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Spinal cord injury (SCI) has a permanent and devastating
effect on the lives of affected individuals. Deficits in sensation,
motor function and bowel/bladder control drastically diminishes
the quality of life of SCI patients. The degree to which individual
patients are affected depends on the level and the extent of the
spinal cord lesion. Spinal cord injury also exerts a high cost to
society as SCI patients are often young with a peak incidence in
the second and third decades of life. In Canada alone, the
incidence of SCI approaches 900 new cases each year. It has
been estimated that lifetime costs of caring for an SCI patient can
easily exceed one million dollars, depending upon the level and
severity of the injury.1-3

Although significant advancements have been made in the
survival of SCI sufferers, primarily through improved bladder
care,4,5 attempts at restoration of function have remained largely
unproductive. Current treatment for the acute injury is primarily
medical, with the use of high dose steroids,6,7 and supportive,
through aggressive nursing care, and rigorous rehabilitation.
Surgical interventions are primarily aimed at spinal column
stabilization.8 Recently, there has been an effort to examine the
role of aggressive decompressive surgery in SCI.9,10 However, to
date, there is no therapeutic intervention to significantly restore
function after SCI. 

Over the past two decades the notion of spinal cord repair has
been investigated. Development of animal models for SCI have
been crucial for this effort. These models (Figure 1) include
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simulated contusions,11-16 transections11,17-21 and hemisections.11,21-24

Neural transplantation has been employed as a repair strategy in
the majority of these models.25-29 Tissue sources for
transplantation have involved peripheral nerve grafts,30-33 dorsal
root ganglia,34 Schwann cells,35,36 adrenal tissue,37 and fetal
spinal cord tissue, derived from both rat11,38-40 and human41,42

sources. The present review focuses on the current status of
neural transplantation for SCI.

ROLE OF TRANSPLANTS ON AXONAL RECOVERY

Traumatic injury to the spinal cord results in neuronal cell
death and disruption of ascending and descending axonal
pathways in the region of the injury. The concepts of primary and
secondary injury are widely used in describing the sequence of
events leading to neuronal dysfunction.43,44 Primary injury
results from the direct mechanical forces applied to the spinal
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cord at the time of the trauma. These include compression,
contusion, shearing and laceration.44,45 Secondary injury has
been attributed to local inflammation, edema, decreased blood
flow, loss of autoregulation and microhemorrhage as well as
electrolyte changes, particularly related to potassium and
calcium.44,45 These biochemical changes result in lipid
peroxidation and free-radical production, which promotes further
neuronal and axonal damage.44,46 All these events culminate in
the formation of a cavity at the injury site and the development
of a glial scar,45,47 which prevents axonal reconnections across
the injury site.38,48,49

Transplantation of various types of tissue into and around the
site of SCI in animal models have shown promise for functional
recovery. However, the mechanism by which these grafts may
induce beneficial functional effects is still not known.11,25 One
potential mechanism is that the graft serves as a bridge through
which host axons can regrow to find their targets caudal to the
lesion (Figure 2A). Various studies have shown that the bridge
mechanism occurs in experimental injury models utilizing
newborn rats undergoing fetal tissue transplantation.17,22,50

Similar observations have been repeated in adult rats using either
peripheral nerve graft18,51 or Schwann cell conduits.52 Another
proposed mechanism is that grafts provide neurons, which can
serve as synaptic relays for descending axons. Several studies
have shown that host descending axons can penetrate into the
graft and form synapses with the grafted neurons (Figure 2B).
There is also evidence that grafted neurons themselves can send
axons into the host spinal cord.53-57 The third proposed
mechanism is that the transplant may provide neurotrophic
factors which may limit the degree of axonal retraction and may
even promote survival and regeneration of host neurons (Figure
2C). The ability of fetal transplanted tissue to reduce host

retrograde induced cell death in axotomized neurons in neonatal
and adult models of SCI has been well-documented.58-63 Fetal
transplantation has also been shown to upregulate the expression
c-Jun, an inducible transcription factor associated with regrowth
of axotomized neurons.64 This observation suggests a novel
mechanism by which transplants can promote survival and
regeneration at the cellular level. There is also evidence that fetal
grafts can influence GABAergic interneurons in the region of the
transplant, suggesting that appropriate grafts may reestablish, at
least to some degree, local spinal circuitry.65 However, it is likely
that the mechanism by which neural transplants facilitate
functional recovery is multifactorial and may involve all or some
of the proposed mechanisms and may also be dependant upon the
source of tissue transplanted.

PERIPHERAL NERVE GRAFTS

Peripheral nerve grafts have been utilized since the time of
Tello (1911) to stimulate CNS axonal repair.66,67 Tello67 was the
first to demonstrate that CNS axons can penetrate a grafted
peripheral nerve. Attempts to repair the spinal cord by using
peripheral nervous system (PNS) tissue grafted into spinal cord
lesions were carried out in the mid-twentieth century.68-71 The
initial report by Sugar and Gerard68 suggested that new fibres
could grow into a grafted segment of sciatic nerve. Further
studies utilizing electron microscopy demonstrated that axons
originating in the host, entered and crossed a sciatic nerve graft
in a transected dog spinal cord.72 During the 1980s, increased
effort was directed towards using peripheral nerve grafts to
facilitate CNS axonal recovery.73-76 These studies repeatedly
showed that PNS grafts promoted regeneration. However, they
were unable to demonstrate that host axons could re-enter the

Figure 1: Schematic horizontal longitudinal sections of the rat spinal
cord. Demonstrating: A. the transection model representing bilateral
disruption of descending axons, B. the hemisection model illustrating
ipsilateral disruption of descending axons and C. the contusion model
depicting the potential sparing of descending axons in an incomplete
injury.

Figure 2: Schematic horizontal longitudinal sections of the rat spinal
cord. A. Demonstration of graft acting as a bridge for regenerating
axons. B. Graft functioning as a synaptic relay for descending axons. C.
Transplant secreting neurotrophic factors to support the severed axon
and reduce axonal retraction.
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CNS environment after traversing the peripheral nerve
graft.73,75,76 Using retrograde and anterograde tracing techniques,
it was observed that regrowing axons penetrating the peripheral
nerve graft originated from neurons in the CNS as well as from
PNS neurons located in the dorsal root ganglia. These studies
also demonstrated the significant role the distance of the injury
from the cell body plays in the ability to regenerate axons.
Injured bulbospinal axons were found to penetrate a peripheral
nerve graft only if it was transplanted into the cervical region but
not if it was transplanted into the thoracic region.76

A recent study in the complete spinal cord section model in
the rodent attempted to connect spinal grey matter to white
matter tracts by placing multiple intercostal nerve grafts between
proximal white matter to distal grey matter, for descending motor
tracts, and distal white matter to proximal grey matter, for
ascending sensory tracts.51 The grafts were held in place with a
fibrin glue containing a neurotrophic factor (acidic fibroblast
growth factor). Behavioural testing showed improved hind limb
function and histological analysis showed evidence of cortico-
and bulbospinal tracts passing through the graft and into the
lumbar enlargement. 

In an effort to facilitate axonal growth at the graft-host
interface, attempts to modify the local environment by
pretreating the host spinal cord with X-rays49 or by genetically
modifying the graft to overexpress outgrowth-promoting
proteins have recently been conducted.77 Unfortunately, despite
the ability to identify the transduced gene product post-
implantation, the axon ingrowth noted in sciatic nerve
transplants was not greater than in a saline-injected control
group.77 However, irradiation of the spinal cord tissue prior to
transplantation appears to decrease glial scar formation and may
be useful in axonal growth through the graft-host interface.49

GRAFTS OF MYELIN PRODUCING CELLS

It is generally accepted that Schwann cells play a significant
role in the ability of the PNS to regenerate damaged axons. There
is evidence that Schwann cells secrete various neurotrophic
factors, such as nerve growth factor (NGF),78 brain-derived
neurotrophic factor (BDNF)79 and ciliary neurotrophic factor,80

as well as extracellular matrix molecules81 which may play a
significant role in axonal regeneration. Cultured Schwann cells
from rat sciatic nerves have been seeded into channels and
transplanted into a thoracic transection model of SCI.82 These
studies showed evidence of regeneration of propriospinal and
sensory axons into the graft; however, there was no evidence of
supraspinal axonal regeneration based on
immunohistochemistry.82 Further tracing studies of this model
demonstrated not only extensive projection of spinal axons into
the cervical and sacral regions but also limited growth of
supraspinal axons into the rostral end of the graft.83 This
observation has been confirmed by other studies that have shown
survival and integration of Schwann cell grafts into the host
spinal cord.84 Although the presence of regenerated spinal axons
into the grafts has been observed, penetration of the graft by
supraspinal axons continues to be elusive.85

The addition of neurotrophic factors via a mini-pump in
Schwann cell grafts increased the number of myelinated fibres
found in the transplanted region. Furthermore, tracing studies
demonstrated labelling of brain stem nuclei.86 To enhance the

intrinsic ability of Schwann cells to secrete these neurotrophs,
genetically modified Schwann cells have been used in grafting
experiments.87-90 Considerably more brain stem and
hypothalamic labelling was observed in the modified Schwann
cell grafts compared to the nonmodified Schwann cell grafts.87

Furthermore, modified Schwann cell grafts were spontaneously
arranged into regular arrays within the cord and showed evidence
of enhanced axonal growth and remyelination when compared to
untreated grafts.90 Human Schwann cell grafts have also been
studied.91 When transplanted into the transected rat spinal cord
these human Schwann cells showed evidence of axonal
regeneration and induced some functional recovery.91

Another group of myelin-forming cells with similar potential
for use in spinal cord transplantation are the olfactory
ensheathing cells. These cells support the growth of axons from
the olfactory bulbs and possess qualities of both Schwann cells
and astrocytes.92 However, they differ in their ability to traverse
the boundary between the PNS and the CNS. It has been shown
that these cells are able to myelinate axons in culture.93 Li and
co-workers94 transplanted a suspension of ensheathing cells
cultured from the adult rat olfactory bulb into the transected
corticospinal tract in the cervical region. The graft was found to
induce unbranched growth of the severed corticospinal tract into
and through the transplant, re-entering the host spinal cord distal
to the graft. The graft cells were seen to myelinate individual
axons and surround groups of axons, thereby forming fascicles.
Functional testing, using a directed forelimb reaching test,
showed that animals receiving the grafts exhibited improvement
in reaching of the affected limb, whereas, animals not receiving
a graft did not improve. The enhanced regeneration induced by
transplants of olfactory ensheathing cells has been confirmed in
other studies,95,96 and include evidence that the electrical
conduction block of a demyelinating lesion can be overcome.97

These promising results have promoted the use of olfactory
ensheathing cells from human olfactory nerves. A recent report
by Kato and colleagues98 showed considerable spinal cord
remyelination after human olfactory ensheathing cells were
grafted into the demyelinated spinal cord of adult rats. 

GRAFTS OF FETAL TISSUE

Over the past decade, there has been extensive experience in
grafting fetal tissue for spinal cord repair and to promote
functional recovery in animal models of SCI. Grafts of fetal
cortical and spinal cord tissue have been implanted into neonatal
and adult rats with spinal cord lesions. There is evidence of
rescue of host spinal cord neurons by fetal grafts within seven
days of lesioning. However, grafts implanted after this time had
decreased effectiveness in preventing cell death, suggesting an
optimal window for fetal grafting postinjury.23

Rat embryonic neocortical tissue has been shown to survive
and differentiate into normal appearing neurons in the injured rat
spinal cord.99 Fetal grafts (E11-E17) have been used in both adult
and neonatal rats.99-102 Differentiated neurons and neuroglia have
been identified as early as seven days postimplantation in these
animals.101 These implants appear to express cortical
biochemical and morphological features despite their heterotopic
location in the spinal cord.103 There is evidence of glial
migration; astrocytes derived from these grafts have been
identified up to 3.5 cm away from their thoracic site of
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implantation, reaching both the cervical and lumbar regions.104

Homotopic fetal spinal cord grafts appear to enhance neural
reconnectivity as suggested by the formation of plexuses
showing arborizations within motoneuron pools.105 Homotopic
spinal cord grafts seem to promote greater functional recovery
when compared to heterotopic cortical grafts.106 Furthermore,
descending axons in the neonatal rat failed to grow into a cortical
heterotopic graft but traversed a homotopic spinal cord graft.18,21

Fetal spinal cord tissue transplanted at the time of injury
initially undergoes a period of cell death but once integrated into
the host tissue, the cells rebound and proliferate to fill the lesion
cavity.107 There appears to be a need for immunosuppression, at
least initially after grafting and cellular rejection is based on host
and graft MHC expression.107 This observation suggests that the
region of injury and transplantation does not retain the
immunological privilege presumed in the brain. Furthermore, it
has been shown that the blood-spinal cord barrier is altered
following SCI.108 A study using the alpha-aminoisobutyric acid
technique showed that although grafting with fetal tissue did not
alter blood-tissue transfer rates initially, a significant decrease in
permeability in graft areas was observed caudal to the injury site
14 and 28 days after implantation.109 These results indicate a
decreased need for immunosuppression following
transplantation as the graft matures and the injury site regains its
normal physiologic barriers. 

Although there is clear evidence for graft survival and
functional recovery following fetal tissue transplanta-
tion,11,26,48,110 it has been difficult to demonstrate that regenerated
axons project through the graft for more than 1-2 mm into the
distal adult spinal cord.54,60,111,112 In contrast, the results of fetal
tissue grafting in neonatal pups following SCI has showed that
descending axons penetrate the graft and extend for substantial
distances distal to the transplant site.20,40,50 There is also evidence
that transplanted spinalized neonatal rats show improved
functional recovery and near normal development in comparison
to controls.20,40,113 These studies suggest that the immature
environment of the developing spinal cord is more conducive to
graft survival and functional recovery.

Xenotransplantation using human fetal spinal cord tissue has
also been studied in the rat model of SCI.114-116 Following
transplantation into a contusion model of SCI, human fetal spinal
cord tissue could be identified immunohistochemically at 2-3
months postgrafting.115 Solid grafts of fetal tissue placed acutely
into a lesion site had an 83% survival rate compared to 92%
survival rate when transplanted into a chronic contusion (14-40
days after injury).116 When a cell suspension was used in the
chronic model the survival was 85%. These experiments suggest
that although human fetal spinal cord grafts can survive in rat
models of SCI, graft viability, differentiation and integration is
dependent upon the timing of the transplant and the type of graft
(solid versus cell suspension). 

In neural transplantation studies from our laboratory, we have
been able to confirm the survival of human fetal spinal cord
grafts in the hemisected rat model. Utilizing a double grafting
technique, which has been shown to increase functional recovery
and neural reconstruction in the rat Parkinson’s disease model,117

we were able to demonstrate improved functional recovery in
rats transplanted with human fetal spinal tissue compared to
hemisected only controls.118

Despite the promising results of fetal spinal cord
transplantation, fetal tissue is not an ideal source of tissue
because of ethical and availability concerns. A good deal of
research is currently being conducted on developing alternatives
to fetal tissue which could be used in neural transplantation for
SCI repair.119,120

GRAFTS OF NEURONAL STEM CELLS AND OTHER NEURAL CELL

LINES

Recently there has been great interest in developing stem cell
cultures and investigating their potential role in CNS disease.121-124

In models of SCI, stem cells have been shown to survive, migrate
over considerable distances and differentiate into both neuronal
and glial phenotypes.125,126 This degree of integration has
coincided with behavioural recovery in transplanted animals.126

Stem cells have also been shown to be capable of secreting
neurotrophins after transfection with retroviral vectors.125 The
pluripotent qualities of stem cells hold conceivable promise as an
alternative tissue source for transplantation in SCI.

A cell line derived from a human teratocarcinoma (NT2N;
commercially available as hNT cells from Layton Bioscience
Inc,) has yielded a homogeneous population of neural progenitor
cells.127 Following in vitro treatment with retinoic acid, the
progeny of this cell line is restricted to a neuronal lineage
yielding postmitotic neuronal cells. These cells retain their
neuro-chemical, -physiological and -morphological
properties.128-135 The NT2N cells have been successfully
transplanted into brains of immunodeficient mice with good
survival and no evidence of tumour formation, graft rejection,
significant apoptosis or necrosis after one year.136-138

Furthermore, the NT2N transplanted cells integrated well into
the surrounding host neural tissue by extending dendritic and
axonal processes.139 These results led to the implantation of
NT2N cells into experimental animal models of neurological
conditions such as: stroke,140-142 Huntington’s disease,143

Parkinson’s disease144 and a traumatic brain injury.145 Recently,
it has been shown that hNT grafts integrate into the mouse spinal
cord and project axons at lengths greater than 2 cm.146 Recent
experience from our laboratory indicates that hNT grafts survive
and proliferate in a rat spinal cord hemisection model.147

Another neural progenitor cell line that has been developed is
the RN33B cell line. These cells are derived from embryonic rat
raphe nuclei that have been infected with a retrovirus encoding
the temperature sensitive mutant of SV40 large T-antigen.148

When transplanted into neonatal rat models of SCI these cells
survive and differentiate to resemble bipolar neurons.149 By
altering the host environment, it appears that these cells respond
to cues from the local microenvironment and have the plasticity
to differentiate accordingly.149,150 Unfortunately similar attempts
to immortalize human neurons has been unsuccessful to date due
to the development of chromosomal aberrations.150

ROLE OF NEUROTROPHIC FACTORS

There is abundant evidence of the role of neurotrophic factors
in supporting growth and development of axons.151-154 Although
these proteins do not readily cross the blood-brain barrier, a
variety of techniques have been devised to deliver them to the
injury site, including: local injection,155 embedding into a
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collagen matrix,156 use of mini-pumps,157 or through
transplantation of genetically modified cells.158 Several
neurotrophic factors have been shown to enhance recovery of
damaged spinal axons in vitro and in vivo. These factors include
glial cell line derived neurotrophic factor,159,160 BDNF,24

NGF,157,161 ciliary neurotrophic factor,24 neurotrophin-3 (NT-
3)155 and neurotrophin-4/5 (NT-4/5).162 Neurotrophic factors
appear to exert their effects via different subgroups of receptors
such as the tyrosine kinase neurotrophin receptors (Trk). It is
now known that specific Trk receptors have high affinity for
specific neurotrophins, for example TrkA binds NGF, TrkB binds
both BDNF and NT-4/5 and TrkC binds NT-3.163,164 Furthermore,
neurotrophins can be used to enhance recovery in specific axonal
tracts depending upon the predominant subgroup of Trk
receptors expressed in the neuronal population. It has been
shown that dorsal root ganglion cells contain a high degree of
TrkA positive neurons165 and treatment with NGF yields
significant regrowth of sensory axons157,158 but no regrowth of
corticospinal axons.161 Similarly, TrkB is known to be expressed
by rubrospinal neurons166 and it has been shown that BDNF
reduces axotomy induced rubrospinal cell death in newborn167

and adult rats.168 Corticospinal tract axons contain both TrkB and
TrkC receptors and respond to both BDNF and NT-3.166,169

Biological molecules that inhibit axonal growth have also
been described in association with oligodendrocytes in the CNS
and are considered an impediment to regeneration.170,171 In
particular, myelin-associated glycoprotein (MAG),172-174 neurite
growth inhibiting proteins NI-35/NI-250175,176 and bovine
neurite growth inhibitor (bNI-220)177 have been of interest. It has
been felt that by inhibiting the effects of these proteins an
environment more suitable for neural regeneration could be
achieved. However, when MAG-deficient mice are used to
assess the role of MAG in axonal regeneration, there was no
significant difference found between the deficient mice and the
wild type.172,174 Therefore, it has been postulated that the
inhibitory effects of MAG do not occur in isolation but rather act
in conjunction with other inhibitory factors.174 In addition to NI-
35/250 and bNI-220, the chondroitin sulfate proteoglycans are a
family of molecules which have been implicated in the formation
of a glial scar and the inability of neurons to regenerate their
axons.178,179 The upregulation of chondroitin sulfate
proteoglycans has been shown to correspond closely to regions
of inflammation with activated macrophages, and a disrupted
blood-brain barrier following SCI in rats.179 These results are
consistent with the concept that the factors inhibiting neural
regeneration are likely multifactorial and may be derived from
both sides of the blood-brain barrier. 

It appears that our ability to promote axonal regeneration in
the spinal cord may improve by activating growth promoting
factors and decreasing inhibitory factors. Development of an
antibody, IN-1, directed towards these inhibitory proteins has
been shown to negate their effects in culture.175,180 In vivo
studies using SCI in rats have shown improved regeneration
when IN-1 was present in the cerebrospinal fluid. Although the
density of regenerating corticospinal tract fibres was low,
animals treated with IN-1 were found to extend axons distal to
the graft up to 18 mm, whereas in control animals, axons barely
re-entered the distal host spinal cord.181 A further improvement
in axonal regeneration was observed histologically when IN-1

and NT-3 were used in conjunction.155 However, when
examining ascending sensory tracts in the dorsal funiculus a
similar beneficial effect of IN-1 antibodies was not elicited.176

This suggests a possible tract selectivity for these inhibitory
proteins.

HUMAN TRIALS AND THE FUTURE

Neural transplantation for SCI is at its very early stages and
considerable research using animal models is still needed before
it can be considered a reconstructive strategy in humans.
However, clinical trials have been reported. A trial of
transplanting fetal neocortex into 41 patients with chronic SCI
was performed in Russia about a decade ago.182 No long-term
follow-up or evidence of graft survival is available but the
authors reported an improvement in sensory function over a
number of dermatomes in some patients. More recently, a team
in Denver, Colorado reported the use of human embryonic spinal
cord tissue to obliterate a post-traumatic syrinx.183 The authors
reported a seven-month follow-up with persistent obliteration of
a 6-cm cystic cavity and good visualization of the graft on MR
imaging. 

Although research in neural transplantation in animal models
of SCI has showed some promising results, clinical trials of
neural transplantation in SCI patients are premature. A greater
understanding of the molecular mechanisms involved in SCI is
necessary to achieve spinal cord repair by neural transplantation
strategies. It is likely that genetic modification of cells to secrete
neurotrophic factors or block the effects of inhibitory factors
may be crucial in repair mechanisms. Undoubtedly, neuronal cell
replacement will remain an essential part of any repair paradigm.
With further advancement and development of novel cell lines,
such as human stem cells, and a greater understanding of their
versatility to differentiate into multiple phenotypes, a reliable
source of cells for transplantation may be developed. The ability
to re-establish local neural circuitry and reconnect neural
pathways proximal and distal to the lesion, while limiting the
extent of primary and secondary injury, will play an important
role in attaining the ultimate goal of functional recovery.
Although we have yet to reach the point of clinical application
and much work is still left to be done, reconstructive strategies
offer the greatest hope for the repair of SCI.
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