LE THÉORÈME DE BERNSTEIN SUR LES FONCTIONS COMPLÈTEMENT MONOTONES

Serge Dubuc

Nous voulons montrer que le théorème de Bernstein est une conséquence simple de la formule de Taylor et d'un théorème de Helly. Rappelons une définition: une fonction réelle f définie sur (0, ∞) est dite complètement monotone si f est indéfiniment dérivable, si f ainsi que toutes ses dérivées paires sont positives et si toutes les dérivées impaires sont négatives.

THÉORÈME (Bernstein). Si f est une fonction complètement monotone bornée sur $(0, \infty)$ et si $\lim_{x \to \infty} f(x) = 0$, alors il existe une fonction croissante bornée F(t) sur $(0, \infty)$ telle que

$$f(x) = \int_{0}^{\infty} e^{-xt} dF(t) .$$

Vu que $\lim_{x\to\infty} f(x) = 0$, on a que $f(x) = \int_{x}^{\infty} -f'(x_1) dx_1$. Remarquant $\lim_{x\to\infty} f'(x)$ est une fonction complètement monotone qui tend vers zéro à l'infini, on obtient de la sorte: $f(x) = \int_{x}^{\infty} \int_{x_1}^{\infty} f''(x_2) dx_2 dx_1$. Tournant

la manivelle de la récurrence, on voit que

$$f(x) = \int_{x}^{\infty} \int_{x_{4}}^{\infty} \dots \int_{x_{n-4}}^{\infty} (-1)^{n} f^{(n)}(x_{n}) dx_{n} \dots dx_{2} dx_{4} . Si I' on$$

intervertit I' ordre des n intégrations, on obtient que

$$f(x) = \int_{x}^{\infty} \frac{(t-x)^{n-1}}{(n-1)!} (-1)^{n} f^{(n)}(t) dt . \text{ Effectuons le changement de}$$

variable $t = \frac{n}{u}$ dans la dernière formule,

$$f(x) = \int_0^{n/x} (1 - \frac{ux}{n})^{n-1} \frac{(-1)^n f^{(n)}(\frac{n}{u})}{(n-1)!} \frac{n}{\frac{n}{u}^{n+1}} du .$$

Posons
$$F_n(v) = \int_0^v \frac{(-1)^n f^{(n)}(\frac{n}{u})}{(n-1)!} \frac{n}{u^{n+1}} du$$
,

$$F_n(v) = \int_{\frac{n}{v}}^{\infty} \frac{(-1)^n f^{(n)}(t)}{(n-1)!} t^{n-1} dt$$
.

On obtient que $F_n(v)$ est une fonction croissante sur $(0, \infty)$ et lim $F_n(v) = 0$. Si l'on intègre par partie n fois, intégrant les $v \to 0$ dérivées de f et dérivant les diverses puissances de t, on obtient

$$F_n(v) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\frac{n}{v})(-\frac{n}{v})^k}{k!}$$
.

Vérifions que pour tout n,

$$\lim_{v\to\infty} F_n(v) = A = \lim_{x\to0} f(x).$$

Puisque f(x) est une fonction décroissante bornée, lim f(x) existe. $x \to 0$

II suffit donc de vérifier que pour $n = 1, 2, ..., \lim_{x \to 0} x^n f^{(n)}(x) = 0$.

Utilisons la formule de Taylor, soit x > 0 et 0 < y < x, alors

$$f(y) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x)(y-x)^k}{k!} + \int_{x}^{y} \frac{(t-x)^{n-1}}{(n-1)!} f^{(n)}(t)dt.$$

Faisons tendre y vers 0,

$$A = f(x) + \sum_{k=0}^{n-1} \frac{x^{k}(-1)^{k} f^{(k)}(x)}{k!} + \int_{0}^{x} \frac{(x-t)^{n-1} (-1)^{n}}{(n-1)!} f^{n}(t) dt.$$

Ainsi
$$\sum_{k=0}^{n-1} \frac{x^k (-1)^k f^{(k)}(x)}{k!} \leq A - f(x).$$

Faisant tendre x vers zéro, on voit donc que $x f^{(k)}(x)$ tend vers zéro lorsque x tend vers zéro.

Les
$$\{F_n(v)\}_{n=0}^{\infty}$$
 forment donc une famille de fonctions

croissantes bornées. Par le théorème de HeIIy [1], il existe donc une partie B des entiers et une fonction croissante bornée telles que pour toute fonction uniformément continue g(x) sur $(0, \infty)$,

$$\lim_{n \to \infty} \int_{0}^{\infty} g(x) dF_{n}(x) = \int_{0}^{\infty} g(x) dF(x)$$

Désignons par $E_n(u)$ la fonction sur $(0, \infty)$ qui vaut $(1-\frac{u}{n})^{n-1}$ si 0 < u < n et qui vaut 0 si $u \ge n$. Lorsque n tend vers l'infini, $E_n(u)$ converge uniformément sur $(0, \infty)$ vers la fonction e^{-u} . Maintenant si x > 0,

$$\begin{split} & \left| f(x) - \int_{0}^{\infty} e^{-xt} dF(t) \right| = \left| \int_{0}^{\infty} E_{n}(xt) dF_{n}(t) - \int_{0}^{\infty} e^{-xt} dF(t) \right| \\ & \leq \left| \int_{0}^{\infty} (E_{n}(xt) - e^{-xt}) dF_{n}(t) \right| + \left| \int_{0}^{\infty} e^{-xt} dF_{n}(t) - \int_{0}^{\infty} e^{-xt} dF(t) \right| \\ & \leq A \sup_{t} \left| E_{n}(xt) - e^{-xt} \right| + \left| \int_{0}^{\infty} e^{-xt} dF_{n}(t) - \int_{0}^{\infty} e^{-xt} dF(t) \right|. \end{split}$$

Lorsque n tend vers l'infini en demeurant dans l'ensemble B, chacune des deux dernières valeurs absolues tend vers zéro. Ainsi $f(\mathbf{x}) = \int\limits_0^\infty e^{-\mathbf{x}t} \, dF(t).$ Ce qui complète la démonstration du théorème de Bernstein.

Le théorème de Stone-Weierstrass nous permet de prolonger notre acrobatie. Soit $\widetilde{F}(t)$ une fonction croissante bornée telle que $\lim_{t\to 0} \widetilde{F}(t) = 0$ et que $f(x) = \int_0^\infty e^{-xt} d\widetilde{F}(t)$. Considérons la mesure signée $d\mu(t) = dF(t) - d\widetilde{F}(t)$. Alors pour tout x > 0, $\int_0^\infty e^{-xt} d\mu(t) = 0$. Dans l'espace des fonctions uniformément continues sur $(0, \infty)$ muni de la métrique uniforme, le sous-espace vectoriel fermé engendré par $\left\{e^{-xt}\right\}_{x>0}$ est l'ensemble des fonctions uniformément continues qui tendent vers zéro lorsque t tend vers l'infini. Il suit que la mesure t0 est nulle, c'est-à-dire t1 sauf peut-etre sur un ensemble

dénombrable, les points de discontinuité de la fonction F. Ce qui permet de conclure que F_n(u) converge vers F(u) pour tous les points u où la fonction F est continue.

REFERENCES

- 1. M. Loève, Probability theory. (Van Nostrand)
- D.V. Widder, The Laplace Transform. (Princeton University Press, 1946)

Université de Montréal et Faculté des Sciences d'Orsay