

are used in this paper. Such monotonic decreasing

functions of population density are often used to

model the detrimental effects of population crowding

(Selgrade & Namkoong, 1992).

If Hardy–Weinberg frequencies are assumed at

each time t, then the recursion equations for p and N

are

p
t+"

¯ p
t

wt

"

wa t
(2a)

N
t+"

¯wa tN
t

(2b)

where the region of practical significance is 0% p%1,

N" 0. With the above equations the carrying capacity

K
ij

for genotype A
i
A

j
acting alone is given by

K
ij
¯

a
ij

b
ij

.

For a more detailed description of the model see

Namkoong et al. (1993).

To study the effects of varying relative carrying

capacities separately from the effects of the growth

rates of the genotypes, we added an additional

multiplicative factor to the fitness functions to give

wt

ij
¯ exp (c

ij
(a

ij
®b

ij
N

t
)) a

ij
, b

ij
, c

ij
" 0, (i¯1, 2). (3)

Varying c
ij

has no effect on carrying capacities (K
ij
¯

a
ij
}b

ij
) but does affect the growth rate (c

ij
na

ij
) of the

A
i
A

j
genotype. Conversely, varying b

ij
affects the

carrying capacity but not the growth rate for genotype

A
i
A

j
. These are the variables that will be varied in the

model analysis. The methods of analysis and the

results are discussed in the next section. For clarity we

will use p
"
instead of p to indicate the frequency of the

A
"

allele in the remainder of the paper.

3. Model analysis

(i) Approach

Equilibria and their associated stability properties

have been studied analytically for models such as the

one described above. These theoretical results help

predict the conditions under which stable equilibria

can be expected (see, for example, Asmussen, 1979;

Roughgarden, 1979). However, periodic dynamics

(particularly polymorphic cycles) are more difficult to

study (Asmussen, 1979; Namkoong et al., 1993).

Fortunately, various dynamical systems computer

packages have been developed which can help us with

such analyses. We used DSTOOL (Back et al., 1992)

and XPPAUT (Ermentrout, 1996) to solve the system

of equations over time and to find fixed points. The

initial parameters we use are for populations that

exhibit stable equilibria.With heterozygote superiority

a stable equilibrium exists with 0! ρ!1. In the

absence of heterozygote superiority, the only attract-

ing equilibrium is stable at fixation of the allele

conferring the highest carrying capacity. Any muta-

tions of alleles that confer higher carrying capacities

for populations with stable equilibria would ultimately

fix those mutants and hence evolution would drive

populations to possess only those alleles with highest

carrying capacities, as long as they exhibit a single,

stable, attracting equilibrium. However, many popu-

lations are often also subject to selection for high

growth rate. Simultaneous selection would be expected

to increase both parameters to the extent that is

physiologically possible. If such selection were to

destabilize any previously existing equilibrium then

population dynamics may induce periodic behaviour

that limits evolution before physiological limits be-

come constraining.

At any level of carrying capacity, the rate parameter

(c
ij
na

ij
) can be increased without affecting population

dynamics to the point of destabilizing the equilibrium.

Just beyond that level (c
ij
na

ij
" 2±0) the equilibrium

changes from an attracting to an unstable point and

other fixed-point attractors can appear. The location

of the attractors can be diagrammed in relation to the
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Fig. 1. (a) Two-parameter space of b
##

versus c
##

for
a
""

¯ 2±1, b
""

¯1±0, c
""

¯1±1, a
"#

¯ 2±0, b
"#

¯ 0±96, c
"#

¯
1±0, a

##
¯1±9. With these values K

""
¯ 2±1 and K

"#
¯

2±083. K
##

decreases as b
##

increases. The curves denote
boundaries where fixed points bifurcate. The hatched
regions denote parameter combinations which give rise to
genetic polymorphisms. (b) One-parameter bifurcation
diagram for b

##
¯1±0 in (a). Continuous curves indicate

attracting fixed points and dashed curves indicate

parameters using XPPAUT’s output for AUTO

(Doedel, 1981). We use the continuous interface

package of AUTO to explore the effects of sim-

ultaneous and continuous variations in two para-

meters.

With this combination of analytical and graphical

packages we can follow the development of period-

doubling bifurcations to delimit the parameter space

for qualitative changes in periodic behaviour. For

higher than period-2 behaviour we used the second

iterate of the model in which a period-2 attractor is a

single point equilibrium, and found the bifurcation

points that generate the period-4 attractors.

(ii) Analyses

We consider a homozygote genotype which has a rate

parameter (cna) that would endow it with period-2

behaviour if growing as a monomorphic population,

and examine the kinds of alleles with which it could

coexist. At rate parameters below 2±0, allelic poly-

morphisms can be maintained only if heterozygotes

are superior in carrying capacity. We arbitrarily set

the b parameter near 1±0 for convenience, but it can be

scaled appropriately for any carrying capacity since

K¯ a}b. We assume that rate constants are increased

above 2±0 for at least one genotype. Specifically, we

assume that an A
"
A

"
genotype has a rate constant

greater than 2±0. The initial parameter values we use

are a
""

¯ 2±1, b
""

¯1±0, c
""

¯1±1, a
"#

¯ 2±0, b
"#

¯
0±96, c

"#
¯1±0, a

##
¯1±9 so that the heterozygote has

a lower carrying capacity than the A
"
A

"
genotype

(K
""

¯ 2±1, K
"#

¯ 2±083).

(a) Partial dominance – underdominance

We first examine the range of conditions for the A
#
A

#

genotype that create either underdominance or partial

dominance in carrying capacity to determine whether

genetic polymorphisms can persist in the absence of

an attracting equilibrium. Fig. 1a is a two-parameter

bifurcation diagram of b
##

versus c
##

showing the

parameter combinations which give rise to a persistent

genetic polymorphism (hatched regions). The hori-

zontal line at b
##

¯ 0±912 corresponds to K
"#

¯K
##

and divides a region of partial dominance (K
""

"
K

"#
"K

##
) above the line from a region of hetero-

zygote inferiority or underdominance below the line.

On the upper portion of the figure where the A
#
A

#

genotype has lower carrying capacities than either

A
"
A

"
or A

"
A

#
, there are A

#
A

#
genotypes with either

repelling fixed points. The asterisks mark branches having
0! p!1. LP stands for a limit point or saddle-node
bifurcation. PD stands for period-doubling bifurcation.
Only period-1 and period-2 fixed points are shown. (c) A
phase plane diagram at b

##
¯1±0, c

##
¯ 21±5, with a

polymorphic period-4 attractor and a period-2 attractor
at p

"
¯1. The triangles mark attracting points, and the

crosses mark saddle nodes.
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very high or very low rate parameters which allow

coexistence with large domains of attraction. How-

ever, the lower the carrying capacity (and hence the

higher b
##

), the more extreme the rate parameter for

the A
#
A

#
genotype has to be for it to persist. It can

also be noted that under conditions of under-

dominance in carrying capacity (lower part of Fig. 1a)

only alleles with very low rate parameters can be

maintained in a polymorphism.

Over most of the parameter space the general rule

for genetic polymorphisms with density dependence

holds true: the homozygote with the highest carrying

capacity excludes an allele with a lower carrying

capacity. It thus seems that the period-2 dynamics of

the A
"
A

"
genotype can only maintain a polymorphism

with a limited variety of alternative allelic types under

conditions of partial dominance and underdominance.

Nevertheless, examination of the types of attractors

that exist indicate that several forms of polymorphism

can be generated.

The behaviour of attractors within the shaded

regions of Fig. 1a can be examined by considering the

one-parameter (c
##

) bifurcation diagram (Fig. 1b) for

N where the genotype ordering of carrying capacities

is K
""

"K
"#

"K
##

. This diagram illuminates the

dynamics that correspond to different values of c
##

in

the range [0, 3] in Fig. 1 along the line where b
##

¯1.

Continuous curves are the locus of attractors in N and

dashed curves represent the locus of repellers. Curves

marked with asterisks denote the locus of interior

fixed points, where 0! p
"
!1,N" 0.

For c
##

!LP1 there is also an interior period-2

attractor. At the left-hand edge of Fig. 1b where

c
##

¯ 0, and continuing to the right, a saddle point as

well as a period-2 attractor at p
"
¯1 persists at con-

stant values N of approximately 2±1, 0±8 and 3±3,

respectively. This interior attractor disappears at LP1

through a limit point or saddle-node bifurcation. At

this point an interior period-2 saddle and an interior

period-2 sink collide and disappear. The repelling

equilibrium at p
"
¯ 0 also persists at a constant N of

approximately 1±9. This bifurcates at PD1 into a

period-2, and at PD2 into a period-4 and subsequently

into chaotic behaviour.

For LP1! c
##

!LP2 the general rule holds for

allelic displacement by homozygotes with superior

carrying capacity as there is no interior attractor – the

period-2 attractor at p
"
¯1 is now globally attracting.

At LP2 another saddle-node bifurcation occurs which

introduces a second region of interior attractors. For

LP2! c
##

!PD3 this attractor is period-2 and at

PD3 a period-doubling bifurcation occurs giving rise

to a period-4 interior attractor (see Fig. 1c for a phase

plane diagram of N and p
"

for c
##

¯ 2±15). Fig. 1a

shows how the position of this period-doubling point

varies with b
##

as well as c
##

. As c
##

is increased beyond

PD3 further period-doublings occur resulting in

higher-order interior attractors and finally a chaotic

attractor. This period-doubling route to chaos is well

4
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0
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Fig. 2. (a) One-parameter bifurcation diagram for b
##

¯
1±21 in Fig. 1. The notation is as in Fig. 1b. (b) A phase
plane diagram at b

##
¯1±21, c

##
¯ 2±5 and the remaining

parameter values as in Fig. 1a with two regions of
attraction for genetic polymorphisms.

known (May, 1976; Devaney, 1992; Selgrade &

Roberds, 1996 and the references therein). However,

in this case the initial bifurcation is a saddle-node

bifurcation and not a period-doubling from an

equilibrium to period-2 behaviour as in most docu-

mented cases. The dashed curve in Fig. 1a approxi-

mates the boundary of the region of interior

attractors. Beyond this curve there is a global (chaotic)

attractor which includes part of the p
"
¯ 0 and N¯ 0

axes even though the A
"
A

"
homozygote has a superior

carrying capacity.

Other regions in Fig. 1a can also be illuminated

using one-parameter bifurcation diagrams and phase

portraits. For example, if we shift b
##

to 1±21, Fig. 2a

shows the various dynamics that occur for different

values of c
##

. There are two additional limit points in
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this diagram, LP3 and LP4, which delimit a small loop

in the interior period-2 branches. Between these values

of c
##

there are two interior attractors (see Fig. 2b for

phase plane diagram at c
##

¯ 2±5).

(b) O�erdominance – partial dominance

If we now consider the situation where the het-

erozygote (A
"
A

#
) carrying capacity is greater than that

of A
"
A

"
, the endurance of the A

"
allele can be

examined for cases of heterozygote superiority or

partial dominance in carrying capacities. The upper

part of Fig. 3a corresponds to a carrying capacity of

A
"
A

#
that exceeds that of both homozygote and thus

illustrates the fate of polymorphism for heterozygote

superiority. (The parameter values for this figure are

the same as for Fig. 1 except for b
"#

which now has the

value 0±94 so that K
"#

¯ 2±128.) As might be expected,

a large range of A
#
A

#
types can coexist with the A

"
A

"

genotype, but even heterozygote superiority cannot

maintain a polymorphism since a chaotic A
#
A

#

genotype can exclude the A
"
A

"
genotype (region to the

right of the dashed curve).

We can use one-parameter bifurcation diagrams to

clarify the different regions in Fig. 3a. Fig. 3b

corresponds to conditions where b
##

¯1±0. For c
##

!
0±208 (PD1) there is a polymorphic equilibrium and a

period-doubling bifurcation at c
##

¯ 0±208, which

gives rise to a period-2 interior attractor. This becomes

period-4 at PD2 (c
##

¯ 2±098), which can be seen in the

phase diagram of Fig. 3c and d respectively. It can be

shown that a rapid succession of period-doubling

bifurcations occurs as c
##

is increased further, leading

to a chaotic interior attractor. Beyond c
##

¯ 2±3 the

chaotic attractor can be seen in the phase diagram of

Fig. 3e to contain an L-shaped region on the p
"
¯ 0

and N¯ 0 axes for c
##

¯ 2±31.

The one-parameter bifurcation diagram for b
##

¯
1±3 (Fig. 3 f ) shows how the regions marked A and B

in Fig. 3a, which correspond to two interior attractors,

arise. At c
##

¯ 2±637 (LP1) the interior period-2

branches reach a limit point and bend back on

themselves. A second limit point is reached at LP2¯
2±435 and the branches regain stability and double

back once again (this is known as hysteresis) giving

rise to a range of c
##

values where two separate

interior period-2 attractors exist, each with large

domains of attraction. At c
##

¯ 2±575 (PD2) a period-

doubling bifurcation occurs leading to an interior

period-4 attractor together with an interior period-2

attractor. As c
##

is increased, further period-doubling

bifurcations occur until a period-2 attractor coexists

with a chaotic attractor. At the dashed curve the

interior chaotic attractor is replaced by a chaotic

attractor which includes an L-shaped region on the

axes p
"
¯ 0 and N¯ 0. High levels of c

##
*a

##
can

therefore maintain the A
#

allele in polymorphic state

or can displace A
"

alleles even if the heterozygote

(A
"
A

#
) carrying capacity is superior to both homo-

zygotes. This further confirms that heterozygote

superiority is not a necessary condition for main-

taining polymorphisms.

Thus, if an allele can generate periodic behaviour in

the homozygous state it can maintain or be maintained

in a genetic polymorphism by competing genotypes

with wide variations in effect. Allelic coexistence as

well as allelic exclusion can exist for cases of

underdominance, partial dominance and overdomin-

ance in carrying capacity.

The above results were obtained for an A
"
A

"

genotype with a rate parameter of c
""

*a
""

¯ 2±31.

Rates closer to 2±0 show similar qualitative behaviour

but on a smaller, less easily visualized scale. At higher

values, such as when the rate parameter of the A
"
A

"

genotype is c
""

*a
""

¯ 2±64, we can see that larger

ranges of parameters can maintain polymorphisms for

A
#
A

#
genotypes that are either superior to or inferior

to the A
"
A

"
carrying capacity (compare Figs. 4 and 1a

and Figs. 5 and 3a). The ranges of rate and carrying

capacity parameters are much larger and indicate, at

least in this range of behaviour, that many allelic

polymorphisms can exist. At this higher rate par-

ameter, the dynamics for the A
"
A

"
genotype existing

alone are period-4. Thus in Fig. 5 there is an additional

curve PDu (when compared with Fig. 3a) delimiting

a region of interior period-4 attractors.

In both Fig. 4 and Fig. 5 a curve of period-

doublings from an interior period-2 to an interior

period-4 attractor (marked PD*) dips below the

horizontal line which divides the regions where

K
##

!K
"#

and K
##

"K
"#

. Using DSTOOL we found

that a small region of interior attractors exists below

this dividing line in both figures as shownby the dashed

curve. This region also exists in Figs. 1 and 4 but it is

smaller. Thus A
#
A

#
genotypes can coexist under any

condition of heterozygote superiority, intermediacy or

inferiority. It is possible for alleles with marginally

higher carrying capacities and acting with partial

dominance to maintain a genetic polymorphism with

a resident allele but only if its rate parameter is within

a limited range. Thus, if small increases in carrying

capacity are obtained by genotypes at the expense of

increased rate parameters, polymorphisms can evolve.

In these cases of competition among genotypes with

high rate parameters, the coexistence of three alleles

would seem to be possible though the parameter

ranges and domains of attraction may not be at all

similar. We have investigated three-allele dynamics

from the range of allele types which could coexist

pairwise with A
"
A

"
genotypes. Using a three-allele,

single-locus model and choosing parameter values

from Fig. 4 in the range where all gene actions are in

the partial dominance range, and where those for A
"

and A
#

alone and for A
"

and A
$

alone give rise to

polymorphic period-2 attractors, it can be shown that

A
#
and A

$
can also coexist when A

"
is not present. In

one case there was no attractor at which all three

alleles coexist but we did find a parameter set at which
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Fig. 3. (a) Two-parameter bifurcation diagram of b
##

versus c
##

parameter space for a
""

¯ 2±1, b
""

¯1±0, c
""

¯1±1,
a
"#

¯ 2±0, b
"#

¯ 0±94, c
"#

¯1±0, a
##

¯1±9. With these values K
""

¯ 2±1 and K
"#

¯ 2±128. K
##

decreases as b
##

increases. The
hatched regions denote parameter combinations which give rise to polymorphic attractors. (b) One-parameter bifurcation
diagram for b

##
¯1±0 in (a). Notation as in Fig. 1b. (c) A polymorphic period-2 attractor for b

##
¯1±0, c

##
¯1±0 in (a).

(d ) A polymorphic period-4 attractor for b
##

¯1±0, c
##

¯ 2±15 in (a). (e) 80000 points on the attractor when b
##

¯1±0
and c

##
¯ 2±31 in (a). Note the different scale on the axes so that the boundary of the attractor at p¯ 0 and N¯ 0 can

be seen with greater clarity. ( f ) One-parameter bifurcation diagram for b
##

¯1±3 in (a). The notation is as in Fig. 1b.
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##
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such a three-allele attractor exists. With that set of

genotypes removing any one of A
"
, A

#
or A

$
resulted in

an attractor at which the other two alleles coexisted.

4. Conclusions

For the types of parameter variations examined in

these exponential density-dependent models, the

maintenance of genetic polymorphisms in single-locus

models can be seen often to follow the familiar rules

in that overdominance of carrying capacity is both

necessary and sufficient. However, there are also very

large parameter ranges where overdominance is

neither necessary nor sufficient and which lie in

continuous sets. Hence, once entering the set, it is

possible that several allelic types could coexist, at least

in pairs and sometimes in larger sets. Alleles with

higher-order behaviour also seem capable of creating

larger sets for coexistence, with some of the pairs of

alleles creating several domains of attraction for

different types of polymorphisms. Hence, the invasion

of monomorphic populations by alleles with either

higher or lower carrying capacity can lead to periodic

and higher-order genetic polymorphisms.
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